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1. Introduction. Recently there has been a considerable interest in
the qualitative behavior of the solutions of difference equations of the form

(1.1) Yntl —Yn + Pulnr =0, n=0,1,2,...,
where {p,} is a sequence of nonnegative real numbers and k is a positive
integer (see for example the work in [1]-[4] and the references cited therein).

In this paper we are concerned with the oscillation of the solutions of
the delay difference equations of the form

K
(12) Yn+1 — Yn + Zpinynfmi = 0)
i=1
where m;, ¢ = 1,..., K, are positive integers, and p;,, 1 = 1,..., K, n =

1,2,..., are real numbers.

As usual a solution {y, } of (1.2) is called oscillatory if the terms y,, of the
sequence are neither eventually positive nor eventually negative. Otherwise
the solution is called nonoscillatory.

In Section 2 we establish some lemmas. The main results are given in
Section 3. We emphasize that the positivity of {p;,} is not required.

2. Some lemmas. The following lemmas will be used to derive sufficient
conditions for the oscillation of the solutions of (1.2).

LEMMA 2.1. Let my > ... > mx > 0 and suppose there exists a suffi-
ciently large integer N such that

p1n207p1n+p2n2057p1n+pKnZO fOT’TLZN.

Assume further that for any given positive integer N1 there exists an integer
Ny > Ny such that p,, >0, i =1,..., K, forn € [N, No+my]|. Let {y,} be
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a solution of (1.2) such that y, is eventually positive. Then y,, is eventually
nonincreasing and

K K
(21) sznyn—m, Z yn—mK szn
i=1 i=1

holds eventually.

Proof. Let y,—pm, > 0 for n > N. Then there exists No > N such that
Pin >0, 1=1,..., K, n € [Ny, No +mq]. This implies that

K
yn—i—l_yn:_zpinyn—mi <0 for n € [N21N2+m1}-
=1

We shall show that v, is nonincreasing for n € [Ny + mq, N3 + mq + mxg]|.
In fact,
n—miE[NQ,Nz—i—ml] fornE[N2+m1,N2+m1—|—mK].

SO Yn—my; = Yn—msy = -+ > Yn—my- Lherefore

K
(2.2) Ynd1 = Yn = — D PinYn—m,
i=1
K
S - (pln + p2n)yn—m2 - z:pmyn—rnz
=3

K
S _<Zpin)ynfmk S Oa
=1

for n € [No + my, N2 + my + mg]. Repeating the above procedure we can
show that y,, is nonincreasing for n € [No+my +Img, No+mi+(I+1)mg],
for | = 0,1,2,... That is, y,, is nonincreasing for n > Ny. From (2.2) it
follows that (2.1) holds eventually. This completes the proof.

IN

LEMMA 2.2. Suppose that the assumptions of Lemma 2.1 hold. Further,
assume that 377~ Zfil pij = 00. Then every nonoscillatory solution {yy }
of (1.2) satisfies
(2.3) lim y, =0.

Proof. Let {y,} be an eventually positive solution of (1.2). By
Lemma 2.1, y, is eventually nonincreasing and hence lim,, ooy, =1 >0

exists. If [ > 0, by summing (1.2) from N to n we have

n K
(2.4) 0="Yny1 —yn + Z sz‘jyjfmi
j=N i=1
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n K
2 Yn+1 — YN + Z Yj—mx Zpij
j=N i=1

n K
> Ynp1 — YN + Ynom D D Pij -
j=N i=1

Letting n — oo we get a contradiction. Therefore [ = 0. Thus the proof is
complete.

LEMMA 2.3. In addition to the assumptions of Lemma 2.1, suppose that
there exists a positive number d such that

n K
(2.5) Z Zpij >d>0 for all large n.

i=n—mpg j=1

Let {yn} be an eventually positive solution of (1.2). Then Yn—my/Yn 1S
eventually bounded above.

Proof. From (2.5), for any large integer N there exists an integer n
such that N € [n — mg,n] and

N K
(2.6) Z Zpij Z

j=n—m

n

Z i{:pij >

j:N =1

|
N

Summing (1.2) form n — mx to N we have

N K
YN41 — Yn—mg T Z Zpijyj—mi =0.
j=n—mg =1
Hence
N K
27 Uneme ZUN DD PigYiemi Z YNt YN 2.

j=n—mpg i=1

Similarly, summing (1.2) from N to n we have

n K
Yn+1 — YN + Z Zpijyjfmi =0.

j=N =1
Hence
(28) yﬁ Z Yn+1 + ynmed/Q .
Combining (2.7) and (2.8) we have
(2.9) YN - my /YN < (2/d).

Since N is arbitrary the proof is complete.
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LEMMA 2.4. Under the assumptions of Lemma 2.3, if {y,} is an eventu-
ally positive solution of (1.2) then eventually

(2.10) Ynomie < B3 o(aj2)? + /1—4(a2)9,
Yn+1 d

where 0 < d < 1.

