THE SPACE OF WHITNEY LEVELS IS HOMEOMORPHIC TO l_{2}
BY
ALEJANDRO ILLANES (MÉXICO, D.F.)
If (X, d) is a metric continuum, $C(X)$ stands for the hyperspace of all nonempty subcontinua of X, endowed with the Hausdorff metric H. A map is a continuous function.

A Whitney map is a map $\mu: C(X) \rightarrow I$ such that $\mu(\{x\})=0$ for each $x \in X, \mu(X)=1$ and if $A, B \in C(X), A \nsubseteq B$ then $\mu(A)<\mu(B)$. The space of Whitney maps $W(X)$ is endowed with the sup metric. Throughout this paper μ denotes a fixed Whitney map. A Whitney level is a subset of $C(X)$ of the form $\mu^{-1}(t)$ where μ is a Whitney map. By [5, p. 1032], Whitney levels are in $C(C(X))=C^{2}(X)$. The space of Whitney levels, denoted by $N(X)$, is a subspace of $C^{2}(X)$.

Given $\mathcal{A}, \mathcal{B} \in N(X)$ we write $\mathcal{A} \leq \mathcal{B}$ if for each $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ such that $A \subset B$, and we write $\mathcal{A} \ll \mathcal{B}$ if for each $A \in \mathcal{A}$ there exists $B \in \mathcal{B}$ such that $A \varsubsetneqq B$. The space of Whitney decompositions is $W D(X)=\left\{\left\{\omega^{-1}(t) \in C^{2}(X) \mid 0 \leq t \leq 1\right\} \in C(C(C(X))) \mid \omega \in W(X)\right\}$. Other conventions that we use: I denotes the interval $[0,1]$, the metric for $C^{2}(X)$ is denoted by $H^{2}, F_{1}(X)$ is the set of all one-element subsets of X.

The space $N(X)$ was introduced in [6]; it was useful to prove that $W(X)$ and $W D(X)$ are homeomorphic to the Hilbert space l_{2} for all X (see [7] and [8]).

The aim of this paper is to prove
Main Theorem. The space $N(X)$ of Whitney levels is homeomorphic to the Hilbert space l_{2} for all X.

For that we use Torunczyk's characterization of Hilbert space. Theorems 1 and 2 are intermediate results.

Theorem 1. $N(X)$ is topologically complete.
Definition 1.1. A large ordered arc (l.o.a.) in $C(X)$ is a subcontinuum γ of $C(X)$ such that $\bigcap \gamma \in F_{1}(X), \bigcup \gamma=X$ and $A, B \in \gamma$ implies that $A \subset B$ or $B \subset A$.

An antichain in $C(X)$ is a subset \mathcal{A} of $C(X)$ such that if $A, B \in \mathcal{A}$ and $A \subset B$ then $A=B$.

By [9, Lemma 1.3], every l.o.a. in $C(X)$ is homeomorphic to I and by [9, Thm. 2.8], if $A, B \in C(X)$ and $A \subset B$, then there exists a l.o.a. γ in $C(X)$ such that $A, B \in \gamma$. In [7] it was proved that if $\mathcal{A} \subset C(X)-\left(\{X\} \cup F_{1}(X)\right)$, then \mathcal{A} is a Whitney level if and only if \mathcal{A} is a compact antichain which intersects every l.o.a. in $C(X)$.

Proof of Theorem 1. Let $\mathfrak{A}=\left\{D \in C^{2}(X): D \cap \gamma \neq \emptyset\right.$ for every l.o.a. γ in $C(X)\}$. Then \mathfrak{A} is closed in $C^{2}(X)$, thus \mathfrak{A} is topologically complete. For each $n \in \mathbb{N}$ define $\mathfrak{A}_{n}=\{D \in \mathfrak{A}$: there exist $A, B \in D$ such that $A \subset B$ and $H(A, B) \geq 1 / n\}$ and $\mathfrak{B}_{n}=\left\{D \in \mathfrak{A}: D \cap F_{1}(X) \neq \emptyset\right.$ and $\left.D \cap \mu^{-1}[1 / n, 1] \neq \emptyset\right\}$. It is easy to prove that \mathfrak{A}_{n} and \mathfrak{B}_{n} are closed subsets of \mathfrak{A}.

Clearly $\bigcup \mathfrak{A}_{n} \cup \bigcup \mathfrak{B}_{n} \subset \mathfrak{A}-N(X)$. Let $D \in \mathfrak{A}-N(X)$. If $X \in D$, then there exists $A \in D$ such that $A \neq X$. Thus there exists $n \in \mathbb{N}$ such that $D \in \mathfrak{A}_{n}$. If $D \cap F_{1}(X) \neq \emptyset$, since D intersects every l.o.a. in $C(X)$ and $D \neq F_{1}(X)$, we see that D is not contained in $F_{1}(X)$. Thus there exists $n \in \mathbb{N}$ such that $D \in \mathfrak{B}_{n}$. Finally, if $D \subset C(X)-\left(\{X\} \cup F_{1}(X)\right)$, then since $D \notin N(X), D$ is not an antichain. Therefore $D \in \mathfrak{A}_{n}$ for some n.

Hence $\mathfrak{A}-N(X)=\bigcup \mathfrak{A}_{n} \cup \bigcup \mathfrak{B}_{n}$. Thus $N(X)$ is a G_{δ} subset of \mathfrak{A}. Therefore [12, Thm. 24.12], $N(X)$ is topologically complete.

Theorem 2. $N(X)$ is a metric AR.
In [7] it was proved that for every $\mathcal{A}, \mathcal{B} \in N(X)$, the infimum and supremum of the set $\{\mathcal{A}, \mathcal{B}\}$ with respect to the order \leq both exist. They were constructed in the following way: For each l.o.a. γ in $C(X)$, let A_{γ} (resp. B_{γ}) be the unique element in $A \cap \gamma$ (resp. $B \cap \gamma$) (notice that $A_{\gamma} \subset B_{\gamma}$ or $\left.A_{\gamma} \supset B_{\gamma}\right)$. The infimum of \mathcal{A} and \mathcal{B} is defined to be $\mathcal{A} \wedge \mathcal{B}=\left\{A_{\gamma} \cap\right.$ $B_{\gamma}: \gamma$ is a l.o.a. in $\left.C(X)\right\}$ and the supremum is $\mathcal{A} \vee \mathcal{B}=\left\{A_{\gamma} \cup B_{\gamma}\right.$: γ is a l.o.a. in $C(X)\}$. Also it was shown that the functions $\wedge, \vee: N(X) \times$ $N(X) \rightarrow N(X)$ are continuous [7, Thm. 1.9].

To prove Theorem 2 we use \vee and \wedge to endow $N(X)$ with a convex structure in the sense of Curtis [2, Definition 2.1]. We imitate Dugundji's proof in [3] to prove that $N(X)$ is a metric AR. First we need to introduce a new metric for $N(X)$.

