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THE SPACE OF WHITNEY LEVELS IS HOMEOMORPHIC TO l2

BY

ALEJANDRO ILLANES (MÉXICO, D.F.)

If (X, d) is a metric continuum, C(X) stands for the hyperspace of all
nonempty subcontinua of X, endowed with the Hausdorff metric H. A map
is a continuous function.

A Whitney map is a map µ : C(X) → I such that µ({x}) = 0 for each
x ∈ X, µ(X) = 1 and if A,B ∈ C(X), A  B then µ(A) < µ(B). The space
of Whitney maps W (X) is endowed with the sup metric. Throughout this
paper µ denotes a fixed Whitney map. A Whitney level is a subset of C(X)
of the form µ−1(t) where µ is a Whitney map. By [5, p. 1032], Whitney
levels are in C(C(X)) = C2(X). The space of Whitney levels, denoted by
N(X), is a subspace of C2(X).

Given A,B ∈ N(X) we write A ≤ B if for each A ∈ A there exists
B ∈ B such that A ⊂ B, and we write A � B if for each A ∈ A there
exists B ∈ B such that A  B. The space of Whitney decompositions is
WD(X) = {{ω−1(t) ∈ C2(X) | 0 ≤ t ≤ 1} ∈ C(C(C(X))) | ω ∈ W (X)}.
Other conventions that we use: I denotes the interval [0, 1], the metric for
C2(X) is denoted by H2, F1(X) is the set of all one-element subsets of X.

The space N(X) was introduced in [6]; it was useful to prove that W (X)
and WD(X) are homeomorphic to the Hilbert space l2 for all X (see [7]
and [8]).

The aim of this paper is to prove

Main Theorem. The space N(X) of Whitney levels is homeomorphic
to the Hilbert space l2 for all X.

For that we use Toruńczyk’s characterization of Hilbert space. Theo-
rems 1 and 2 are intermediate results.

Theorem 1. N(X) is topologically complete.

Definition 1.1. A large ordered arc (l.o.a.) in C(X) is a subcontinuum
γ of C(X) such that

⋂
γ ∈ F1(X),

⋃
γ = X and A,B ∈ γ implies that

A ⊂ B or B ⊂ A.
An antichain in C(X) is a subset A of C(X) such that if A,B ∈ A and

A ⊂ B then A = B.
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By [9, Lemma 1.3], every l.o.a. in C(X) is homeomorphic to I and by [9,
Thm. 2.8], if A,B ∈ C(X) and A ⊂ B, then there exists a l.o.a. γ in C(X)
such that A,B ∈ γ. In [7] it was proved that if A ⊂ C(X)− ({X}∪F1(X)),
then A is a Whitney level if and only if A is a compact antichain which
intersects every l.o.a. in C(X).

P r o o f o f T h e o r e m 1. Let A = {D ∈ C2(X) : D ∩ γ 6= ∅ for every
l.o.a. γ in C(X)}. Then A is closed in C2(X), thus A is topologically com-
plete. For each n ∈ N define An = {D ∈ A: there exist A,B ∈ D such
that A ⊂ B and H(A,B) ≥ 1/n} and Bn = {D ∈ A : D ∩ F1(X) 6= ∅ and
D∩µ−1[1/n, 1] 6= ∅}. It is easy to prove that An and Bn are closed subsets
of A.

Clearly
⋃

An ∪
⋃

Bn ⊂ A−N(X). Let D ∈ A−N(X). If X ∈ D, then
there exists A ∈ D such that A 6= X. Thus there exists n ∈ N such that
D ∈ An. If D ∩ F1(X) 6= ∅, since D intersects every l.o.a. in C(X) and
D 6= F1(X), we see that D is not contained in F1(X). Thus there exists
n ∈ N such that D ∈ Bn. Finally, if D ⊂ C(X)− ({X}∪F1(X)), then since
D 6∈ N(X), D is not an antichain. Therefore D ∈ An for some n.

Hence A − N(X) =
⋃

An ∪
⋃

Bn. Thus N(X) is a Gδ subset of A.
Therefore [12, Thm. 24.12], N(X) is topologically complete.

Theorem 2. N(X) is a metric AR.

