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0. Introduction. Let G be a compact abelian group and let Γ be its
discrete dual group. Let 1 ≤ p, q ≤ ∞. A function m : Γ → C is called an
(Lp, Lq) multiplier (or Lp multiplier if p = q) if for every f ∈ Lp(G) there
is a function Tmf ∈ Lq(G) such that

T̂mf(γ) = m(γ)f̂(γ)

for all γ ∈ Γ. The space of (Lp, Lq) multipliers will be denoted by M(p, q)
(or M(p) if p = q).

It is well known that M(p, q) = M(q′, p′) (where p′ = p/(p− 1), q′ =
q/(q − 1)) and that M(G) = M(1)  M(p)  M(2) = l∞ if p 6= 1, 2,∞. It is
also known thatM(1, q) = Lq(G). For choices of p and q other than these few
special cases, fundamental questions such as characterizing M(p, q) remain
unsolved. For background information on (Lp, Lq) multipliers we refer the
reader to [4, Ch. 16] and [16].

A concept which has proved useful in the study of measures is tameness.

Definition [1]. A measure µ is called tame if for each χ ∈ ∆M(G),
the maximal ideal space of M(G), there is a γ0 ∈ Γ and a ∈ C with |a| ≤ 1
such that χµ = aγ0 µ-a.e., where χµ is the µ-measurable function on G such
that χ(ν) =

∫
χµ dν for all ν � µ.

Notice that this implies that χ(γµ) = aµ̂(γ0γ) for all γ ∈ Γ. Motivated
by this observation we propose:

Definition. Given m ∈ M(p) and γ ∈ Γ let γm denote the Lp mul-
tiplier defined by γm(α) = m(γα) for α ∈ Γ. We will call a multiplier
m ∈ M(p) tame if for every χ ∈ ∆M(p), the maximal ideal space of M(p),
there exist γ0 ∈ Γ and |a| ≤ 1 such that for all γ ∈ Γ , χ(γm) = am(γ0γ).

An example of a tame multiplier which is not a measure is a one-sided
Riesz product (see Section 1).

Research partially supported by the NSERC.



304 K. E. HARE

In this paper we study tame multipliers and show interesting similarities
to measures. For example, our main theorem (2.2) is that any tame idem-
potent multiplier on Lp is the Fourier transform of a measure. We obtain
estimates on the size of tame multipliers which belong to M(2, p) for some
p > 2 (Section 3). These are similar to estimates obtained in [8] and [5] for
measures, and are false for non-tame multipliers.

In Section 4 we prove that E ⊆ Γ has the property that every tame
multiplier supported on E vanishes at infinity if and only if E does not
contain the translate of the support of a one-sided Riesz product, a result
which is analogous to the Host and Parreau [14] characterization of Rajch-
man sets. We also prove a result analogous to their characterization of sets
of continuity [13].

One could also define tame multipliers on the Hardy space H1(T ) and
we show in Section 5 that any such multiplier is either a measure or an
element of c0.

1. Examples of tame multipliers. Since M(G) ⊆ M(p) for all
1 ≤ p ≤ ∞, any χ ∈ ∆M(p) induces an element in ∆M(G), and thus any
tame measure is a tame multiplier on Lp. A consequence of [6, 10.2.14] is
that if m ∈ M(p) ∩ c0 for some 1 ≤ p < 2, then m is a tame multiplier on
Lq for all p < q ≤ 2.

An example of a multiplier on Lp(T ), 1 < p < ∞, which is not tame is
m = 1N. This is immediate from Theorem 2.1 but can also be easily proved
directly. Just note that if for some increasing sequence of integers {nk} we
have limnkm(n) = am(n0 +n) for all n, then setting n = 0 we see that a6=0
and n0 ∈ N; but evaluating at −n0 − 1 contradicts this.

Notice that Γ ⊆ ∆M(p) in the sense that γ ∈ Γ can be identified with
the complex homomorphism (also called γ) which maps the multiplier m to
m(γ). We will write Γ p for the weak∗ closure of Γ in ∆M(p).