Definition 2.1. Let $H^{*}: N(X) \times N(X) \rightarrow \mathbb{R}$ be given by

$$
H^{*}(\mathcal{A}, \mathcal{B})=\sup \{H(A, B): A \in \mathcal{A}, B \in \mathcal{B} \text { and } A \subset B \text { or } A \supset B\}
$$

Lemma 2.2. (a) H^{*} is a metric for $N(X)$ which is equivalent to H^{2}.
(b) If $\mathcal{A} \leq \mathcal{B} \leq \mathcal{C}$ then $H^{*}(\mathcal{A}, \mathcal{B}), H^{*}(\mathcal{B}, \mathcal{C}) \leq H^{*}(\mathcal{A}, \mathcal{C})$.
(c) If $\mathcal{C} \leq \mathcal{B} \leq \mathcal{D}$ and $H^{*}(\mathcal{A}, \mathcal{C}), H^{*}(\mathcal{A}, \mathcal{D}) \leq \varepsilon$, then $H^{*}(\mathcal{A}, \mathcal{B}) \leq \varepsilon$.
(d) $H^{*}(\mathcal{C} \vee \mathcal{B}, \mathcal{D} \vee \mathcal{B}) \leq H^{*}(\mathcal{C}, \mathcal{D})$ for every $\mathcal{B}, \mathcal{C}, \mathcal{D} \in N(X)$.

Proof. (a) Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in N(X)$ and let $A \in \mathcal{A}$ and $C \in \mathcal{C}$ such that $A \subset C$ or $A \supset C$. Then there exists a l.o.a. γ in $C(X)$ such that $A, C \in$ γ. Let $B \in \gamma \cap \mathcal{B}$. Then $A \subset B$ or $A \supset B$ and $B \subset C$ or $B \supset C$. Hence $H(A, C) \leq H(A, B)+H(B, C) \leq H^{*}(\mathcal{A}, \mathcal{B})+H^{*}(\mathcal{B}, \mathcal{C})$. Therefore $H^{*}(\mathcal{A}, \mathcal{C}) \leq H^{*}(\mathcal{A}, \mathcal{B})+H^{*}(\mathcal{B}, \mathcal{C})$.

Clearly $H^{2} \leq H^{*}$. Let $\mathcal{A} \in N(X)$ and let $\varepsilon>0$. By [7, 1.8] there exists $\delta>0$ such that if $\mathcal{B} \in N(X), H^{2}(\mathcal{A}, \mathcal{B})<\delta, A \in \mathcal{A}, B \in \mathcal{B}$ and $A \subset B$ or $A \supset B$ then $H(A, B)<\varepsilon$. Given $\mathcal{B} \in N(X)$ such that $H^{2}(\mathcal{A}, \mathcal{B})<\delta$, we have $H^{*}(\mathcal{A}, \mathcal{B}) \leq \varepsilon$. Hence H^{*} and H^{2} are equivalent metrics for $N(X)$.
(b) This is evident.
(c) Let $A \in \mathcal{A}$ and $B \in \mathcal{B}$ be such that $A \subset B$ or $A \supset B$. Let γ be a l.o.a. in $C(X)$ such that $A, B \in \gamma$. Let $C \in \gamma \cap \mathcal{C}$ and $D \in \gamma \cap \mathcal{D}$. Then $C \subset B \subset D$. If $A \subset B$ then $H(A, B) \leq H(A, D) \leq H^{*}(\mathcal{A}, \mathcal{D}) \leq \varepsilon$. If $A \supset B$, then $H(A, B) \leq H(A, C) \leq H^{*}(\mathcal{A}, \mathcal{C}) \leq \varepsilon$. Therefore $H^{*}(\mathcal{A}, \mathcal{B}) \leq \varepsilon$.
(d) Let $A \in \mathcal{C} \vee \mathcal{B}$ and $E \in \mathcal{D} \vee \mathcal{B}$ be such that $A \subset E$ or $A \supset E$. Let γ be a l.o.a. in $C(X)$ such that $A, E \in \gamma$. Let $C \in \mathcal{C} \cup \gamma, B \in \mathcal{B} \cup \gamma$ and $D \in \mathcal{D} \cup \gamma$. Suppose, for example, that $C \subset D$. If $B \subset C$ then $A=C$ and $E=D$, thus $H(A, E) \leq H^{*}(\mathcal{C}, \mathcal{D})$. If $C \subset B \subset D$, then $A=B$ and $E=D$, hence $H(A, E) \leq H(C, D) \leq H^{*}(\mathcal{C}, \mathcal{D})$. If $D \subset B$ then $A=B=E$, so $H(A, E) \leq H^{*}(\mathcal{C}, \mathcal{D})$. Therefore $H^{*}(\mathcal{C} \vee \mathcal{B}, \mathcal{D} \vee \mathcal{B}) \leq H^{*}(\mathcal{C}, \mathcal{D})$.

Definition 2.3. Let

$$
\Delta_{n}=\left\{\left(s_{1}, \ldots, s_{n}\right) \in I^{n} \mid s_{1}+\ldots+s_{n}=1\right\}
$$

Given $\mathcal{A}_{1} \in N(X)$, let $M_{1}\left(\mathcal{A}_{1}, 1\right)=\mathcal{A}_{1}$. If $\mathcal{A}_{1}, \mathcal{A}_{2} \in N(X)$ and $s \in I$, let

$$
M_{2}\left(\mathcal{A}_{1}, \mathcal{A}_{2}, s, 1-s\right)= \begin{cases}\mathcal{A}_{2} \vee\left(\mu^{-1}(2 s) \wedge \mathcal{A}_{1}\right) & \text { if } 0 \leq s \leq \frac{1}{2} \\ \mathcal{A}_{1} \vee\left(\mu^{-1}(2-2 s) \wedge \mathcal{A}_{2}\right) & \text { if } \frac{1}{2} \leq s \leq 1\end{cases}
$$

Inductively, if $n \geq 3, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \in N(X)$ and $\left(s_{1}, \ldots, s_{n}\right) \in \Delta_{n}$, let

$$
\begin{aligned}
& M_{n}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, s_{1}, \ldots, s_{n}\right) \\
& \quad=\left\{\begin{array}{l}
M_{2}\left(M_{n-1}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n-1}, \frac{s_{1}}{1-s_{n}}, \ldots, \frac{s_{n-1}}{1-s_{n}}\right), \mathcal{A}_{n}, 1-s_{n}, s_{n}\right) \\
\quad \text { if } s_{n}<1, \\
\mathcal{A}_{n} \\
\text { if } s_{n}=1
\end{array}\right.
\end{aligned}
$$

Lemma 2.4. (a) $M_{n}: N(X)^{n} \times \Delta_{n} \rightarrow N(X)$ is continuous for every $n \in \mathbb{N}$.
(b) Suppose that $H^{*}\left(\mathcal{A}, \mathcal{A}_{1}\right), \ldots, H^{*}\left(\mathcal{A}, \mathcal{A}_{n}\right) \leq \varepsilon$. Then for every $\left(s_{1}, \ldots, s_{n}\right) \in \Delta_{n}, H^{*}\left(M_{n}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, s_{1}, \ldots, s_{n}\right), \mathcal{A}\right) \leq \varepsilon$.
(c) Suppose that $n \geq 2$ and $\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right) \in \Delta_{n-1}$. Then

$$
\begin{aligned}
& M_{n}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, s_{1}, \ldots, s_{i-1}, 0, s_{i+1}, \ldots, s_{n}\right) \\
& \quad=M_{n-1}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{i-1}, \mathcal{A}_{i+1}, \ldots, \mathcal{A}_{n}, s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)
\end{aligned}
$$