In [7] it was proved that for every A,B ∈ N(X), the infimum and supre-
mum of the set {A,B} with respect to the order ≤ both exist. They were
constructed in the following way: For each l.o.a. γ in C(X), let Aγ (resp.
Bγ) be the unique element in A ∩ γ (resp. B ∩ γ) (notice that Aγ ⊂ Bγ or
Aγ ⊃ Bγ). The infimum of A and B is defined to be A ∧ B = {Aγ ∩
Bγ : γ is a l.o.a. in C(X)} and the supremum is A ∨ B = {Aγ ∪ Bγ :
γ is a l.o.a. in C(X)}. Also it was shown that the functions ∧,∨ : N(X)×
N(X) → N(X) are continuous [7, Thm. 1.9].

To prove Theorem 2 we use ∨ and ∧ to endow N(X) with a convex
structure in the sense of Curtis [2, Definition 2.1]. We imitate Dugundji’s
proof in [3] to prove that N(X) is a metric AR. First we need to introduce
a new metric for N(X).

Definition 2.1. Let H∗ : N(X)×N(X) → R be given by

H∗(A,B) = sup{H(A,B) : A ∈ A, B ∈ B and A ⊂ B or A ⊃ B} .

Lemma 2.2. (a) H∗ is a metric for N(X) which is equivalent to H2.
(b) If A ≤ B ≤ C then H∗(A,B),H∗(B, C) ≤ H∗(A, C).
(c) If C ≤ B ≤ D and H∗(A, C),H∗(A,D) ≤ ε, then H∗(A,B) ≤ ε.
(d) H∗(C ∨ B,D ∨ B) ≤ H∗(C,D) for every B, C,D ∈ N(X).
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P r o o f. (a) Let A,B, C ∈ N(X) and let A ∈ A and C ∈ C such that
A ⊂ C or A ⊃ C. Then there exists a l.o.a. γ in C(X) such that A,C ∈
γ. Let B ∈ γ ∩ B. Then A ⊂ B or A ⊃ B and B ⊂ C or B ⊃ C.
Hence H(A,C) ≤ H(A,B) + H(B,C) ≤ H∗(A,B) + H∗(B, C). Therefore
H∗(A, C) ≤ H∗(A,B) +H∗(B, C).

Clearly H2 ≤ H∗. Let A ∈ N(X) and let ε > 0. By [7, 1.8] there exists
δ > 0 such that if B ∈ N(X), H2(A,B) < δ, A ∈ A, B ∈ B and A ⊂ B or
A ⊃ B then H(A,B) < ε. Given B ∈ N(X) such that H2(A,B) < δ, we
have H∗(A,B) ≤ ε. Hence H∗ and H2 are equivalent metrics for N(X).

(b) This is evident.
(c) Let A ∈ A and B ∈ B be such that A ⊂ B or A ⊃ B. Let γ be a

l.o.a. in C(X) such that A,B ∈ γ. Let C ∈ γ ∩ C and D ∈ γ ∩ D. Then
C ⊂ B ⊂ D. If A ⊂ B then H(A,B) ≤ H(A,D) ≤ H∗(A,D) ≤ ε. If
A ⊃ B, then H(A,B) ≤ H(A,C) ≤ H∗(A, C) ≤ ε. Therefore H∗(A,B) ≤ ε.

(d) Let A ∈ C ∨ B and E ∈ D ∨ B be such that A ⊂ E or A ⊃ E. Let
γ be a l.o.a. in C(X) such that A,E ∈ γ. Let C ∈ C ∪ γ, B ∈ B ∪ γ and
D ∈ D ∪ γ. Suppose, for example, that C ⊂ D. If B ⊂ C then A = C and
E = D, thus H(A,E) ≤ H∗(C,D). If C ⊂ B ⊂ D, then A = B and E = D,
hence H(A,E) ≤ H(C,D) ≤ H∗(C,D). If D ⊂ B then A = B = E, so
H(A,E) ≤ H∗(C,D). Therefore H∗(C ∨ B,D ∨ B) ≤ H∗(C,D).

Definition 2.3. Let

∆n = {(s1, . . . , sn) ∈ In | s1 + . . .+ sn = 1} .

Given A1 ∈ N(X), let M1(A1, 1) = A1. If A1,A2 ∈ N(X) and s ∈ I, let

M2(A1,A2, s, 1− s) =
{
A2 ∨ (µ−1(2s) ∧ A1) if 0 ≤ s ≤ 1

2 ,
A1 ∨ (µ−1(2− 2s) ∧ A2) if 1

2 ≤ s ≤ 1 .