Proof. From (2.9), for all large n we have y,+1 > (d/2)?y,. In view
of (2.8),

d
yﬁ+1 Z (d/2)2yﬁ 2 (d/2)2 |:yn+1 — Yn—mg 2:|

d
> (@12 + @2 [+ -3
or

szJrl[l - (d/z)g] 2 YN-my (d/2)4'
Hence
N 1—(d/2)3
o 120
YN+1 (d/2)
From (2.8) and (2.7) it follows that

d\? d d\>(d 1
YN41 = b Ynt+1 + Yn—mic > Yn—mx B 2 + M
> = _|_ — g gl ’ g _|_ l
Z\NYN+1 TYN—mx B 5 51 )

AW
y]V—mK _ 2 2 ll

= =l <ly.

YN d\*(d 1
2 2 N

By induction we can show that

Hence

(2.11) INm g =12,
YN+1

)

and 0 <[, <l,_1 <...<ly, where
d\’/d 1
1— (= Z
() Gran)
AN T
2 2 1,1
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Clearly lim,, o I, = [ exists and

- )G
(5) (1)

From (2.12) we get

(2.13) I =

Combining (2.11) and (2.13) and noting that N is arbitrary we get (2.10).
This completes the proof of the lemma.

3. Main results

THEOREM 3.1. In addition to the hypotheses of Lemma 2.1 suppose that

(31) hnnlgf miK Z me mg + 1)mK+1 ’

j=n—mg i=1

Then every solution of (1.2) is oscillatory.

Proof. If not, let {y,} be an eventually positive solution of (1.2). Then
by Lemma 2.1,
K K

(32) Yn+1 — Yn S Zpinyn—mk S - Zpinyn .
i=1 =1

Hence, eventually

K
Yn+1
1-— Al Z me
Yn i=1

and so
1 n—1 K 1 n—1 Yi
3.3) — < — 1—”1)
6 fp ¥ Ymsno ¥ (-5
j=n—mpg i=1 iI=n—mg
1 n—1 ) n—1 ] 1/mg
-1 Z y1+1§1_< H yz+1>

MK I=n—mpg Yi I=n—mpg Yi

:1_< Yn >l/mK.
Yn—mg
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It follows from (3.1) that there exist constants « and § such that for n
sufficiently large,

A m;?K 1 n—1 K
3. = < — i -
(3.4) (mp + 1)mx+1 a<f< my Z Zpﬁ

j=n—mpg i=1

Combining (3.3) and (3.4) one gets

y l/mK
(3.5) < i ) <1-—p4 for all large n.
yn—mx
In particular, 5 € (0,1). From the fact that
o%?é[(l B)BH ] (e + 1) /me
it follows that (3.5) implies
(3.6) gyn < Yn—my for all large n.
Substituting (3.6) into (3.2) we have
K
Yn+1 — Yn S - Zpinyn
i=1
Hence
Y B+
1 n+1 > 2 )
Yn = a ;pzn7
and so
—1 K l/mK
S Y S
— pij < 1— .
@ Mg j=n—mg i=1 Yn—mx
Thus
( Yn )1/mK <1— 672
y’flme o « ’

and eventually (3/a)?yn < Yn—_m,- By induction, for every m = 1,2,...
there exists an integer n,, such that

ﬂ m
(37) <Ck> Yn S Yn—mgk » n Z Nm

which implies that ¥, /yn is eventually unbounded. But this, in view of
Lemma 2.3, is impossible. The proof is now complete.

If (3.1) is not satisfied then we have the following result:
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THEOREM 3.2. Assume that the hypotheses of Lemma 2.1 are satisfied.
Further, suppose that

' n K d4 d3 d3 —1
(3.8) hTan_}solip'Z Zpij>1_8<l_4+ 1—2> ,

j=n—mg 1=1

where d is defined by (2.5). Then every solution of (1.2) is oscillatory.

Proof. If not, let {y,} be an eventually positive solution of (1.2).
From (1.2) we have

K
(39) Yn+1 — Yn < —Yn—mg me .
i=1
Summing (3.9) from n — mg to n we have
n K
(3.10) Yntl = Yn—mpx S — Z Yj—mx sz’j
j=n—mg =1
n K
S — Yn—mx Z sz] .
j=n—mg 1=1
Using Lemma 2.4 we have
d* 43 a3\

Now we combine (3.10) and (3.11) to get

n K -1
d* d3 d3

j=n—mpg i=1

This contradicts (3.8) and hence the proof is complete.

Remarks. Theorem 3.1 improves Theorem 4.1 and Theorem 3.1 of [2]
and Theorem 4.3 of [1]. It is easy to check that Theorem 1 of [3] and Theo-
rem 3 of [4] are special cases of Theorem 3.1. In the linear case Theorem 3.2
improves Theorem 2.5 of [1]. Erbe and Zhang take p;,, > 0,i=1,..., K,
n = N,N + 1,... We have removed this restriction by the technique of
Lemma 2.1.
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