Proof. (a) Clearly M_{1} and M_{2} are continuous. Suppose that M_{n-1} is continuous $(n \geq 3)$. Let $z=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, s_{1}, \ldots, s_{n}\right) \in N(X)^{n} \times \Delta_{n}$. If $s_{n}<1$, the continuity of M_{n} at z is immediate. Suppose then that $s_{n}=1$. Let $\varepsilon>0$. Take $\delta>0$ such that $\delta \leq 1 / 2$ and $H^{*}\left(F_{1}(X), \mu^{-1}(2 t)\right)<\varepsilon / 2$ for every $t \in[0, \delta)$. Let $w=\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}, t_{1}, \ldots, t_{n}\right) \in N(X)^{n} \times \Delta_{n}$ be such that $H^{*}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right), \ldots, H^{*}\left(\mathcal{A}_{n}, \mathcal{B}_{n}\right)$ and $1-t_{n}$ are less than δ and $\varepsilon / 2$. If $t_{n}=1$, then $H^{*}\left(M_{n}(z), M_{n}(w)\right)=H^{*}\left(\mathcal{A}_{n}, \mathcal{B}_{n}\right)<\varepsilon$. If $t_{n}<1$, then $M_{n}(w)=M_{2}\left(C, \mathcal{B}_{n}, 1-t_{n}, t_{n}\right)$ where

$$
C=M_{n-1}\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{n-1}, t_{1} /\left(1-t_{n}\right), \ldots, t_{n} /\left(1-t_{n}\right)\right)
$$

Thus $M_{n}(w)=\mathcal{B}_{n} \vee\left(\mu^{-1}\left(2\left(1-t_{n}\right)\right) \wedge C\right)$. Then $\mathcal{B}_{n} \vee F_{1}(X) \leq M_{n}(w) \leq \mathcal{B}_{n} \vee$ $\mu^{-1}\left(2\left(1-t_{n}\right)\right)$. Applying Lemma 2.2, we have $H^{*}\left(\mathcal{B}_{n}, M_{n}(w)\right)<\varepsilon / 2$. Hence $H^{*}\left(M_{n}(z), M_{n}(w)\right)=H^{*}\left(\mathcal{A}_{n}, M_{n}(w)\right)<\varepsilon$. Therefore M_{n} is continuous.
(b) We only check this property for $n=2$. Let $z=\left(\mathcal{A}_{1}, \mathcal{A}_{2}, s_{1}, s_{2}\right) \in$ $N(X)^{2} \times \Delta_{2}$ be such that $H^{*}\left(\mathcal{A}_{1}, \mathcal{A}\right), H^{*}\left(\mathcal{A}_{2}, \mathcal{A}\right) \leq \varepsilon$. Then $H^{*}\left(\mathcal{A}, \mathcal{A}_{1} \vee\right.$ $\left.\mathcal{A}_{2}\right) \leq \varepsilon$. Since $\mathcal{A}_{2} \leq M_{2}(z) \leq \mathcal{A}_{1} \vee \mathcal{A}_{2}$ or $\mathcal{A}_{1} \leq M_{2}(z) \leq \mathcal{A}_{1} \vee \mathcal{A}_{2}$, Lemma 2.2 implies that $H^{*}\left(\mathcal{A}, M_{2}(z)\right) \leq \varepsilon$.

Proof of Theorem 2. Let (Z, ϱ) be a metric space, let A be a closed subset of Z and let $g: A \rightarrow N(X)$ be a map.

For each $x \in Z-A$, let $B_{x}=\{z \in Z \mid \varrho(x, z)<(1 / 2) \varrho(x, A)\}$. Let $U=$ $\left\{U_{\alpha} \mid \alpha \in J\right\}$ be a neighborhood finite open refinement of $\left\{B_{x} \mid x \in Z-A\right\}$, indexed by a well ordered set J. Let $\left\{\phi_{\alpha} \mid \alpha \in J\right\}$ be a partition of unity on $Z-A$ subordinate to U. Given $\alpha \in J$, choose $x_{\alpha} \in Z-A$ such that $U_{\alpha} \subset B_{x_{\alpha}}$. Also choose $a_{\alpha} \in A$ such that $\varrho\left(x_{\alpha}, a_{\alpha}\right)<2 \varrho\left(x_{\alpha}, A\right)$. If $z \in U_{\alpha}$, then $(1 / 2) \varrho\left(x_{\alpha}, A\right) \leq \varrho(z, A)$, so $\varrho\left(z, a_{\alpha}\right) \leq 5 \varrho(z, A)$.

Define $\widehat{g}: Z \rightarrow N(X)$ in the following way:
(a) For $x \in Z-A$, let $\alpha_{1}<\ldots<\alpha_{n}$ be the ordering in J of those elements α for which $\phi_{\alpha}(x)>0$, and define

$$
\widehat{g}(x)=M_{n}\left(g\left(a_{\alpha_{1}}\right), \ldots, g\left(a_{\alpha_{n}}\right), \phi_{\alpha_{1}}(x), \ldots, \phi_{\alpha_{n}}(x)\right) .
$$

(b) For $x \in A$, define $\widehat{g}(x)=g(x)$.

If $x \in Z-A$, there exists an open subset U of Z and $\beta_{1}, \ldots, \beta_{m} \in J$ such that $x \in U \subset Z-A, \beta_{1}<\ldots<\beta_{m}$ and $\phi_{\alpha}(z)=0$ for every $z \in U$ and every $\alpha \notin\left\{\beta_{1}, \ldots, \beta_{m}\right\}$. Lemma 2.4(c) implies that

$$
\widehat{g}(z)=M_{m}\left(g\left(a_{\beta_{1}}\right), \ldots, g\left(a_{\beta_{m}}\right), \phi_{\beta_{1}}(z), \ldots, \phi_{\beta_{m}}(z)\right)
$$

for every $z \in U$. Hence \widehat{g} is continuous at x. If $x \in \operatorname{Fr}(A)$, let $\varepsilon>0$. Let $\delta>0$ be such that if $a \in A$ and $\varrho(a, x) \leq \delta$, then $H^{*}(g(a), g(x)) \leq \varepsilon$. Take $z \in Z$ such that $\varrho(z, x) \leq \delta / 6$ and $z \notin A$. Let $\alpha_{1}<\ldots<\alpha_{n}$ be those α 's for which $\phi_{\alpha}(z)>0$. Then $z \in U_{\alpha_{1}} \cap \ldots \cap U_{\alpha_{n}}$. Thus $\varrho\left(z, a_{\alpha_{i}}\right) \leq 5 \varrho(z, A) \leq$ $5 \varrho(z, x)<(5 / 6) \delta$ for each i. Hence $\varrho\left(x, a_{\alpha_{i}}\right)<\delta$ for each i. Lemma 2.4(b)
implies that $H^{*}(\widehat{g}(z), \widehat{g}(x)) \leq \varepsilon$. So \widehat{g} is continuous at x, thus continuous and therefore X is an AR (metric).