Inductively, if n ≥ 3, A1, . . . ,An ∈ N(X) and (s1, . . . , sn) ∈ ∆n, let

Mn(A1, . . . ,An, s1, . . . , sn)

=


M2

(
Mn−1

(
A1, . . . ,An−1,

s1
1− sn

, . . . ,
sn−1

1− sn

)
,An, 1− sn, sn

)
if sn < 1,

An if sn = 1.

Lemma 2.4. (a) Mn : N(X)n × ∆n → N(X) is continuous for every
n ∈ N.

(b) Suppose that H∗(A,A1), . . . ,H∗(A,An) ≤ ε. Then for every
(s1, . . . , sn) ∈ ∆n, H∗(Mn(A1, . . . ,An, s1, . . . , sn),A) ≤ ε.

(c) Suppose that n ≥ 2 and (s1, . . . , si−1, si+1, . . . , sn) ∈ ∆n−1. Then

Mn(A1, . . . ,An, s1, . . . , si−1, 0, si+1, . . . , sn)
= Mn−1(A1, . . . ,Ai−1,Ai+1, . . . ,An, s1, . . . , si−1, si+1, . . . , sn) .
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P r o o f. (a) Clearly M1 and M2 are continuous. Suppose that Mn−1 is
continuous (n ≥ 3). Let z = (A1, . . . ,An, s1, . . . , sn) ∈ N(X)n × ∆n. If
sn < 1, the continuity of Mn at z is immediate. Suppose then that sn = 1.
Let ε > 0. Take δ > 0 such that δ ≤ 1/2 and H∗(F1(X), µ−1(2t)) < ε/2
for every t ∈ [0, δ). Let w = (B1, . . . ,Bn, t1, . . . , tn) ∈ N(X)n × ∆n be
such that H∗(A1,B1), . . . ,H∗(An,Bn) and 1 − tn are less than δ and ε/2.
If tn = 1, then H∗(Mn(z),Mn(w)) = H∗(An,Bn) < ε. If tn < 1, then
Mn(w) = M2(C,Bn, 1− tn, tn) where

C = Mn−1(B1, . . . ,Bn−1, t1/(1− tn), . . . , tn/(1− tn)) .

Thus Mn(w) = Bn∨(µ−1(2(1−tn))∧C). Then Bn∨F1(X) ≤Mn(w) ≤ Bn∨
µ−1(2(1−tn)). Applying Lemma 2.2, we have H∗(Bn,Mn(w)) < ε/2. Hence
H∗(Mn(z),Mn(w)) = H∗(An,Mn(w)) < ε. Therefore Mn is continuous.

(b) We only check this property for n = 2. Let z = (A1,A2, s1, s2) ∈
N(X)2 × ∆2 be such that H∗(A1,A),H∗(A2,A) ≤ ε. Then H∗(A,A1 ∨
A2) ≤ ε. Since A2 ≤ M2(z) ≤ A1 ∨ A2 or A1 ≤ M2(z) ≤ A1 ∨ A2,
Lemma 2.2 implies that H∗(A,M2(z)) ≤ ε.

P r o o f o f T h e o r e m 2. Let (Z, %) be a metric space, let A be a
closed subset of Z and let g : A→ N(X) be a map.

For each x ∈ Z −A, let Bx = {z ∈ Z | %(x, z) < (1/2)%(x,A)}. Let U =
{Uα | α ∈ J} be a neighborhood finite open refinement of {Bx | x ∈ Z−A},
indexed by a well ordered set J . Let {φα | α ∈ J} be a partition of unity
on Z − A subordinate to U . Given α ∈ J , choose xα ∈ Z − A such that
Uα ⊂ Bxα . Also choose aα ∈ A such that %(xα, aα) < 2%(xα, A). If z ∈ Uα,
then (1/2)%(xα, A) ≤ %(z,A), so %(z, aα) ≤ 5%(z,A).

Define ĝ : Z → N(X) in the following way:

(a) For x ∈ Z − A, let α1 < . . . < αn be the ordering in J of those
elements α for which φα(x) > 0, and define

ĝ(x) = Mn(g(aα1), . . . , g(aαn
), φα1(x), . . . , φαn

(x)) .

(b) For x ∈ A, define ĝ(x) = g(x).

