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1. Introduction. Let (M, g) be a connected n-dimensional, n ≥ 3,
Riemannian manifold of class C∞ with a not necessarily definite metric g.
We define on M the endomorphisms R̃(X, Y ) and X ∧ Y by

R̃(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z ,

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y ,

respectively, where ∇ is the Levi-Civita connection of (M, g) and X, Y, Z
∈ Ξ(M), Ξ(M) being the Lie algebra of vector fields on M . Furthermore,
we define the Riemann–Christoffel curvature tensor R and the concircular
tensor Z(R) of (M, g) by

R(X1, X2, X3, X4) = g(R̃(X1, X2)X3, X4) ,

Z(R)(X1, X2, X3, X4) = R(X1, X2, X3, X4)

− K

n(n− 1)
G(X1, X2, X3, X4) ,

respectively, where K is the scalar curvature of (M, g) and G is defined by

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4) .

Now we define on M the (0, 6)-tensors R ·R and Q(g,R) by

(R ·R)(X1, . . . , X4;X, Y ) = −R(R̃(X, Y )X1, X2, X3, X4)

− . . .−R(X1, X2, X3, R̃(X, Y )X4) ,

Q(g,R)(X1, . . . , X4;X, Y ) = R((X ∧ Y )X1, X2, X3, X4)
+ . . . + R(X1, X2, X3, (X ∧ Y )X4) ,

respectively.
The Riemannian manifold (M, g) is said to be pseudosymmetric [15] if

at every point of M the following condition is satisfied:

(∗) the tensors R ·R and Q(g,R) are linearly dependent.
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The manifold (M, g) is pseudosymmetric if and only if

(1) R ·R = LQ(g,R)

on the set U ={x ∈ M | Z(R) 6=0 at x}, where L is some function on U . It is
clear that any semisymmetric manifold (R ·R = 0, [24]) is pseudosymmetric.
The condition (∗) arose during the study of totally umbilical submanifolds
of semisymmetric manifolds ([1], [10]) as well as during the consideration of
geodesic mappings of semisymmetric manifolds ([22], [18], [5]).

There exist many examples of pseudosymmetric manifolds which are
not semisymmetric ([15], [18], [9], [20]). The examples also include compact
manifolds. In Section 4 we will present an example of a compact pseudosym-
metric warped product manifold Sp ×F Sn−p, p ≥ 2, n − p ≥ 2. We will
prove that it cannot be realized as a hypersurface isometrically immersed
in a manifold of constant curvature. At the end of that section we will give
other examples of compact pseudosymmetric manifolds: S1 ×F Sn−1 and
the n-dimensional torus Tn with a certain metric.

2. Warped products. Let (M1, g) and (M2, g̃), dim M1 = p, dim M2 =
n − p, 1 ≤ p < n, be Riemannian manifolds covered by systems of charts
{U ;xa} and {V ; yα}, respectively. Let F be a positive C∞ function on
M1. The warped product M1 ×F M2 of (M1, g) and (M2, g̃) ([21], [3]) is the
product manifold M1 ×M2 with the metric g = g ×F g̃,

g ×F g̃ = Π∗
1g + (F ◦Π1)Π∗

2 g̃ ,

where Πi : M1×M2 → Mi are the natural projections, i = 1, 2. Let {U×V ;
x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p} be a product chart for M1×M2. The
local components of the metric g = g ×F g̃ with respect to this chart are
grs = gab if r = a and s = b, grs = F g̃αβ if r = α and s = β, and
grs = 0 otherwise, where a, b, c, . . . ∈ {1, . . . , p}, α, β, γ, . . . ∈ {p + 1, . . . , n}
and r, s, t, . . . ∈ {1, . . . , n}. We denote by bars (resp., tildes) tensors formed
from g (resp., g̃).