We now make a start towards the proof of the Main Theorem with some preliminary technical results.

Some conventions. We consider the space 2^{X} of all nonempty closed subsets of X with the Hausdorff metric. Throughout this section ω will denote a fixed Whitney map for 2^{X} such that $\omega(X)=1$ and if $A, B, C \in 2^{X}$ and $A \subset B$, then

$$
\omega(B \cup C)-\omega(A \cup C) \leq \omega(B)-\omega(A)
$$

(such a map exists by [1]). Also β will denote a fixed l.o.a. in $C(X)$. Let $\beta^{*}=\beta-\left(\{X\} \cup F_{1}(X)\right)$. Let $\sigma: I \rightarrow \beta$ denote the inverse of the map $\omega \mid \beta: \beta \rightarrow I$. Let $\phi: N(X) \rightarrow \beta$ be a continuous function defined by $\phi(\mathcal{A})=A$ if and only if A is the unique element in $\mathcal{A} \cap \beta$. Finally, let $N(X)^{*}=N(X)-\left\{\{X\}, F_{1}(X)\right\}$.

Definition 3.1. Let $\psi: \beta^{*} \times(0,1] \times C(X) \rightarrow \mathbb{R}$ be given by

$$
\psi(A, t, B)=\omega(A \cup B)-\omega(B)-t(\omega(B)-\omega(A))
$$

Lemma 3.2. (a) ψ is continuous.
(b) If $A_{1} \nsubseteq A_{2}$, then $\psi\left(A_{1}, t, B\right)<\psi\left(A_{2}, t, B\right)$ for every $(t, B) \in(0,1] \times$ $C(X)$.
(c) If $B_{1} \nsubseteq B_{2}$, then $\psi\left(A, t, B_{1}\right)>\psi\left(A, t, B_{2}\right)$ for every $(A, t) \in \beta^{*} \times$ $(0,1]$.

Definition 3.3. Given $(A, t) \in \beta^{*} \times(0,1]$, let

$$
L(A, t)=\{B \in C(X) \mid \psi(A, t, B)=0\} .
$$

Lemma 3.4. (a) $A \in L(A, t)$ and $L(A, t) \in N(X)$ for every $(A, t) \in$ $\beta^{*} \times(0,1]$.
(b) If $0<t_{1}<t_{2} \leq 1$, then $L\left(A, t_{1}\right) \geq L\left(A, t_{2}\right)$.
(c) If $A_{1} \varsubsetneqq A_{2}$, then $L\left(A_{1}, t\right) \ll L\left(A_{2}, t\right)$.
(d) The function $L: \beta^{*} \times(0,1] \rightarrow N(X)$ is continuous.

Proof. (a) Let $(A, t) \in \beta^{*} \times(0,1]$. Then $\psi(A, t, X)=-t(\omega(X)-\omega(A))$ <0. Given $x \in X, \psi(A, t,\{x\})=\omega(A \cup\{x\})-\omega(A)+t \omega(A)>0$. Then $L(A, t) \cap\left(\{X\} \cup F_{1}(X)\right)=\emptyset$ and $L(A, t)$ intersects every l.o.a. in $C(X)$. By Lemma 3.2(c), $L(A, t)$ is a compact antichain in $C(X)$. Therefore ([6, Thm. 1.2]), $L(A, t) \in N(X)$.
(b) Let $B \in L\left(A, t_{2}\right)$ and let γ be a l.o.a. in $C(X)$ such that $B \in \gamma$. Let $A_{1} \in \gamma \cap \omega^{-1}(\omega(A))$. Since $\psi\left(A, t_{2}, A_{1}\right)=\omega\left(A \cup A_{1}\right)-\omega\left(A_{1}\right) \geq 0$ $=\psi\left(A, t_{2}, B\right)$, by Lemma 3.2(c), we have $A_{1} \subset B$. Then $\psi\left(A, t_{1}, B\right) \geq$ $\psi\left(A, t_{2}, B\right)=0$. Let $C \in \gamma \cap L\left(A, t_{1}\right)$. Then $\psi\left(A, t_{1}, C\right)=0 \leq \psi\left(A, t_{1}, B\right)$. So Lemma 3.2(c) implies that $B \subset C$. Hence $L\left(A, t_{2}\right) \leq L\left(A, t_{1}\right)$.
(c) This follows from Lemma 3.2.
(d) Let $\left(\left(A_{n}, t_{n}\right)\right)_{n} \subset \beta^{*} \times(0,1]$ and let $(A, t) \in \beta^{*} \times(0,1]$ be such that $A_{n} \rightarrow A$ and $t_{n} \rightarrow t$. Take $B \in L(A, t)$. Let γ be a l.o.a. in $C(X)$ such that $B \in \gamma$. For each $n \in \mathbb{N}$, take $B_{n} \in \gamma \cap L\left(A_{n}, t_{n}\right)$. If $\left(B_{n}\right)_{n}$ does not converge to B, since γ is compact, there exists a subsequence $\left(B_{n_{k}}\right)_{k}$ of $\left(B_{n}\right)_{n}$ and $C \in \gamma$ such that $B_{n_{k}} \rightarrow C \neq B$. Then $0=\psi\left(A_{n_{k}}, t_{n_{k}}, B_{n_{k}}\right) \rightarrow \psi(A, t, C)$. So $\psi(A, t, C)=\psi(A, t, B)$. Lemma 3.2(c) implies that $C=B$. This contradiction proves that $B_{n} \rightarrow B$. Hence $B \in \lim \inf L\left(A_{n}, t_{n}\right)$. Therefore $L(A, t) \subset \liminf L\left(A_{n}, t_{n}\right)$. Now take $B \in \lim \sup L\left(A_{n}, t_{n}\right)$. Then there exists a sequence $n_{1}<n_{2}<\ldots$ and elements $B_{k} \in L\left(A_{n_{k}}, t_{n_{k}}\right)$ such that $B_{k} \rightarrow B$. Then $0=\psi\left(A_{n_{k}}, t_{n_{k}}, B_{k}\right) \rightarrow \psi(A, t, B)$. Thus $B \in L(A, t)$. Hence $\limsup L\left(A_{n}, t_{n}\right) \subset L(A, t)$. Therefore $L\left(A_{n}, t_{n}\right) \rightarrow L(A, t)$. Consequently, L is continuous.

Lemma 3.5. Let $\mathcal{A}, \mathcal{B} \in N(X)^{*}$. Let $r, s>0$ be such that $r<\omega(\phi(\mathcal{A}))$ and $s<\omega(\phi(\mathcal{B}))$. Suppose $t_{1}, t_{2} \in(0,1]$ are such that $L\left(\sigma(r), t_{1}\right) \wedge \mathcal{A}=$ $L\left(\sigma(s), t_{2}\right) \wedge \mathcal{B}$. Then $t_{1}=t_{2}$.