If x ∈ Z − A, there exists an open subset U of Z and β1, . . . , βm ∈ J
such that x ∈ U ⊂ Z − A, β1 < . . . < βm and φα(z) = 0 for every z ∈ U
and every α 6∈ {β1, . . . , βm}. Lemma 2.4(c) implies that

ĝ(z) = Mm(g(aβ1), . . . , g(aβm
), φβ1(z), . . . , φβm

(z))

for every z ∈ U . Hence ĝ is continuous at x. If x ∈ Fr(A), let ε > 0. Let
δ > 0 be such that if a ∈ A and %(a, x) ≤ δ, then H∗(g(a), g(x)) ≤ ε. Take
z ∈ Z such that %(z, x) ≤ δ/6 and z 6∈ A. Let α1 < . . . < αn be those α’s
for which φα(z) > 0. Then z ∈ Uα1 ∩ . . .∩Uαn . Thus %(z, aαi) ≤ 5%(z,A) ≤
5%(z, x) < (5/6)δ for each i. Hence %(x, aαi) < δ for each i. Lemma 2.4(b)
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implies that H∗(ĝ(z), ĝ(x)) ≤ ε. So ĝ is continuous at x, thus continuous
and therefore X is an AR (metric).

We now make a start towards the proof of the Main Theorem with some
preliminary technical results.

Some conventions. We consider the space 2X of all nonempty closed
subsets of X with the Hausdorff metric. Throughout this section ω will
denote a fixed Whitney map for 2X such that ω(X) = 1 and if A,B,C ∈ 2X

and A ⊂ B, then

ω(B ∪ C)− ω(A ∪ C) ≤ ω(B)− ω(A)

(such a map exists by [1]). Also β will denote a fixed l.o.a. in C(X). Let
β∗ = β − ({X} ∪ F1(X)). Let σ : I → β denote the inverse of the map
ω|β : β → I. Let φ : N(X) → β be a continuous function defined by
φ(A) = A if and only if A is the unique element in A ∩ β. Finally, let
N(X)∗ = N(X)− {{X}, F1(X)}.
Definition 3.1. Let ψ : β∗ × (0, 1]× C(X) → R be given by

ψ(A, t,B) = ω(A ∪B)− ω(B)− t(ω(B)− ω(A)) .

Lemma 3.2. (a) ψ is continuous.
(b) If A1  A2, then ψ(A1, t, B) < ψ(A2, t, B) for every (t, B) ∈ (0, 1]×

C(X).
(c) If B1  B2, then ψ(A, t,B1) > ψ(A, t,B2) for every (A, t) ∈ β∗ ×

(0, 1].

Definition 3.3. Given (A, t) ∈ β∗ × (0, 1], let

L(A, t) = {B ∈ C(X) | ψ(A, t,B) = 0} .
Lemma 3.4. (a) A ∈ L(A, t) and L(A, t) ∈ N(X) for every (A, t) ∈

β∗ × (0, 1].
(b) If 0 < t1 < t2 ≤ 1, then L(A, t1) ≥ L(A, t2).
(c) If A1  A2, then L(A1, t) � L(A2, t).
(d) The function L : β∗ × (0, 1] → N(X) is continuous.

P r o o f. (a) Let (A, t) ∈ β∗× (0, 1]. Then ψ(A, t,X) = −t(ω(X)−ω(A))
< 0. Given x ∈ X, ψ(A, t, {x}) = ω(A ∪ {x}) − ω(A) + tω(A) > 0. Then
L(A, t) ∩ ({X} ∪ F1(X)) = ∅ and L(A, t) intersects every l.o.a. in C(X).
By Lemma 3.2(c), L(A, t) is a compact antichain in C(X). Therefore ([6,
Thm. 1.2]), L(A, t) ∈ N(X).

(b) Let B ∈ L(A, t2) and let γ be a l.o.a. in C(X) such that B ∈ γ.
Let A1 ∈ γ ∩ ω−1(ω(A)). Since ψ(A, t2, A1) = ω(A ∪ A1) − ω(A1) ≥ 0
= ψ(A, t2, B), by Lemma 3.2(c), we have A1 ⊂ B. Then ψ(A, t1, B) ≥
ψ(A, t2, B) = 0. Let C ∈ γ ∩ L(A, t1). Then ψ(A, t1, C) = 0 ≤ ψ(A, t1, B).
So Lemma 3.2(c) implies that B ⊂ C. Hence L(A, t2) ≤ L(A, t1).
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(c) This follows from Lemma 3.2.
(d) Let ((An, tn))n ⊂ β∗ × (0, 1] and let (A, t) ∈ β∗ × (0, 1] be such that

An → A and tn → t. Take B ∈ L(A, t). Let γ be a l.o.a. in C(X) such that
B ∈ γ. For each n ∈ N, take Bn ∈ γ∩L(An, tn). If (Bn)n does not converge
to B, since γ is compact, there exists a subsequence (Bnk

)k of (Bn)n and
C ∈ γ such that Bnk

→ C 6= B. Then 0 = ψ(Ank
, tnk

, Bnk
) → ψ(A, t, C).