Recall {γj}∞j=1 ⊆ Γ is called dissociate if
∏N

j=1 γ
εj

j = 1 for εj = 0,±1,±2
implies γεj

j = 1 for all j. Given a dissociate set of characters {γj}∞j=1 and a
sequence of complex numbers {aj}∞j=1, define m : Γ → C by

m(γ) =
{ ∏N

k=1 ajk
if γ =

∏N
k=1 γjk

,

0 else.

We will writem =
∏

(1+ajγj) for short. When |aj | ≤ 1 for all j thenm ∈
l∞(Γ ) and hence is a multiplier on L2, and we will refer to m as a one-sided
Riesz product. When γ2

j = 1 for all j then m is actually a Riesz product,
but if, for example, Γ = Z and aj = 1/2 then m is not a measure. Our
first result characterizes the tame one-sided Riesz products which belong to
M(p) for some p 6= 2.
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Proposition 1.1. Assume γ2
j 6= 1 for any j. Then the one-sided Riesz

product m (notation as above) is a tame Lp multiplier for some 1 < p <∞,
p 6= 2, if and only if lim sup |aj | < 1.

P r o o f. First we will prove that to be an Lp multiplier for some p < 2
it is necessary to have lim sup |aj | < 1. This requires a minor improvement
on a result in [12].

Lemma 1.2. For |b| real and sufficiently small and |r| ≤ 1,∥∥∥ N∏
j=1

(1+bγj+rb̄γ−1
j )

∥∥∥
p
=

(
1+|b2|

(
1 + |r|2

2
+

(
p

2
−1

)
|1 + r|2

2

)
+O(|b|3)

)N

.

P r o o f. It is routine to see that∥∥∥ N∏
j=1

(1 + bγj + rb̄γ−1
j )

∥∥∥p

p
= (1 + |b2|(1 + |r|2))Np/2

∫ N∏
j=1

(1 +Xj)p/2

where

Xj =
2 Re γj(r̄b+ b) + 2 Re γ2

j |b2|r̄
1 + |b2|(1 + |r|2)

.

When |b| is sufficiently small a Taylor series expansion gives∫ N∏
j=1

(1 +Xj)p/2 =
∫ N∏

j=1

(
1 +

p

2
Xj +

p

2

(
p/2− 1

2

)
X2

j +O(‖Xj‖3∞)
)

=
∫ N∏

j=1

(
1 +

p

2

(
p

2
− 1

)
|r̄b+ b|2 + Pj +O(|b|3)

)
where Pj = cj Re γj + dj Re γ2

j for certain coefficients cj and dj . Because of
the dissociateness condition ∫ ∏

k

Pjk
= 0

(for all but the empty product), thus∥∥∥∥ N∏
j=1

(1 + bγj + rb̄γ−1
j )

∥∥∥∥p

p

= (1 + |b2|(1 + |r|2))Np/2

(
1 +

p

2

(
p

2
− 1

)
|r̄b+ b|2 +O(|b|3)

)N

and one further application of Taylor series completes the proof.
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P r o o f o f P r o p o s i t i o n 1.1 (ctd.). Suppose m ∈ M(p) for some
p 6= 2. Let t < lim sup |aj | and choose |ajk

| ≥ t. Let

f =
N∏

k=1

(1 + bγjk
+ rb̄γ−1

jk
)

with r = 2/p− 1. By setting r = 0 in the lemma we obtain

‖Tmf‖p =
∥∥∥ N∏

k=1

(1 + ajk
bγjk

)
∥∥∥

p
=

N∏
k=1

(1 + |ajk
b|2p/4 +O(|b|3)) .

Combining this estimate with the estimate on ‖f‖p from the lemma, we see
that for |b| small

‖Tmf‖p

‖f‖p
≥

(
1 + t2|b|2p/4 +O(|b|3)
1 + |b|2/p′ +O(|b|3)

)N

and this tends to infinity as N → ∞ unless t2p/4 ≤ 1/p′. But since
m ∈ M(p), the operator norm of m dominates ‖Tmf‖p/‖f‖p, and hence
lim sup |aj | ≤ 4/(pp′).

Now assume lim sup |aj | < 1. It is known [22] that the Riesz product
µ =

∏
(1+ 1

2 (γj +γ−1
j )) ∈M(p, 2) for some p < 2. Choose a positive integer

k and constant C so that |mk(γ)| ≤ C|µ̂(γ)| for all γ ∈ Γ. It follows that
mk ∈ M(p, 2) and an application of Stein’s analytic interpolation theorem
(see [10, 1.3] for the details of how the interpolation theorem is applied
in this context) proves that m ∈ M(q, 2) for some q < 2. In particular,
m ∈M(q).