Proof. Since $r<\omega(\phi(\mathcal{A}))$, we have $\sigma(r) \subset \phi(\mathcal{A}) \neq \sigma(r)$. Then $\sigma(r) \in$ $\left(L\left(\sigma(r), t_{1}\right) \wedge \mathcal{A}\right) \cap \beta$. Similarly, $\sigma(s) \in\left(L\left(\sigma(s), t_{2}\right) \wedge \mathcal{B}\right) \cap \beta$. Thus $\sigma(r)=$ $\sigma(s)$. Since $\sigma(r)$ is a proper subset of $\phi(\mathcal{A})$ and $\phi(\mathcal{B})$, we have $\sigma(r) \notin \mathcal{A} \cup \mathcal{B}$. Therefore there exists $B \in L\left(\sigma(r), t_{1}\right) \wedge \mathcal{A}$ such that $B \neq \sigma(r)$ and $B \notin$ $\mathcal{A} \cup \mathcal{B}$. Thus $B \in L\left(\sigma(r), t_{1}\right) \cap L\left(\sigma(s), t_{2}\right)$ and $\sigma(r)$ is not contained in B. Consequently, $\psi\left(\sigma(r), t_{1}, B\right)=\psi\left(\sigma(s), t_{2}, B\right)=0$. So

$$
\begin{aligned}
\omega(\sigma(r) \cup B)-\omega(B) & -t_{1}(\omega(B)-\omega(\sigma(r))) \\
& =\omega(\sigma(r) \cup B)-\omega(B)-t_{2}(\omega(B)-\omega(\sigma(r)))=0
\end{aligned}
$$

Thus $\left(t_{1}-t_{2}\right)(\omega(B)-\omega(\sigma(r)))=0$. If $\omega(B)-\omega(\sigma(r))=0$, then $\omega(\sigma(r) \cup B)$ $=\omega(B)$. Hence $\sigma(r) \subset B$. This contradiction proves that $t_{1}=t_{2}$.

Lemma 3.6. Let $\left(\mathcal{A}_{n}\right)_{n}$ be a sequence in $N(X)$, let $\mathcal{A} \in N(X)$, let $\left(A_{n}\right)_{n}$ be a sequence in $\beta-\{X\}$, let $A \in \beta-\{X\}$ and let $\left(t_{n}\right)_{n}$ be a sequence in $(0,1]$. If $t_{n} \rightarrow 0, A_{n} \rightarrow A$ and $\mathcal{A}_{n} \wedge L\left(A_{n}, t_{n}\right) \rightarrow \mathcal{A}$, then $\mathcal{A}_{n} \rightarrow \mathcal{A}$.

Proof. Let $B \in \limsup L\left(A_{n}, t_{n}\right)$. Then there exists a sequence $n_{1}<$ $n_{2}<\ldots$ and elements $B_{k} \in L\left(A_{n_{k}}, t_{n_{k}}\right)$ such that $B_{k} \rightarrow B$. Then

$$
\begin{aligned}
0=\psi\left(A_{n_{k}}, t_{n_{k}}, B_{k}\right) & =\omega\left(B_{k} \cup A_{n_{k}}\right)-\omega\left(B_{k}\right)-t_{n_{k}}\left(\omega\left(B_{k}\right)-\omega\left(A_{n_{k}}\right)\right) \\
& \rightarrow \omega(B \cup A)-\omega(B)
\end{aligned}
$$

Hence $A \subset B$.
For each $n \in \mathbb{N}, A_{n} \in L\left(A_{n}, t_{n}\right)$, so there exists $B_{n} \in \mathcal{A}_{n} \wedge L\left(A_{n}, t_{n}\right)$ such that $B_{n} \subset A_{n}$. It follows that there exists $A_{0} \in \mathcal{A}$ such that $A_{0} \subset A$.

Now we prove that $\mathcal{A} \subset \liminf \mathcal{A}_{n}$. Let $B \in \mathcal{A}-\left\{A_{0}\right\}$. Then there exists a sequence $\left(B_{n}\right)_{n}$ such that $B_{n} \in \mathcal{A}_{n} \wedge L\left(A_{n}, t_{n}\right)$ for each n and $B_{n} \rightarrow B$. Since A_{0} is not contained in B, we have $B \notin \limsup L\left(A_{n}, t_{n}\right)$. Then there
exists $N \in \mathbb{N}$ such that $B_{n} \in \mathcal{A}_{n}$ for every $n \geq N$. Therefore $B \in \lim \inf \mathcal{A}_{n}$. Since $A_{0} \neq X, \mathcal{A}$ is a nondegenerate continuum. Hence $\mathcal{A} \subset \liminf \mathcal{A}_{n}$.

Now we show that $\lim \sup \mathcal{A}_{n} \subset \mathcal{A}$. Let $B \in \lim \sup \mathcal{A}_{n}$. Then there exists a sequence $n_{1}<n_{2}<\ldots$ and elements $B_{k} \in \mathcal{A}_{n_{k}}$ such that $B_{k} \rightarrow B$. For each k, choose $C_{k} \in L\left(A_{n_{k}}, t_{n_{k}}\right)$ such that $B_{k} \subset C_{k}$ or $C_{k} \subset B_{k}$. If $B_{k} \subset$ C_{k} for infinitely many k, then $B_{k} \in \mathcal{A}_{n_{k}} \wedge L\left(A_{n_{k}}, t_{n_{k}}\right)$ for infinitely many k. Thus $B \in \mathcal{A}$. Suppose then that $C_{k} \subset B_{k}$ for every k. Let $C \in C(X)$ be the limit of some subsequence of $\left(C_{k}\right)_{k}$. Then $C \in \limsup L\left(A_{n}, t_{n}\right)$. Thus $A_{0} \subset A \subset C \subset B$. If $B=A_{0}$, then $B \in \mathcal{A}$. Suppose then that $A_{0} \neq B$.

Choose a point $x_{0} \in B-A_{0}$. Since $\mathcal{A} \in N(X)$, there exists a Whitney map $\nu: 2^{X} \rightarrow I$ and there exists $s \in I$ such that $(\nu \mid C(X))^{-1}(s)=\mathcal{A}$ (see [11]). Choose $r \in I$ such that $s<r<\nu\left(A_{0} \cup\left\{x_{0}\right\}\right)$. Take a sequence $\left(x_{k}\right)_{k}$ such that $x_{k} \in B_{k}$ for all k and $x_{k} \rightarrow x_{0}$. Since $\nu(B) \geq \nu\left(A_{0} \cup\left\{x_{0}\right\}\right)>r$, there exists $K \in \mathbb{N}$ such that $\nu\left(B_{k}\right)>r$ for every $k \geq K$.