So ψ(A, t, C) = ψ(A, t,B). Lemma 3.2(c) implies that C = B. This con-
tradiction proves that Bn → B. Hence B ∈ lim inf L(An, tn). Therefore
L(A, t) ⊂ lim inf L(An, tn). Now take B ∈ lim supL(An, tn). Then there
exists a sequence n1 < n2 < . . . and elements Bk ∈ L(Ank

, tnk
) such that

Bk → B. Then 0 = ψ(Ank
, tnk

, Bk) → ψ(A, t,B). Thus B ∈ L(A, t). Hence
lim supL(An, tn) ⊂ L(A, t). Therefore L(An, tn) → L(A, t). Consequently,
L is continuous.

Lemma 3.5. Let A,B ∈ N(X)∗. Let r, s > 0 be such that r < ω(φ(A))
and s < ω(φ(B)). Suppose t1, t2 ∈ (0, 1] are such that L(σ(r), t1) ∧ A =
L(σ(s), t2) ∧ B. Then t1 = t2.

P r o o f. Since r < ω(φ(A)), we have σ(r) ⊂ φ(A) 6= σ(r). Then σ(r) ∈
(L(σ(r), t1) ∧ A) ∩ β. Similarly, σ(s) ∈ (L(σ(s), t2) ∧ B) ∩ β. Thus σ(r) =
σ(s). Since σ(r) is a proper subset of φ(A) and φ(B), we have σ(r) 6∈ A∪B.
Therefore there exists B ∈ L(σ(r), t1) ∧ A such that B 6= σ(r) and B 6∈
A ∪ B. Thus B ∈ L(σ(r), t1) ∩ L(σ(s), t2) and σ(r) is not contained in B.
Consequently, ψ(σ(r), t1, B) = ψ(σ(s), t2, B) = 0. So

ω(σ(r) ∪B)− ω(B)− t1(ω(B)− ω(σ(r)))
= ω(σ(r) ∪B)− ω(B)− t2(ω(B)− ω(σ(r))) = 0 .

Thus (t1− t2)(ω(B)−ω(σ(r))) = 0. If ω(B)−ω(σ(r)) = 0, then ω(σ(r)∪B)
= ω(B). Hence σ(r) ⊂ B. This contradiction proves that t1 = t2.

Lemma 3.6. Let (An)n be a sequence in N(X), let A ∈ N(X), let (An)n

be a sequence in β − {X}, let A ∈ β − {X} and let (tn)n be a sequence in
(0, 1]. If tn → 0, An → A and An ∧ L(An, tn) → A, then An → A.

P r o o f. Let B ∈ lim supL(An, tn). Then there exists a sequence n1 <
n2 < . . . and elements Bk ∈ L(Ank

, tnk
) such that Bk → B. Then

0 = ψ(Ank
, tnk

, Bk) = ω(Bk ∪Ank
)− ω(Bk)− tnk

(ω(Bk)− ω(Ank
))

→ ω(B ∪A)− ω(B) .

Hence A ⊂ B.
For each n ∈ N, An ∈ L(An, tn), so there exists Bn ∈ An ∧ L(An, tn)

such that Bn ⊂ An. It follows that there exists A0 ∈ A such that A0 ⊂ A.
Now we prove that A ⊂ lim inf An. Let B ∈ A−{A0}. Then there exists

a sequence (Bn)n such that Bn ∈ An ∧ L(An, tn) for each n and Bn → B.
Since A0 is not contained in B, we have B 6∈ lim supL(An, tn). Then there
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exists N ∈ N such that Bn ∈ An for every n ≥ N . Therefore B ∈ lim inf An.
Since A0 6= X, A is a nondegenerate continuum. Hence A ⊂ lim inf An.

Now we show that lim supAn ⊂ A. Let B ∈ lim supAn. Then there
exists a sequence n1 < n2 < . . . and elements Bk ∈ Ank

such that Bk → B.
For each k, choose Ck ∈ L(Ank

, tnk
) such that Bk ⊂ Ck or Ck ⊂ Bk. If Bk ⊂

Ck for infinitely many k, then Bk ∈ Ank
∧ L(Ank

, tnk
) for infinitely many

k. Thus B ∈ A. Suppose then that Ck ⊂ Bk for every k. Let C ∈ C(X) be
the limit of some subsequence of (Ck)k. Then C ∈ lim supL(An, tn). Thus
A0 ⊂ A ⊂ C ⊂ B. If B = A0, then B ∈ A. Suppose then that A0 6= B.