Brown in [1, 5.1] proved that a Riesz product µ satisfying lim sup |µ̂(γ)|
< 1 was a tame measure. We can prove that a one-sided Riesz product
m with lim sup |aj | < 1 is a tame Lq multiplier for q chosen as above, by
appropriately modifying the proof for tameness of Riesz products given in [6,
7.3], replacing µ̂ there by m. We will briefly outline the necessary changes.

Given a subset Φ of the infinite dissociate set Θ = {γj} we define

mΦ ≡
∏

γj∈Θ\Φ

(1 + ajγj) .

For χ ∈ ∆M(q) and γ ∈ Γ we define mΦ(χγ) to be χ(γmΦ).
Replace Ω(Φ) by

Ω′(Φ) ≡
{ N∏

j=1

γ
εj

j : εj = 0, 1, γj ∈ Φ, N ∈ N
}
.

Analogous to Riesz products, for a finite subset Φ of Θ we have

m =
∑

{m(γ)γ̄mΦ : γ ∈ Ω′(Φ)} .
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For M ∈ M(p, q) denote by ‖M‖p,q the operator norm. The main point
of the proof of the theorem requires knowing that |mΦ(χγ)| is uniformly
bounded over all finite subsets Φ. But this is true since |mΦ(χγ)| ≤
‖mΦ‖q,q ≤ ‖mΦ‖q,2 ≤ ‖m‖q,2 < ∞. The reader should have no trouble
seeing how the remainder of the proof is modified.

R e m a r k s. 1. Given any 1 < q < 2 there exists ε > 0 such that∏
(1+ε(γj +γ−1

j )) belongs to M(q, 2) (cf. [8]), and hence
∏

(1+εγj) belongs
to M(q) when ε is sufficiently small.

2. When lim sup |aj | = 1 then m is a non-tame multiplier on L2. To see
this consider a weak∗ cluster point χ of {

∏N
k=1 γjk

}∞N=1 where the sequence
J = {jk} is chosen so that limN→∞

∏N
k=1 |ajk

|6=0. If χ(γm) = am(γγ0) for
all γ ∈ Γ, then since |χ(m)| 6=0 we must have a 6= 0 and γ0 in the support of
m, say γ0 =

∏n
l=1 γil

. Choose j ∈ J\{i1, . . . , in}. Then m(
∏N

k=1 γjk
γj) = 0

whenever jN ≥ j, so χ(γjm) = 0, while am(γ0γj) 6= 0.

One-sided Riesz products are of fundamental importance in understand-
ing the structure of tame multipliers as our next result shows. We will be
using this proposition in both Sections 3 and 4.

We will denote by M t(p) the set of tame multipliers on Lp.

Proposition 1.3. Suppose Γ has no elements of order 2 and m ∈
M t(p)\c0(Γ ). There exists a one-sided Riesz product % and γ0 ∈ Γ with
m(γ0) 6= 0 such that |m(γ0)| |%(γ)| ≤ |m(γ0γ)| for all γ ∈ Γ. In particular ,
a translate of the support of m contains the support of a one-sided Riesz
product.

R e m a r k. We have no reason to believe this result is not true if Γ has
elements of order 2, however, in the proof we use the fact that if Γ has
no elements of order 2 then any infinite subset of Γ contains an infinite
dissociate set.

P r o o f. Choose χ ∈ Γ p with χ(m) 6= 0. Assume χ(γm) = am(γ0γ) for
all γ ∈ Γ and suppose the net {γα} ⊆ Γ converges weak∗ to χ in ∆M(p).
Denote the multiplier γ0m bym1. As χ(γ−1

0 m1) = am1(1) 6= 0, if 0 < ε < |a|
is fixed, we may choose γj1 ∈ {γα}, γj1 6= γ0, such that |m1(γ−1

0 γj1)| ≥
(|a| − ε)|m1(1)|. Now assume we have inductively constructed a dissociate
set

{γ−1
0 γj1 , . . . , γ

−1
0 γjn} ⊆ {γ−1

0 γα} .
such that ∣∣∣m1

( n∏
i=1

(γ−1
0 γji

)εi

)∣∣∣ ≥ (|a| − ε)k|m1(1)|

whenever εi = 0 or 1 and
∑n

i=1 εi = k.
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For each (ε1, . . . , εn) ∈ {0, 1}n we have the inequality∣∣∣χ(
γ−1
0

n∏
i=1

(γ−1
0 γji)

εim1

)∣∣∣ =
∣∣∣am1

( n∏
i=1

(γ−1
0 γji

)εi

)∣∣∣
≥ |a|(|a| − ε)Σ

n
i=1εi |m1(1)| .