Given $k \geq K$, choose a l.o.a. γ_{k} in $C(X)$ such that $\left\{x_{k}\right\}, B_{k} \in \gamma_{k}$. Take $D_{k} \in \gamma_{k} \cap \nu^{-1}(r)$ and $E_{k} \in \gamma_{k} \cap L\left(A_{n_{k}}, t_{n_{k}}\right)$. Let $\left(D_{k_{l}}\right)_{l}$ and $\left(E_{k_{l}}\right)_{l}$ be subsequences of $\left(D_{k}\right)_{k}$ and $\left(E_{k}\right)_{k}$ respectively which converge to elements D and E respectively. Then $x_{0} \in D \cap E$ and $\nu(D)=r$. Since $E \subset$ $\lim \sup L\left(A_{n}, t_{n}\right)$, it follows that $A_{0} \subset E$. If $E \subset D$, we have $\nu(D) \geq$ $\nu\left(A_{0} \cup\left\{x_{0}\right\}\right)>r$. This contradiction proves that E is not contained in D. Since $D_{k_{l}} \subset E_{k_{l}}$ or $E_{k_{l}} \subset D_{k_{l}}$ for every l, we have $D \nsubseteq E$. So $\nu(E)>r$. Thus there exists $L \in \mathbb{N}$ such that $\nu\left(E_{k_{l}}\right), \nu\left(B_{k_{l}}\right)>r$ for all $l \geq L$. Then $\nu\left(E_{k_{l}} \cap B_{k_{l}}\right) \geq r$ for all $l \geq L$. Hence $\nu(E \cap B) \geq r$. But

$$
E \cap B \in \limsup \mathcal{A}_{n} \wedge L\left(A_{n}, t_{n}\right)=\mathcal{A}=(\nu \mid C(X))^{-1}(s)
$$

and $s<r$. This contradiction proves that $B \in \mathcal{A}$.
Therefore $\lim \sup \mathcal{A}_{n} \subset \mathcal{A}$. Hence $\mathcal{A}_{n} \rightarrow \mathcal{A}$.
Lemma 3.7. If $\mathcal{A} \in N(X)^{*}$ and $\alpha>0$, then there exists $\varepsilon \in(0,1]$ such that $H^{*}(\mathcal{A} \wedge L(\phi(\mathcal{A}), \varepsilon), \mathcal{A})<\alpha$.

Proof. Let $A=\phi(\mathcal{A})$. It is enough to prove that $\mathcal{A} \wedge L(A, 1 / n) \rightarrow \mathcal{A}$. Let $B \in \mathcal{A}-\{A\}$. Choose a l.o.a. γ in $C(X)$ such that $\mathcal{B} \in \gamma$. For each n, let $B_{n} \in \gamma \cap L(A, 1 / n)$. Since A is not contained in B, it follows that $0<\omega(B \cup A)-\omega(B)=\lim \sup \psi(A, 1 / n, B)$. Thus there exists $N \in \mathbb{N}$ such that $0<\psi(A, 1 / n, B)$ for every $n \geq N$. Since $\psi\left(A, 1 / n, B_{n}\right)=0$, we obtain $B \subset B_{n}$ for every $n \geq N$. So $B \in \mathcal{A} \wedge L(A, 1 / n)$ for all $n \geq N$. Hence $B \in \liminf \mathcal{A} \wedge L(A, 1 / n)$. Therefore $\mathcal{A} \subset \liminf \mathcal{A} \wedge L(A, 1 / n)$.

Now take $B \in \lim \sup \mathcal{A} \wedge L(A, 1 / n)$. Then there exists a sequence $n_{1}<n_{2}<\ldots$ and elements $B_{k} \in \mathcal{A} \wedge L\left(A, 1 / n_{k}\right)$ such that $B_{k} \rightarrow B$. Then each $B_{k}=A_{k} \cap C_{k}$ where $A_{k} \in \mathcal{A}, C_{k} \in L\left(A, 1 / n_{k}\right)$ and $A_{k} \subset C_{k}$ or $C_{k} \subset A_{k}$. If $B_{k}=A_{k}$ for infinitely many k, then $B \in \mathcal{A}$. Suppose then that $B_{k}=C_{k} \subset A_{k}$ for every k. Then $0=\psi\left(A, 1 / n_{k}, B_{k}\right) \rightarrow \omega(A \cup B)-\omega(B)$.

Thus $A \subset B$. Let $\left(A_{k_{m}}\right)_{m}$ be a subsequence of $\left(A_{k}\right)_{k}$ which converges to an $A_{0} \in \mathcal{A}$. Then $A \subset B \subset A_{0}$. Hence $A=B=A_{0}$, so $B \in \mathcal{A}$. Thus $\limsup \mathcal{A} \wedge L(A, 1 / n) \subset \mathcal{A}$.

Therefore $\mathcal{A} \wedge L(A, 1 / n) \rightarrow \mathcal{A}$.
Lemma 3.8. Let $\alpha: N(X) \rightarrow(0, \infty)$ be a map. Then:
(a) There exists a map $\varepsilon: N(X)^{*} \rightarrow(0,1]$ such that

$$
H^{*}(\mathcal{A} \wedge L(\phi(A), \varepsilon(\mathcal{A})), \mathcal{A})<\alpha(\mathcal{A})
$$

for every $\mathcal{A} \in N(X)^{*}$.
(b) There exist maps $\varepsilon, h: N(X)^{*} \rightarrow(0, \infty)$ such that, for each $\mathcal{A} \in$ $N(X)^{*}, \varepsilon(\mathcal{A}) \leq 1, h(\mathcal{A}) \leq \omega(\phi(\mathcal{A})) / 2$ and

$$
H^{*}(\mathcal{A}, \mathcal{A} \wedge L(\sigma[\phi(\mathcal{A})-h(\mathcal{A})], \varepsilon(\mathcal{A})))<\alpha(\mathcal{A})
$$

(c) There exists a map $k: N(X) \rightarrow(0,1 / 2]$ such that, for every $\mathcal{A} \in$ $N(X)$,

$$
H^{*}\left(\mathcal{A}, \mathcal{A} \vee \omega^{-1}(k(\mathcal{A}))<\alpha(\mathcal{A})\right.
$$

and

$$
H^{*}\left(\mathcal{A}, \mathcal{A} \wedge \omega^{-1}(1-k(\mathcal{A}))\right)<\alpha(\mathcal{A})
$$

(d) If $\alpha_{0}: N(X) \rightarrow(0, \infty)$ is a map, then there exists a map $\delta: N(X) \rightarrow$ $(0, \infty)$ such that $H^{*}(\mathcal{A}, \mathcal{B})<\delta(\mathcal{A})$ implies that $|\alpha(\mathcal{A})-\alpha(\mathcal{B})|<\alpha_{0}(\mathcal{A})$.

Proof. (a) Let $\varepsilon_{0}: N(X)^{*} \rightarrow(0, \infty)$ be given by

$$
\varepsilon_{0}(\mathcal{A})=\sup \left\{t \in(0,1]: H^{*}(\mathcal{A}, \mathcal{A} \wedge L(\phi(\mathcal{A}), t))<\alpha(\mathcal{A})\right\}
$$