Choose a point x0 ∈ B − A0. Since A ∈ N(X), there exists a Whitney
map ν : 2X → I and there exists s ∈ I such that (ν | C(X))−1(s) = A (see
[11]). Choose r ∈ I such that s < r < ν(A0 ∪ {x0}). Take a sequence (xk)k

such that xk ∈ Bk for all k and xk → x0. Since ν(B) ≥ ν(A0 ∪ {x0}) > r,
there exists K ∈ N such that ν(Bk) > r for every k ≥ K.

Given k ≥ K, choose a l.o.a. γk in C(X) such that {xk}, Bk ∈ γk. Take
Dk ∈ γk ∩ ν−1(r) and Ek ∈ γk ∩ L(Ank

, tnk
). Let (Dkl

)l and (Ekl
)l be

subsequences of (Dk)k and (Ek)k respectively which converge to elements
D and E respectively. Then x0 ∈ D ∩ E and ν(D) = r. Since E ⊂
lim supL(An, tn), it follows that A0 ⊂ E. If E ⊂ D, we have ν(D) ≥
ν(A0 ∪ {x0}) > r. This contradiction proves that E is not contained in D.
Since Dkl

⊂ Ekl
or Ekl

⊂ Dkl
for every l, we have D  E. So ν(E) > r.

Thus there exists L ∈ N such that ν(Ekl
), ν(Bkl

) > r for all l ≥ L. Then
ν(Ekl

∩Bkl
) ≥ r for all l ≥ L. Hence ν(E ∩B) ≥ r. But

E ∩B ∈ lim supAn ∧ L(An, tn) = A = (ν | C(X))−1(s)

and s < r. This contradiction proves that B ∈ A.
Therefore lim supAn ⊂ A. Hence An → A.

Lemma 3.7. If A ∈ N(X)∗ and α > 0, then there exists ε ∈ (0, 1] such
that H∗(A ∧ L(φ(A), ε),A) < α.

P r o o f. Let A = φ(A). It is enough to prove that A ∧ L(A, 1/n) → A.
Let B ∈ A − {A}. Choose a l.o.a. γ in C(X) such that B ∈ γ. For each
n, let Bn ∈ γ ∩ L(A, 1/n). Since A is not contained in B, it follows that
0 < ω(B ∪A)−ω(B) = lim supψ(A, 1/n,B). Thus there exists N ∈ N such
that 0 < ψ(A, 1/n,B) for every n ≥ N . Since ψ(A, 1/n,Bn) = 0, we obtain
B ⊂ Bn for every n ≥ N . So B ∈ A ∧ L(A, 1/n) for all n ≥ N . Hence
B ∈ lim inf A ∧ L(A, 1/n). Therefore A ⊂ lim inf A ∧ L(A, 1/n).

Now take B ∈ lim supA ∧ L(A, 1/n). Then there exists a sequence
n1 < n2 < . . . and elements Bk ∈ A ∧ L(A, 1/nk) such that Bk → B. Then
each Bk = Ak ∩ Ck where Ak ∈ A, Ck ∈ L(A, 1/nk) and Ak ⊂ Ck or
Ck ⊂ Ak. If Bk = Ak for infinitely many k, then B ∈ A. Suppose then that
Bk = Ck ⊂ Ak for every k. Then 0 = ψ(A, 1/nk, Bk) → ω(A ∪ B) − ω(B).
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Thus A ⊂ B. Let (Akm)m be a subsequence of (Ak)k which converges to
an A0 ∈ A. Then A ⊂ B ⊂ A0. Hence A = B = A0, so B ∈ A. Thus
lim supA ∧ L(A, 1/n) ⊂ A.

Therefore A ∧ L(A, 1/n) → A.

Lemma 3.8. Let α : N(X) → (0,∞) be a map. Then:

(a) There exists a map ε : N(X)∗ → (0, 1] such that

H∗(A ∧ L(φ(A), ε(A)),A) < α(A)

for every A ∈ N(X)∗.
(b) There exist maps ε, h : N(X)∗ → (0,∞) such that , for each A ∈

N(X)∗, ε(A) ≤ 1, h(A) ≤ ω(φ(A))/2 and

H∗(A,A ∧ L(σ[φ(A)− h(A)], ε(A))) < α(A) .