Thus we can choose γjn+1 ∈ {γα} so that∣∣∣m1

(
γ−1
0 γjn+1

n∏
i=1

(γ−1
0 γji)

εi

)∣∣∣ ≥ (|a| − ε)(|a| − ε)Σ
n
i=1εi |m1(1)|

for all (ε1, . . . , εn)∈{0, 1}n, and so that the sequence {γ−1
0 γj1 , . . . , γ

−1
0 γjn+1}

is dissociate. This completes the induction step. Then

% =
∏

i

(1 + (|a| − ε)γ−1
0 γji)

is the one-sided Riesz product which works.

2. Tame ε-idempotent multipliers

Definition. An Lp multiplier m is called ε-idempotent (ε < 1/2) if for
every γ ∈ Γ, either |m(γ)− 1| ≤ ε or |m(γ)| ≤ ε.

We will denote by E(m) the set {γ : |m(γ)| > ε}.
The celebrated Cohen Idempotent Theorem [2] states that the charac-

teristic function of a set E ⊆ Γ is the Fourier transform of an idempotent
measure if and only if E belongs to the coset ring of Γ, the Boolean ring
generated by all cosets of subgroups of Γ. This was later generalized to
ε-idempotent measures µ by Méla [17] who proved that if the norm of µ
was small enough then E(µ̂) belonged to the coset ring. The purpose of
this section is to prove a similar result for tame ε-idempotent multipliers.
Our proof was inspired by the paper of Ramsey and Wells [20] on strongly
continuous ε-idempotent measures.

Theorem 2.1. If m is a tame ε-idempotent multiplier on Lp with ε <
1/3, then E(m) is a finite union of cosets of a subgroup of Γ.

Combined with Cohen’s theorem we immediately have

Corollary 2.2. If m is a tame idempotent multiplier on Lp then m is
(the Fourier transform of ) a measure.

R e m a r k. Without tameness such a result is false of course. Consider
for example m = 1N.

We need some preliminary ideas first.

Definition. Recall that m ∈ l∞(Γ ) is called weakly almost periodic
(wap) if Γm is relatively weakly compact in l∞(Γ ).
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Lemma 2.3. A tame multiplier is wap.

P r o o f. We verify the Grothendieck criterion [7]. Assume that both
limi limj m(γiαj) and limj limim(γiαj) exist. Let χ and ψ be weak∗ cluster
points in∆M(p) of {γi} and {αj} respectively. Because of the tameness ofm
there exist a, b ∈ C and α0, γ0 ∈ Γ such that limi limj m(γiαj) = limi ψ(γim)
= a limim(γiα0) = aχ(α0m) = abm(α0γ0). A similar argument gives the
same answer for limj limim(γiαj).

Next we introduce an idea from the geometry of Banach spaces.

Definition. A subset D of a Banach space is called dentable if for
every ε > 0 there exists an x ∈ D which does not belong to co(D\Bε(x)),
the closed convex hull of D\Bε(x), where Bε(x) = {y : ‖y − x‖ < ε}.
Lemma 2.4. If m ∈ l∞(Γ ) is wap, E ⊆ Γ and Em is weakly compact in

l∞(Γ ), then Em is norm compact.

P r o o f. Let {γαm} be a net in Em and take a weakly convergent subnet,
say {γβm} with limit γm ∈ Em.

As m is a wap multiplier Γm is relatively weakly compact in l∞(Γ ).
Certainly Γm is a bounded subset of l∞(Γ ) and hence it is dentable in
l∞(Γ ) [3, p. 138]. Thus for each ε > 0 there is a point γ0m ∈ Γm which is
not in co(Γm\Bε(γ0m)). A translation argument proves that

γm 6∈ co(Γm\Bε(γm)) ≡ C .