The only possibly not identically vanishing local components of the ten-
sors R and S of M1 ×F M2 are the following ([6]):

(2) Rabcd = Rabcd ,

(3) Rαabβ = − 1
2F

Tabgαβ ,

(4) Rαβγδ = FR̃αβγδ −
∆1F

4F 2
Gαβγδ ,

(5) Sab = Sab −
n− p

2F
Tab ,

(6) Sαβ = S̃αβ −
1

2F

(
tr(T ) +

n− p− 1
2F

∆1F

)
gαβ ,
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where

(7)
Tab = ∇bFa −

1
2F

FaFb, tr(T ) = gabTab ,

∆1F = ∆1ḡF = gabFaFb ,

and T is the (0, 2)-tensor with the local components Tab.

Example 2.1. Let (M1, g) = Sp(1/
√

k) be the p-dimensional , p ≥ 2,
standard sphere of radius 1/

√
k, k > 0. Let f be a non-constant function

on M1 satisfying the equality ([23])

(8) ∇(df) + kfg = 0 .

We put

F = (f + c)2 ,(9)

L = k(1− cτ), τ =
1√
F

,(10)

where c is a non-zero constant such that f + c is either positive or negative
on M1. Now, using (7)–(10), we can easily verify that the tensor 1

2T + FLg
vanishes on M1. Furthermore, from (8) we get

(11) ∆1f = −kf2 + c2, c2 ∈ R .

Combining (11) with (9) we can state that

(12)
1

4F 2
∆1F = c1τ

2 + 2kcτ − k, c1 ∈ R ,

on M1.

R e m a r k 2.1. Let (M, g), n ≥ 4, be a Riemannian manifold. For any
X, Y ∈ Ξ(M) we define the endomorphism C̃(X, Y ) by

C̃(X, Y ) = R̃(X, Y )− 1
n− 2

(X ∧ S̃Y + S̃X ∧ Y )

+
K

(n− 1)(n− 2)
X ∧ Y ,

where S̃ is the Ricci operator of (M, g) related to S by S(X, Y ) = g(X, S̃Y ).
Further, we denote by C,

C(X1, X2, X3, X4) = g(C̃(X1, X2)X3, X4) ,

the Weyl conformal curvature tensor of (M, g). Now we define on M the
(0, 6)-tensor C · C by

(C · C)(X1, . . . , X4;X, Y ) = − C(C̃(X, Y )X1, X2, X3, X4)

− . . .− C(X1, X2, X3, C̃(X, Y )X4) .
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Moreover, we can also define on M the tensor Q(g, C) in the same way as
the tensor Q(g,R).

In [13] (Theorem 2) it was proved that at every point of a warped product
M1 ×F M2, with dim M1 = dim M2 = 2, the following condition is satisfied:

(∗∗) the tensors C · C and Q(g, C) are linearly dependent.

In the next section we will present an example of a Riemannian manifold
of dimension ≥ 4 realizing (∗∗). Many examples of manifolds satisfying (∗∗)
will be given in the subsequent paper [7].

R e m a r k 2.2. Let (M, g), n ≥ 3, be a Riemannian manifold. We define
on M the (0, 6)-tensor Q(S, R) by

Q(S, R)(X1, . . . , X4;X, Y ) = R((X ∧S Y )X1, X2, X3, X4)
+ . . . + R(X1, X2, X3, (X ∧S Y )X4) ,

where X ∧S Y is the endomorphism defined by

(X ∧S Y )Z = S(Y, Z)X − S(X, Z)Y .

The Riemannian manifold (M, g) is said to be Ricci-generalized pseudosym-
metric [4] if at every point of M the following condition is satisfied:

(∗∗∗) the tensors R ·R and Q(S, R) are linearly dependent.

An important subclass of Ricci-generalized pseudosymmetric manifolds
is formed by manifolds satisfying ([17], [4], [6])

(13) R ·R = Q(S, R) .

Any 3-manifold (M, g) satisfies (13) ([12]). Moreover, so does any hypersur-
face M isometrically immersed in En+1, n ≥ 4, ([19]).

R e m a r k 2.3. As was proved in [19] any hypersurface M isometrically
immersed in a manifold Mn+1, n ≥ 4, of constant curvature satisfies at
every point of M the following condition:

(∗∗∗∗) the tensors R ·R−Q(S, R) and Q(g, C) are linearly dependent.