(c) There exists a map k : N(X) → (0, 1/2] such that , for every A ∈
N(X),

H∗(A,A ∨ ω−1(k(A)) < α(A)

and

H∗(A,A ∧ ω−1(1− k(A))) < α(A) .

(d) If α0 : N(X) → (0,∞) is a map, then there exists a map δ : N(X) →
(0,∞) such that H∗(A,B) < δ(A) implies that |α(A)− α(B)| < α0(A).

P r o o f. (a) Let ε0 : N(X)∗ → (0,∞) be given by

ε0(A) = sup{t ∈ (0, 1] : H∗(A,A ∧ L(φ(A), t)) < α(A)} .

By Lemma 3.7, ε0 is well defined. Let t ∈ (0, 1] be such that H∗(A,A ∧
L(φ(A), t)) < α(A) and let (An)n be a sequence such that An → A. Then
H∗(An,An ∧L(φ(An), t)) → H∗(A,A∧L(φ(A), t)) and α(An) → α(A). It
follows that ε0 is a lower semi-continuous positive function. Then (see [4,
Ch. VIII, 4.3]) there exists a map ε : N(X)∗ → (0,∞) such that 0 < ε(A) <
ε0(A) for every A ∈ N(X)∗.

(b) By (a) there exists a map ε : N(X)∗ → (0, 1] such that

H∗(A,A ∧ L(φ(A), ε(A))) < α(A)/2

for every A ∈ N(X)∗. Let h0 : N(X)∗ → (0, 1] be given by

h0(A) = sup{t ∈ (0, ω(φ(A))/2] :
H∗(A ∧ L(σ[ω(φ(A))− t], ε(A)),A) < α(A)} .

Then h0 is a positive lower semi-continuous function, so there exists a map
h : N(X)∗ → (0, 1] such that 0 < h(A) < h0(A) for every A ∈ N(X)∗.

The proof of (c) is similar. Claim (d) was proved in [8, Lemma 1.13].
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P r o o f o f t h e M a i n T h e o r e m. We will use Toruńczyk’s charac-
terization of the Hilbert space l2 ([10, p. 248]): Let Y be a complete sepa-
rable AR space. Then Y is homeomorphic to l2 if and only if given a map
f : N × Q → Y (Q denotes the Hilbert cube) and a map α : Y → (0,∞),
there is a map g : N × Q → Y with {g({n} × Q)}n∈N discrete in Y and
dY (f(z), g(z)) < α(f(z)) for every z ∈ N×Q.

Take maps f : N × Q → N(X) and α : N(X) → (0,∞). Lemma 3.8
implies that:

(a) There exists a map δ : N(X) → (0,∞) such that H∗(A,B) < δ(A)
implies that |α(A)− α(B)| < α(A)/2.

(b) There exists a map k : N(X) → (0, 1/2] such that H∗(A,A ∨
ω−1(k(A))) and

H∗(A, A ∧ ω−1(1− k(A))) < α(A)/4, δ(A)

for every A ∈ N(X).
(c) There exist maps ε, h : N(X)∗ → (0,∞) such that, for each A ∈

N(X)∗, h(A) ≤ ω(φ(A))/2, ε(A) ≤ 1 and

H∗(A ∧ L(σ[ω(φ(A))− h(A)], ε(A)),A) < α(A)/8 .

Define G1, G2 : N(X) → N(X) by G1(A) = A∨ω−1(k(A)) and G2(A) =
A ∧ ω−1(1− k(A)). Then G1, G2 are continuous and G2(G1(A)) ∈ N(X)∗

for each A ∈ N(X). Given A ∈ N(X) with |α(A) − α(Gi(A))| < α(A)/2,
then α(Gi(A)) < (3/2)α(A) for i = 1, 2. Then α(G2(G1(A))) < (9/4)α(A).
Furthermore,

H∗(A, G2(G1(A))) ≤ H∗(A, G1(A)) +H∗(G1(A), G2(G1(A)))
< α(A)/4 + α(G1(A))/4 < (5/8)α(A) .

Define f0 = G2 ◦ G1 ◦ f . Let t1 = min(ε(f0({1} × Q)) ∪ {1/2}) and,
for n ≥ 2, let tn = min (ε(f0({n} × Q)) ∪ {tn−1/2}). Then tn → 0 and
0 < tn+1 < tn/2 < tn < 1 for every n.