Applying a separation theorem we can find f ∈ l∞(Γ )∗ such that

Re f(γm) < t ≤ inf
s∈C

Re f(s) .

Our converging subnet is eventually in the weakly open neighbourhood {w ∈
l∞ : Re f(w) < t} of γm. Thus eventually Re f(γβm) < t and so γβm 6∈ C.
This implies that γβm belongs to Bε(γm) eventually and as this holds for
all ε > 0 the subnet {γβm} is converging in norm to γm.

P r o o f o f T h e o r e m 2.1. Denote by E the set E(m) and let 1E

denote the characteristic function of E. If χ ∈ ∆M(2) then χ restricted
to M(p) is an element of ∆M(p), thus there is some a ∈ C and γ0 ∈ Γ
with χ(γm) = am(γ0γ) for all γ ∈ Γ. As ∆M(2) = Γ 2 ([21]) we can find
{γα} ⊆ Γ converging weak∗ in ∆M(2) to χ.

The ε-idempotency of m ensures that if γ 6∈ γ−1
0 E then γαγ 6∈ E eventu-

ally, and if there is some γ ∈ γ−1
0 E with γαγ 6∈ E eventually, then γατ 6∈ E

eventually for all τ ∈ Γ. In this case χ(τ1E) = 0 = 0 · 1E(γ0τ) for all
τ, otherwise χ(τ1E) = 1E(γ0τ). Thus 1E is a tame, idempotent multiplier
on L2.

Let {τα1E} be a net in E1E . As 1E is wap, E1E is relatively weakly
compact in l∞(Γ ), thus it is possible to find a net {τβ} with τβ1E → w
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weakly in l∞(Γ ) and τβ → ψ weak∗ in ∆M(2). Since {τβ} ⊆ E and 1E is
tame and idempotent there is some γ0 ∈ E with ψ(γ1E) = lim 1E(τβγ) =
1E(γ0γ) for all γ ∈ Γ. But evaluation at γ ∈ Γ is a continuous linear
functional on l∞(Γ ) and thus w = γ01E ∈ E1E . Hence E1E is weakly
compact and so is norm compact by the lemma.

Finally, a norm compactness argument proves that the equivalence rela-
tion, γ1 ∼ γ2 if γ11E = γ21E , partitions E into finitely many equivalence
classes. Each of these is clearly a translate of the subgroup {γ ∈ Γ : γ1E =
1E}.

R e m a r k s. 1. The same argument works if m is a tame Lp multi-
plier with the property that for all γ ∈ Γ either |m(γ)| ≤ δ0 or δ1 ≤
|m(δ)| ≤ 1 where δ21 > δ0. This is the best possible result since when
m =

∏∞
n=1(1 + εei3nx), then the set {n : |m(n)| ≥ ε} is not a union of

finitely many arithmetic progressions.
2. We thank the referee for pointing out a simplification in our original

proof.

Definition. A multiplier m is called quasi-idempotent if there is some
δ > 0 so that suppm = {γ : |m(γ)| ≥ δ}.

Corollary 2.5. If m is a tame quasi-idempotent multiplier then {γ :
|m(γ)| > 0} is a union of finitely many cosets of a subgroup of Γ.

P r o o f. Apply the previous remark with δ0 = 0.

3. Lp-improving tame multipliers

Definition. If m ∈ M(2, q) for some q > 2 then m is called Lp-
improving.

Examples of Lp-improving measures include the Cantor–Lebesgue mea-
sure [18], and most Riesz products [22]. For background information and
basic properties of Lp-improving measures see [5]. Lp-improving multipliers
have been characterized in terms of the “size” of the sets {γ : |m(γ)| > ε}
as ε→ 0 ([8], [10]).

Many other properties of Lp-improving multipliers are known. For exam-
ple, if a measure µ maps L2 to Lp then lim supγ∈Γ |µ̂(γ)|2 ≤ (2/p)‖µ‖2M(G)

([8]). Such an estimate is not true for multipliers. Indeed, it need not even
be the case that lim supγ∈Γ |m(γ)| < 1 for m ∈M(2, p) for all p > 2, as the
example m = 1E for E an infinite Sidon set illustrates. However, for tame
multipliers there is a similar estimate.