By Lemma 3.7, ε_{0} is well defined. Let $t \in(0,1]$ be such that $H^{*}(\mathcal{A}, \mathcal{A} \wedge$ $L(\phi(\mathcal{A}), t))<\alpha(\mathcal{A})$ and let $\left(\mathcal{A}_{n}\right)_{n}$ be a sequence such that $\mathcal{A}_{n} \rightarrow \mathcal{A}$. Then $H^{*}\left(\mathcal{A}_{n}, \mathcal{A}_{n} \wedge L\left(\phi\left(\mathcal{A}_{n}\right), t\right)\right) \rightarrow H^{*}(\mathcal{A}, \mathcal{A} \wedge L(\phi(\mathcal{A}), t))$ and $\alpha\left(\mathcal{A}_{n}\right) \rightarrow \alpha(\mathcal{A})$. It follows that ε_{0} is a lower semi-continuous positive function. Then (see [4, Ch. VIII, 4.3]) there exists a map $\varepsilon: N(X)^{*} \rightarrow(0, \infty)$ such that $0<\varepsilon(\mathcal{A})<$ $\varepsilon_{0}(\mathcal{A})$ for every $\mathcal{A} \in N(X)^{*}$.
(b) By (a) there exists a map $\varepsilon: N(X)^{*} \rightarrow(0,1]$ such that

$$
H^{*}(\mathcal{A}, \mathcal{A} \wedge L(\phi(\mathcal{A}), \varepsilon(\mathcal{A})))<\alpha(\mathcal{A}) / 2
$$

for every $\mathcal{A} \in N(X)^{*}$. Let $h_{0}: N(X)^{*} \rightarrow(0,1]$ be given by

$$
\begin{aligned}
& h_{0}(\mathcal{A})=\sup \{t \in(0, \omega(\phi(\mathcal{A})) / 2]: \\
& \left.\qquad H^{*}(\mathcal{A} \wedge L(\sigma[\omega(\phi(\mathcal{A}))-t], \varepsilon(\mathcal{A})), \mathcal{A})<\alpha(\mathcal{A})\right\}
\end{aligned}
$$

Then h_{0} is a positive lower semi-continuous function, so there exists a map $h: N(X)^{*} \rightarrow(0,1]$ such that $0<h(\mathcal{A})<h_{0}(\mathcal{A})$ for every $\mathcal{A} \in N(X)^{*}$.

The proof of (c) is similar. Claim (d) was proved in [8, Lemma 1.13].

Proof of the Main Theorem. We will use Toruńczyk's characterization of the Hilbert space l_{2} ([10, p. 248]): Let Y be a complete separable AR space. Then Y is homeomorphic to l_{2} if and only if given a map $f: \mathbb{N} \times Q \rightarrow Y(Q$ denotes the Hilbert cube) and a map $\alpha: Y \rightarrow(0, \infty)$, there is a map $g: \mathbb{N} \times Q \rightarrow Y$ with $\{g(\{n\} \times Q)\}_{n \in \mathbb{N}}$ discrete in Y and $d_{Y}(f(z), g(z))<\alpha(f(z))$ for every $z \in \mathbb{N} \times Q$.

Take maps $f: \mathbb{N} \times Q \rightarrow N(X)$ and $\alpha: N(X) \rightarrow(0, \infty)$. Lemma 3.8 implies that:
(a) There exists a map $\delta: N(X) \rightarrow(0, \infty)$ such that $H^{*}(\mathcal{A}, \mathcal{B})<\delta(\mathcal{A})$ implies that $|\alpha(\mathcal{A})-\alpha(\mathcal{B})|<\alpha(\mathcal{A}) / 2$.
(b) There exists a map $k: N(X) \rightarrow(0,1 / 2]$ such that $H^{*}(\mathcal{A}, \mathcal{A} \vee$ $\left.\omega^{-1}(k(\mathcal{A}))\right)$ and

$$
H^{*}\left(\mathcal{A}, \mathcal{A} \wedge \omega^{-1}(1-k(\mathcal{A}))\right)<\alpha(\mathcal{A}) / 4, \quad \delta(\mathcal{A})
$$

for every $\mathcal{A} \in N(X)$.
(c) There exist maps $\varepsilon, h: N(X)^{*} \rightarrow(0, \infty)$ such that, for each $\mathcal{A} \in$ $N(X)^{*}, h(\mathcal{A}) \leq \omega(\phi(\mathcal{A})) / 2, \varepsilon(\mathcal{A}) \leq 1$ and

$$
H^{*}(\mathcal{A} \wedge L(\sigma[\omega(\phi(\mathcal{A}))-h(\mathcal{A})], \varepsilon(\mathcal{A})), \mathcal{A})<\alpha(\mathcal{A}) / 8
$$

Define $G_{1}, G_{2}: N(X) \rightarrow N(X)$ by $G_{1}(\mathcal{A})=\mathcal{A} \vee \omega^{-1}(k(\mathcal{A}))$ and $G_{2}(\mathcal{A})=$ $\mathcal{A} \wedge \omega^{-1}(1-k(\mathcal{A}))$. Then G_{1}, G_{2} are continuous and $G_{2}\left(G_{1}(\mathcal{A})\right) \in N(X)^{*}$ for each $\mathcal{A} \in N(X)$. Given $\mathcal{A} \in N(X)$ with $\left|\alpha(\mathcal{A})-\alpha\left(G_{i}(\mathcal{A})\right)\right|<\alpha(\mathcal{A}) / 2$, then $\alpha\left(G_{i}(\mathcal{A})\right)<(3 / 2) \alpha(\mathcal{A})$ for $i=1,2$. Then $\alpha\left(G_{2}\left(G_{1}(\mathcal{A})\right)\right)<(9 / 4) \alpha(\mathcal{A})$. Furthermore,

$$
\begin{aligned}
H^{*}\left(\mathcal{A}, G_{2}\left(G_{1}(\mathcal{A})\right)\right) & \leq H^{*}\left(\mathcal{A}, G_{1}(\mathcal{A})\right)+H^{*}\left(G_{1}(\mathcal{A}), G_{2}\left(G_{1}(\mathcal{A})\right)\right) \\
& <\alpha(\mathcal{A}) / 4+\alpha\left(G_{1}(\mathcal{A})\right) / 4<(5 / 8) \alpha(\mathcal{A})
\end{aligned}
$$

Define $f_{0}=G_{2} \circ G_{1} \circ f$. Let $t_{1}=\min \left(\varepsilon\left(f_{0}(\{1\} \times Q)\right) \cup\{1 / 2\}\right)$ and, for $n \geq 2$, let $t_{n}=\min \left(\varepsilon\left(f_{0}(\{n\} \times Q)\right) \cup\left\{t_{n-1} / 2\right\}\right)$. Then $t_{n} \rightarrow 0$ and $0<t_{n+1}<t_{n} / 2<t_{n}<1$ for every n.

For each $n \in \mathbb{N}$, define $g_{n}: N(X)^{*} \rightarrow N(X)$ by $g_{n}(\mathcal{A})=\mathcal{A} \wedge L(\sigma[\omega(\phi(\mathcal{A}))$ $\left.-h(\mathcal{A})], t_{n}\right)$, and define $g: \mathbb{N} \times Q \rightarrow N(X)$ by $g(n, x)=g_{n}\left(f_{0}(n, x)\right)$. Then g is continuous.

Let $y=(n, x) \in \mathbb{N} \times Q$. Since $t_{n} \leq \varepsilon\left(f_{0}(y)\right)$, we have

$$
\begin{aligned}
f_{0}(y) \wedge L\left(\sigma \left[\phi\left(f_{0}(y)\right)\right.\right. & \left.\left.-h\left(f_{0}(y)\right)\right], \varepsilon\left(f_{0}(y)\right)\right) \\
& \leq f_{0}(y) \wedge L\left(\sigma\left[\phi\left(f_{0}(y)\right)-h\left(f_{0}(y)\right)\right], t_{n}\right) \leq f_{0}(y)
\end{aligned}
$$

Then $H^{*}\left(f_{0}(y), g_{n}\left(f_{0}(y)\right)\right)<\alpha\left(f_{0}(y)\right) / 8<(9 / 32) \alpha(f(y))$. Thus

$$
\begin{aligned}
H^{*}(f(y), g(y)) & \leq H^{*}\left(f(y), f_{0}(y)\right)+H^{*}\left(f_{0}(y), g(y)\right) \\
& <(5 / 8) \alpha(f(y))+(9 / 32) \alpha(f(y))<\alpha(f(y))
\end{aligned}
$$

Therefore $H^{*}(f(y), g(y))<\alpha(f(y))$.