For each n ∈ N, define gn : N(X)∗ → N(X) by gn(A) = A∧L(σ[ω(φ(A))
−h(A)], tn), and define g : N×Q→ N(X) by g(n, x) = gn(f0(n, x)). Then
g is continuous.

Let y = (n, x) ∈ N×Q. Since tn ≤ ε(f0(y)), we have

f0(y) ∧ L(σ[φ(f0(y))− h(f0(y))], ε(f0(y)))
≤ f0(y) ∧ L(σ[φ(f0(y))− h(f0(y))], tn) ≤ f0(y) .

Then H∗(f0(y), gn(f0(y))) < α(f0(y))/8 < (9/32)α(f(y)). Thus

H∗(f(y), g(y)) ≤ H∗(f(y), f0(y)) +H∗(f0(y), g(y))
< (5/8)α(f(y)) + (9/32)α(f(y)) < α(f(y)) .

Therefore H∗(f(y), g(y)) < α(f(y)).
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Notice that Lemma 3.5 implies that the sets g({1} ×Q), g({2} ×Q), . . .
are pairwise disjoint.

Now we prove that F1(X), {X} 6∈ ClN(X)G2(G1(N(X))). Suppose that
there exists a sequence (Cn)n in N(X) such that G2(G1(Cn)) → F1(X).
Then

(Cn ∨ ω−1(k(Cn)) ∧ ω−1(1− k(Cn ∨ ω−1(k(Cn)))) → F1(X) .

Since ω−1(1 − k(Cn ∨ ω−1(k(Cn)))) ≥ ω−1(1/2) for each n, we then have
Cn ∨ ω−1(k(Cn)) → F1(X). Thus Cn and ω−1(k(Cn)) → F1(X). Hence
F1(X) = ω−1(k(F1(X))). Thus k(F1(X)) = 0. This contradiction proves
that F1(X) 6∈ ClN(X)G2(G1(N(X))). Now suppose that there exists a se-
quence (Cn)n in N(X) such that G2(G1(Cn))→{X}. Then Cn∨ω−1(k(Cn))
→ {X} and ω−1(1− k(Cn ∨ ω−1(k(Cn)))) → {X}, so

{X} = ω−1(1− k({X} ∨ ω−1(k({X})))) = ω−1(1− k({X})) .
It follows that k({X}) = 0. This contradiction proves that {X} 6∈
ClN(X)G2(G1(N(X))).

Finally, we prove that the family {g({n} ×Q)}n∈N is discrete in N(X).
Suppose that this is not true. Then there exists A ∈ N(X), a sequence
n1 < n2 < . . . and elements Bk ∈ g({nk}×Q) such that Bk → A. For each k,
put Bk = g(nk, xk), letAk = f0(nk, xk) and Ak = σ[ω(φ(Ak))−h(Ak)] ∈ β∗.
Then Bk = Ak ∧L(Ak, tnk

). Suppose, by taking a subsequence if necessary,
that Ak → A for some A ∈ β.

We will show that A 6= X. Suppose A = X. Since Ak ⊂ σ(ω(φ(Ak)))
= φ(Ak), we have Ak ∈ Bk. Now, Bk → A implies A = {X}. Thus
Ak → {X} and L(Ak, tnk

) → {X}. This is a contradiction since {X} 6∈
ClN(X)G2(G1(N(X))). Therefore A ∈ β − {X}.

Applying Lemma 3.6 we see that Ak → A. Since Ak ∈ G2(G1(N(X))),
we have A ∈ N(X)∗. Given k, Ak = σ(ω(φ(Ak))−h(Ak)) ⊂ σ(ω(φ(Ak))) =
φ(Ak) ∈ Ak. Then Ak is an element of L(Ak, tnk

) contained in an element
of Ak. Thus Ak ∈ Ak ∧ L(Ak, tnk

) = Bk. This implies that A ∈ A.
Thus A 6∈ F1(X) ∪ {X}. Since Ak → σ(ω(φ(A)) − h(A)), we get A =
σ(ω(φ(A))−h(A)). But A ∈ A∩β implies that A = φ(A). Thus h(A) = 0.
This contradiction proves that the family {g({n} × Q)}n∈N is discrete and
ends the proof of the theorem.
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[10] H. Toru ńczyk, Characterizing Hilbert space topology , Fund. Math. 111 (1981),

247–262.
[11] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465–469.
[12] S. Wi l lard, General Topology , Addison-Wesley, 1970.

INSTITUTO DE MATEMÁTICAS
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MÉXICO, D.F., MÉXICO
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