R e m a r k 2.4. It is easy to see that if (∗) holds on (M, g), n ≥ 4, then
at every point of M the following condition is satisfied:

(∗∗∗∗∗) the tensors R · C and Q(g, C) are linearly dependent.

Manifolds satisfying (∗∗∗∗∗) have been studied in [16], [11] and [13].

R e m a r k 2.5. Hypersurfaces isometrically immersed in a manifold of
constant curvature and satisfying (∗) or (∗∗∗∗∗) were considered in [8], [19]
and [14].

R e m a r k 2.6. A Riemannian manifold (M, g), n ≥ 4, is said to be a
manifold with harmonic Weyl tensor C ([2], p. 440) if the tensor S− K

2(n−1)g
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is a Codazzi tensor on M , i.e. if

(14) ∇
(

S − K

2(n− 1)
g

)
(X, Y ;Z) = ∇

(
S − K

2(n− 1)
g

)
(X, Z;Y )

on M . It is well known that any conformally flat manifold of dimension ≥ 4
is a manifold with harmonic Weyl tensor C.

3. Examples

Example 3.1 ([20], Example 5). Let (M2, g̃) be a 1-dimensional mani-
fold. Then the warped product Sn−1(1/

√
k) ×F M2, n ≥ 4, k > 0, with

F defined by (9), is a conformally flat manifold satisfying the condition
R · R = (L ◦ Π1)Q(g,R), where L is the function defined by (10). In
particular, the manifold

Sn−1

(
1√
k

)
×F S1

(
1√
l

)
, l > 0 ,

is pseudosymmetric.

Example 3.2. Let Mn−p(l) be an (n− p)-dimensional manifold, p ≥ 2,
n− p ≥ 2, of constant curvature l. We consider the warped product

Sp

(
1√
k

)
×F Mn−p(l) ,

where F is defined by (9) and k > 0. Using (10) and (12) and the fact that
the tensor 1

2T + FLg, defined in Example 2.1, is the zero tensor, we can
write the formulas (2)–(6) in the following form:

Rabcd = kGabcd ,(15)
Raαβb = k(1− cτ)Gaαβb ,(16)

Rαβγδ = ((l − c1)τ2 − 2kcτ + k)Gαβγδ ,(17)
Sab = k((n− 1)− (n− p)cτ)gab ,(18)

Sαβ = ((n− p− 1)(l − c1)τ2(19)
− (2n− p− 2)kcτ + (n− 1)k)gαβ .

Next, by making use of (15)–(19) and the relations

Crstu = Rrstu +
K

(n− 1)(n− 2)
Grstu(20)

− 1
n− 2

(gruSts + gtsSru − grtSus − gusSrt) ,

K = gabSab + gαβSαβ(21)
= (n− p)(n− p− 1)(l − c1)τ2

− 2(n− 1)(n− p)kcτ + n(n− 1)k ,
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we find the non-zero components of C:

Cabcd =
%

p(p− 1)
Gabcd ,(22)

Caαβb = − %

p(n− p)
Gaαβb ,(23)

Cαβγδ =
%

(n− p)(n− p− 1)
Gαβγδ ,(24)

where

(25) % =
p(p− 1)(n− p)(n− p− 1)

(n− 1)(n− 2)
(l − c1)τ2 .

Furthermore, applying (12), (15)–(19), (22)–(24), we can easily verify that
the only components of R · R, Q(g,R), C · C, Q(g, C) and Q(S, R) which
are not identically zero are:

(26) (R ·R)αabcdβ = k2cτ(1− cτ)Gdabcgαβ ,

(27) (R ·R)aαβγdδ = kτ(kc + (c1 − kc2 − l)τ + (l − c1)cτ2)gadGδαβγ ,

(28) Q(g,R)αabcdβ = kcτGdabcgαβ ,

(29) Q(g,R)aαβγdδ = (kc + (c1 − l)τ)τgadGδαβγ ,

(30) (C · C)αabcdβ = − (n− 1)%2

p2(n− p)2(p− 1)
Gdabcgαβ ,

(31) (C · C)aαβγdδ =
(n− 1)%2

p2(n− p)2(n− p− 1)
gadGδαβγ ,

(32) Q(g, C)αabcdβ =
(n− 1)%

p(p− 1)(n− p)
Gdabcgαβ ,

(33) Q(g, C)aαβγdδ = − (n− 1)%
p(n− p)(n− p− 1)