Proposition 3.1. Suppose Γ has no elements of order 2, and m ∈
M t(p) ∩M(2, p). Then |χ(m)|2 ≤ (2/p)‖m‖2l∞ for all χ ∈ Γ p\Γ .
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P r o o f. Assume there is some χ ∈ Γ p\Γ with χ(m) = am(γ0) 6= 0
and construct for ε > 0 the one-sided Riesz product % as in the proof of
Proposition 1.3. Since γ0m ∈ M(2, p) = M(p′, 2) where 1/p′ + 1/p = 1, it
is clear that % ∈M(2, p).

By [12, 1.5]
2/p ≥ lim sup

γ∈Γ
|%(γ)|2 = (|a| − ε)2 .

Let ε→ 0 to finish the proof.

From this we easily get the following interesting results when Γ has no
elements of order 2.

Corollary 3.2. If m ∈ M t(p) ∩ M(2, p) then lim supγ∈Γ |m(γ)|2 ≤
(2/p)‖m‖2l∞ .

R e m a r k. The better estimate lim supγ∈Γ |µ̂(γ)|2 ≤ ‖µ‖2M(G)/(p− 1) is
known for tame measures in M(2, p) [12, 1.3], but for tame multipliers our
result is best possible since the one-sided Riesz product

∏
(1+(

√
2/
√
p)eixj )

defined on T∞ belongs to M(2, p) [12, 2.3].

Corollary 3.3. If m is a tame multiplier on Lp for all p > 2 and
m ∈

⋂
p>2M(2, p) then m ∈ c0.

Corollary 3.4. If m is a tame multiplier on Lq for all 1 < q < 2 and
m ∈M(p, q) for all 1 < p < q < 2 then m ∈ c0.

P r o o f. An interpolation argument proves m ∈M t(s) for all s > 2.

4. Tame Rajchman sets

Definition. Recall that a subset E of Γ is called a Rajchman set if for
all µ ∈M(G), lim supγ∈Ec |µ̂(γ)| = 0 implies lim supγ∈Γ |µ̂(γ)| = 0.

The classical result of Rajchman [19] to the effect that Z+ and Z− are
Rajchman sets inspired this definition. A beautiful result of Host and Par-
reau characterizes Rajchman sets.

Theorem [14]. A subset E of Γ is a Rajchman set if and only if E
does not contain any translate of the support of a Riesz product.

There is a similar result for tame multipliers, with one-sided Riesz prod-
ucts replacing Riesz products, in the case when Γ has no elements of order 2.

Theorem 4.1. Assume Γ has no elements of order 2. The following are
equivalent :

(1) For all 1 < p <∞ and for all m ∈M t(p), if lim supγ∈Ec |m(γ)| = 0,
then lim supγ∈Γ |m(γ)| = 0;

(2) For all 1 < p < ∞ and for all m ∈ M t(p), if m = 0 on Ec then
lim supγ∈Γ |m(γ)| = 0;
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(3) For some 1 < p < ∞ and for all m ∈ M t(p), if m = 0 on Ec then
lim supγ∈Γ |m(γ)| = 0;

(4) E does not contain any translate of the support of a one-sided Riesz
product.

P r o o f. (1)⇒(2) and (2)⇒(3) are trivial.
(3)⇒(4). If (4) fails then any translated one-sided Riesz product m ∈

M(p) supported on E with lim supγ∈Γ |m(γ)| > 0 gives a contradiction of
(3).

(4)⇒(1). Fix p. Suppose there is an m ∈M t(p) with lim supγ∈Ec |m(γ)|
= 0 but lim supγ∈Γ |m(γ)| 6= 0. From Proposition 1.3 we can find γ0 ∈ Γ
with m(γ0) 6= 0, a dissociate set {γj} ⊆ Γ and a constant δ > 0 such that
whenever εj ∈ {0, 1} then∣∣∣m(

γ0

∏
γ

εj

j

)∣∣∣ ≥ δΣεj

|m(γ0)|
.

Note that γ0γj ∈ E for some j, say j0, for otherwise

lim sup
γ∈Ec

|m(γ)| ≥ lim sup
j

|m(γ0γj)| ≥
δ

|m(γ0)|
> 0 .