Notice that Lemma 3.5 implies that the sets $g(\{1\} \times Q), g(\{2\} \times Q), \ldots$ are pairwise disjoint.

Now we prove that $F_{1}(X),\{X\} \notin \mathrm{Cl}_{N(X)} G_{2}\left(G_{1}(N(X))\right)$. Suppose that there exists a sequence $\left(C_{n}\right)_{n}$ in $N(X)$ such that $G_{2}\left(G_{1}\left(C_{n}\right)\right) \rightarrow F_{1}(X)$. Then

$$
\left(C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right) \wedge \omega^{-1}\left(1-k\left(C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right)\right)\right) \rightarrow F_{1}(X)\right.
$$

Since $\omega^{-1}\left(1-k\left(C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right)\right)\right) \geq \omega^{-1}(1 / 2)$ for each n, we then have $C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right) \rightarrow F_{1}(X)$. Thus C_{n} and $\omega^{-1}\left(k\left(C_{n}\right)\right) \rightarrow F_{1}(X)$. Hence $F_{1}(X)=\omega^{-1}\left(k\left(F_{1}(X)\right)\right)$. Thus $k\left(F_{1}(X)\right)=0$. This contradiction proves that $F_{1}(X) \notin \mathrm{Cl}_{N(X)} G_{2}\left(G_{1}(N(X))\right)$. Now suppose that there exists a sequence $\left(C_{n}\right)_{n}$ in $N(X)$ such that $G_{2}\left(G_{1}\left(C_{n}\right)\right) \rightarrow\{X\}$. Then $C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right)$ $\rightarrow\{X\}$ and $\omega^{-1}\left(1-k\left(C_{n} \vee \omega^{-1}\left(k\left(C_{n}\right)\right)\right)\right) \rightarrow\{X\}$, so

$$
\{X\}=\omega^{-1}\left(1-k\left(\{X\} \vee \omega^{-1}(k(\{X\}))\right)\right)=\omega^{-1}(1-k(\{X\})) .
$$

It follows that $k(\{X\})=0$. This contradiction proves that $\{X\} \notin$ $\mathrm{Cl}_{N(X)} G_{2}\left(G_{1}(N(X))\right)$.

Finally, we prove that the family $\{g(\{n\} \times Q)\}_{n \in \mathbb{N}}$ is discrete in $N(X)$. Suppose that this is not true. Then there exists $\mathcal{A} \in N(X)$, a sequence $n_{1}<n_{2}<\ldots$ and elements $\mathcal{B}_{k} \in g\left(\left\{n_{k}\right\} \times Q\right)$ such that $\mathcal{B}_{k} \rightarrow \mathcal{A}$. For each k, put $\mathcal{B}_{k}=g\left(n_{k}, x_{k}\right)$, let $\mathcal{A}_{k}=f_{0}\left(n_{k}, x_{k}\right)$ and $A_{k}=\sigma\left[\omega\left(\phi\left(\mathcal{A}_{k}\right)\right)-h\left(\mathcal{A}_{k}\right)\right] \in \beta^{*}$. Then $\mathcal{B}_{k}=\mathcal{A}_{k} \wedge L\left(A_{k}, t_{n_{k}}\right)$. Suppose, by taking a subsequence if necessary, that $A_{k} \rightarrow A$ for some $A \in \beta$.

We will show that $A \neq X$. Suppose $A=X$. Since $A_{k} \subset \sigma\left(\omega\left(\phi\left(\mathcal{A}_{k}\right)\right)\right)$ $=\phi\left(\mathcal{A}_{k}\right)$, we have $A_{k} \in \mathcal{B}_{k}$. Now, $\mathcal{B}_{k} \rightarrow \mathcal{A}$ implies $\mathcal{A}=\{X\}$. Thus $\mathcal{A}_{k} \rightarrow\{X\}$ and $L\left(A_{k}, t_{n_{k}}\right) \rightarrow\{X\}$. This is a contradiction since $\{X\} \notin$ $\mathrm{Cl}_{N(X)} G_{2}\left(G_{1}(N(X))\right)$. Therefore $A \in \beta-\{X\}$.

Applying Lemma 3.6 we see that $\mathcal{A}_{k} \rightarrow \mathcal{A}$. Since $\mathcal{A}_{k} \in G_{2}\left(G_{1}(N(X))\right)$, we have $\mathcal{A} \in N(X)^{*}$. Given $k, A_{k}=\sigma\left(\omega\left(\phi\left(A_{k}\right)\right)-h\left(A_{k}\right)\right) \subset \sigma\left(\omega\left(\phi\left(\mathcal{A}_{k}\right)\right)\right)=$ $\phi\left(\mathcal{A}_{k}\right) \in \mathcal{A}_{k}$. Then A_{k} is an element of $L\left(A_{k}, t_{n_{k}}\right)$ contained in an element of \mathcal{A}_{k}. Thus $A_{k} \in \mathcal{A}_{k} \wedge L\left(A_{k}, t_{n_{k}}\right)=\mathcal{B}_{k}$. This implies that $A \in \mathcal{A}$. Thus $A \notin F_{1}(X) \cup\{X\}$. Since $A_{k} \rightarrow \sigma(\omega(\phi(\mathcal{A}))-h(\mathcal{A}))$, we get $A=$ $\sigma(\omega(\phi(\mathcal{A}))-h(\mathcal{A}))$. But $A \in \mathcal{A} \cap \beta$ implies that $A=\phi(\mathcal{A})$. Thus $h(\mathcal{A})=0$. This contradiction proves that the family $\{g(\{n\} \times Q)\}_{n \in \mathbb{N}}$ is discrete and ends the proof of the theorem.

REFERENCES

[1] W. J. Charatonik, A metric on hyperspaces defined by Whitney maps, Proc. Amer. Math. Soc. 94 (1985), 535-538.
[2] D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), 747-759.
[3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
[4] J. Dugundji, Topology, Allyn and Bacon, 1966.
[5] C. Eberhart and S. B. Nadler, The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034.
[6] A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77.
[7] -, The space of Whitney levels, Topology Appl. 40 (1991), 157-169.
[8] -, The space of Whitney decompositions, Ann. Inst. Mat. Univ. Autónoma México 28 (1988), 47-61.
[9] S. B. Nadler, Hyperspaces of Sets, Dekker, 1978.
[10] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
[11] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.
[12] S. Willard, General Topology, Addison-Wesley, 1970.
INSTITUTO DE MATEMÁTICAS
AREA DE LA INVESTIGACIÓN CIENTÍFICA
CIRCUITO EXTERIOR
CIUDAD UNIVERSITARIA
C.P. 04510

MÉXICO, D.F., MÉXICO