gadGδαβγ ,

(34) Q(S, R)αabcdβ = k(−(n− p− 1)k + (2n− 2p− 1)ckτ

+ (n− p− 1)(((l − kc)− (n− p)kc2)τ2 − c1τ
3))Gdabcgαβ ,

Q(S, R)aαβγdδ = kτ(kc + ((p− 2)kc2(35)
− p(l − c1))τ + (l − c1)cτ2)gadGδαβγ .

4. Main results

Theorem 4.1. Let (N, g) = Sp(1/
√

k)×F Mn−p(l) be the warped product
of a sphere Sp(1/

√
k) and a manifold of constant curvature Mn−p(l), k > 0,

l ∈ R, p ≥ 2, n− p ≥ 2, with F defined by (9). Then:

(i) (N, g) is a non-semisymmetric pseudosymmetric manifold.
(ii) If l 6= c1 then (N, g) is a non-conformally flat manifold satisfying

C · C = LCQ(g, C) on UC = {x ∈ N | C(x) 6= 0}, where LC is some
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function on UC and c1 is the constant defined by (12). If l = c1, then
(N, g) is conformally flat.

(iii) If l 6= c1 then (N, g) is a manifold with non-harmonic Weyl ten-
sor C.

(iv) R ·R−Q(S, R) is a non-zero tensor on N .
(v) R ·R−Q(S, R) and Q(g, C) are not linearly dependent on N .

P r o o f. (i) (resp., (ii)) is an immediate consequence of (26)–(29) (resp.,
(22)–(24) and (30)–(33)).

(iii) Using (18), (19) and (21) we get

∇cSab −∇bSac −
1

2(n− 1)
((∇cK)gab − (∇bK)gac)

= − (n− p)(n− p− 1)
n− 1

(l − c1)τ((∇cτ)gab − (∇bτ)gac) .

Now Remark 2.6 completes the proof.
(iv) (26) and (34) yield

((R ·R)−Q(S, R))αabcdβ

= (n− p− 1)k(k − 2kcτ + (kc− l + kc2)τ2 + c1τ
3)gαβGdabc .

Thus R ·R−Q(S, R) is a non-zero tensor on N .
(v) Using (26), (27) and (32)–(35) we obtain the last assertion.
Our theorem is thus proved.

Combining the above theorem with Remarks 2.2 and 2.3 we obtain the
following corollary.

Corollary 4.1. The manifold

Sp

(
1√
k

)
×F Sn−p

(
1√
l

)
,

p ≥ 2, n − p ≥ 2, k > 0, l > 0, with F defined by (9), satisfies (i)–(iii) of
Theorem 4.1. Moreover , this manifold cannot be realized as a hypersurface
isometrically immersed in a manifold of constant curvature.

Example 4.1. The manifold R ×F Sn−1(l), n ≥ 3, l > 0, with g11 = ε,
ε ∈ {−1, 1}, and a periodic positive C∞ function F on R, is a conformally
flat pseudosymmetric manifold (cf. [9], Lemma 3.1). A periodic function on
R can be considered as a function on the circle S1. Thus it is possible to
define a conformally flat pseudosymmetric metric on S1 × Sn−1.

Example 4.2. Let g and g̃ be metrics on R and Rn−1 respectively, where
g11 = ε, g̃αβ = εαδαβ , ε, εα ∈ {−1, 1}, α, β ∈ {2, . . . , n}, n ≥ 4. The
manifold R ×F Rn−1, with F (t) = sin t + 2, t ∈ R, is non-semisymmetric,
conformally flat and pseudosymmetric (cf. [9], Lemma 3.1). Let G be the
group of translations generated by a suitable choice of a basis of Rn which
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leaves the metric g ×F g̃ invariant. Thus the metric g ×F g̃ determines a
conformally flat pseudosymmetric metric on the n-torus Tn = Rn/G.
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