A similar argument shows we may inductively pick {γji
}∞i=0 ⊆ {γj} with

{ji} increasing and

γ0γj0

n∏
i=1

γεi
ji
∈ E

for all εi = 0, 1 and n ∈ N, contradicting (4).

R e m a r k. As usual these results fail without tameness. Consider E =
{3n} ⊆ Z and m = 1E .

Call a set E satisfying these equivalent properties a tame Rajchman set.
We do not know if the union of two tame Rajchman sets is another such
set. It is the case that the union of a tame Rajchman set and a Λ(p) set
is another tame Rajchman set. Just argue as in [11, Proof of Theorem A]
replacing Proposition 1.1 there by [9, 2.2].

We can also use Proposition 1.3 to prove a result analogous to Host and
Parreau’s characterization of sets of continuity [13].

Theorem 4.2. Assume Γ has no elements of order 2. The following are
equivalent :

(1) For each 1 < p <∞ and for every ε > 0, there exists δ > 0 such that
if m ∈M t(p), ‖m‖l∞≤1 and lim supγ∈Ec |m(γ)|<δ, then lim supγ∈E |m(γ)|
< ε;
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(2) For some 1 < p <∞ and for every ε > 0, there exists δ > 0 such that
if m ∈M t(p), ‖m‖l∞≤1 and lim supγ∈Ec |m(γ)|<δ, then lim supγ∈E |m(γ)|
< ε;

(3) For some positive integer n, E does not contain

γθn({γj}) ≡
{∏

γ
εj

j : εj = 0, 1 for all j , and
∑

εj ≤ n
}

for any γ ∈ Γ and infinite dissociate set {γj}.

P r o o f. (1)⇒(2) is trivial.
(2)⇒(3). Suppose E ⊇ γ0θn({γj}) and choose ε > 0 so that m =

γ0

∏
(1+εγj)∈M t(p). Then lim supγ∈Ec |m(γ)|≤εn+1 but lim supγ∈E |m(γ)|

= ε.

(3)⇒(1). Suppose (1) fails. Then for some ε > 0 and each n ∈ N there
is a tame Lp multiplier m with ‖m‖l∞ ≤ 1, lim supγ∈Ec |m(γ)| < εn+1 but
lim supγ∈E |m(γ)| > ε. From the latter property we deduce the existence
of χ ∈ Γ p\Γ such that |χ(m)| > ε. Assume χ(γm) = am(γ0γ) for all
γ ∈ Γ. Since ‖m‖ ≤ 1 we have |a| > ε, and as |a| ≤ 1, |m(γ0)| > ε.
From the proof of Proposition 1.3 we see that the one-sided Riesz product
% =

∏
(1 + εγj) (built on some appropriate dissociate set {γj}) satisfies

|m(γ0)%(γ)| ≤ |m(γ0γ)| for all γ ∈ Γ. It follows that if γ ∈ θn({γj}) then
|m(γ0γ)| ≥ εn+1, and so only finitely many words in γ0θn({γj}) can belong
to Ec. After removing the finitely many γj on which these words are built
we conclude that γ0θn({γj}∞j=k) ⊆ E for some k, contradicting (3).

5. Tame H1 multipliers. One could similarly define tame multipliers
on H1(T ), however, these turn out to be trivial.

Proposition 5.1. Any tame multiplier on H1 is either a measure or it
belongs to c0.

P r o o f. Assume the tame multiplier m 6∈ c0. Choose an increas-
ing sequence of positive integers {nk} with |m(nk)| ≥ δ > 0. As in [15]
consider gk(x) = e−inkxm(einkxFnk

(x)) where Fn is the nth Fejér kernel.
Since ‖gk‖L1 ≤ ‖m‖H1,H1 we can find a weak∗ converging subsequence
(not renamed) converging to µ ∈ M(T ). Clearly m(nk + j) → µ̂(j) for
all j ∈ Z.

Take a further subnet of {nk} converging weak∗ in ∆M(H1). As m is
tame it follows that µ̂(j) = am(n0 + j) for some a ∈ C, n0 ∈ Z. Since
µ̂(0) = limm(nk) 6= 0, we have a 6= 0, and thus m is the Fourier transform
of the measure (1/a)ein0xµ.
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