VOL. LXV 1993 FASC. 1

OSCILLATION OF DIFFERENCE EQUATIONS

BY

B. S. LALLI (SASKATOON, SASKATCHEWAN)

AND B. G. ZHANG (QINGDAO)

1. Introduction. Recently there has been a considerable interest in the qualitative behavior of the solutions of difference equations of the form

$$(1.1) y_{n+1} - y_n + p_n y_{n-k} = 0, n = 0, 1, 2, \dots,$$

where $\{p_n\}$ is a sequence of nonnegative real numbers and k is a positive integer (see for example the work in [1]–[4] and the references cited therein).

In this paper we are concerned with the oscillation of the solutions of the delay difference equations of the form

(1.2)
$$y_{n+1} - y_n + \sum_{i=1}^{K} p_{in} y_{n-m_i} = 0,$$

where m_i , i = 1, ..., K, are positive integers, and p_{in} , i = 1, ..., K, n = 1, 2, ..., are real numbers.

As usual a solution $\{y_n\}$ of (1.2) is called *oscillatory* if the terms y_n of the sequence are neither eventually positive nor eventually negative. Otherwise the solution is called *nonoscillatory*.

In Section 2 we establish some lemmas. The main results are given in Section 3. We emphasize that the positivity of $\{p_{in}\}$ is not required.

2. Some lemmas. The following lemmas will be used to derive sufficient conditions for the oscillation of the solutions of (1.2).

LEMMA 2.1. Let $m_1 > ... > m_K > 0$ and suppose there exists a sufficiently large integer N such that

$$p_{1n} \ge 0$$
, $p_{1n} + p_{2n} \ge 0$,..., $p_{1n} + ... p_{Kn} \ge 0$ for $n \ge N$.

Assume further that for any given positive integer N_1 there exists an integer $N_2 \ge N_1$ such that $p_{in} \ge 0$, i = 1, ..., K, for $n \in [N_2, N_2 + m_1]$. Let $\{y_n\}$ be

Research of the second author was supported partially by NNSF of China.

Research of the first author was supported by NSERC Grant A5293 and a grant from the President's research fund.

a solution of (1.2) such that y_n is eventually positive. Then y_n is eventually nonincreasing and

(2.1)
$$\sum_{i=1}^{K} p_{in} y_{n-m_i} \ge y_{n-m_K} \sum_{i=1}^{K} p_{in}$$

holds eventually.

Proof. Let $y_{n-m_1} > 0$ for $n \ge N$. Then there exists $N_2 \ge N$ such that $p_{in} \ge 0$, i = 1, ..., K, $n \in [N_2, N_2 + m_1]$. This implies that

$$y_{n+1} - y_n = -\sum_{i=1}^{K} p_{in} y_{n-m_i} \le 0$$
 for $n \in [N_2, N_2 + m_1]$.

We shall show that y_n is nonincreasing for $n \in [N_2 + m_1, N_2 + m_1 + m_K]$. In fact,

$$n - m_i \in [N_2, N_2 + m_1]$$
 for $n \in [N_2 + m_1, N_2 + m_1 + m_K]$.

So $y_{n-m_1} \ge y_{n-m_2} \ge \ldots \ge y_{n-m_K}$. Therefore

(2.2)
$$y_{n+1} - y_n = -\sum_{i=1}^K p_{in} y_{n-m_i}$$

$$\leq -(p_{1n} + p_{2n}) y_{n-m_2} - \sum_{i=3}^K p_{in} y_{n-m_i}$$

$$\leq \dots \leq -\left(\sum_{i=1}^K p_{in}\right) y_{n-m_K} \leq 0,$$

for $n \in [N_2 + m_1, N_2 + m_1 + m_K]$. Repeating the above procedure we can show that y_n is nonincreasing for $n \in [N_2 + m_1 + lm_K, N_2 + m_1 + (l+1)m_K]$, for l = 0, 1, 2, ... That is, y_n is nonincreasing for $n \ge N_2$. From (2.2) it follows that (2.1) holds eventually. This completes the proof.

LEMMA 2.2. Suppose that the assumptions of Lemma 2.1 hold. Further, assume that $\sum_{j=N}^{\infty} \sum_{i=1}^{K} p_{ij} = \infty$. Then every nonoscillatory solution $\{y_n\}$ of (1.2) satisfies

$$\lim_{n \to \infty} y_n = 0.$$

Proof. Let $\{y_n\}$ be an eventually positive solution of (1.2). By Lemma 2.1, y_n is eventually nonincreasing and hence $\lim_{n\to\infty}y_n=l\geq 0$ exists. If l>0, by summing (1.2) from N to n we have

(2.4)
$$0 = y_{n+1} - y_N + \sum_{j=N}^{n} \sum_{i=1}^{K} p_{ij} y_{j-m_i}$$

$$\geq y_{n+1} - y_N + \sum_{j=N}^n y_{j-m_K} \sum_{i=1}^K p_{ij}$$

$$\geq y_{n+1} - y_N + y_{n-m_K} \sum_{j=N}^n \sum_{i=1}^K p_{ij}.$$

Letting $n \to \infty$ we get a contradiction. Therefore l = 0. Thus the proof is complete.

Lemma 2.3. In addition to the assumptions of Lemma 2.1, suppose that there exists a positive number d such that

(2.5)
$$\sum_{i=n-m}^{n} \sum_{k=1}^{K} p_{ij} \ge d > 0 \quad \text{for all large } n.$$

Let $\{y_n\}$ be an eventually positive solution of (1.2). Then y_{n-m_K}/y_n is eventually bounded above.

Proof. From (2.5), for any large integer \overline{N} there exists an integer n such that $\overline{N} \in [n - m_K, n]$ and

(2.6)
$$\sum_{j=n-m_K}^{\overline{N}} \sum_{i=1}^{K} p_{ij} \ge \frac{d}{2}, \quad \sum_{j=\overline{N}}^{n} \sum_{i=1}^{K} p_{ij} \ge \frac{d}{2}.$$

Summing (1.2) form $n - m_K$ to \overline{N} we have

$$y_{\overline{N}+1} - y_{n-m_K} + \sum_{j=n-m_K}^{\overline{N}} \sum_{i=1}^K p_{ij} y_{j-m_i} = 0.$$

Hence

$$(2.7) y_{n-m_K} \ge y_{\overline{N}+1} + \sum_{j=n-m_K}^{\overline{N}} \sum_{i=1}^K p_{ij} y_{j-m_i} \ge y_{\overline{N}+1} + y_{\overline{N}-m_K} d/2.$$

Similarly, summing (1.2) from \overline{N} to n we have

$$y_{n+1} - y_{\overline{N}} + \sum_{j=\overline{N}}^{n} \sum_{i=1}^{K} p_{ij} y_{j-m_i} = 0.$$

Hence

$$(2.8) y_{\overline{N}} \ge y_{n+1} + y_{n-m_K} d/2.$$

Combining (2.7) and (2.8) we have

$$(2.9) y_{\overline{N}-m_K}/y_{\overline{N}} \le (2/d)^2.$$

Since \overline{N} is arbitrary the proof is complete.

Lemma 2.4. Under the assumptions of Lemma 2.3, if $\{y_n\}$ is an eventually positive solution of (1.2) then eventually

$$(2.10) \frac{y_{n-m_K}}{y_{n+1}} \le \frac{8}{d^4} \left[1 - 2(d/2)^3 + \sqrt{1 - 4(d/2)^3}\right],$$

where 0 < d < 1.

Proof. From (2.9), for all large n we have $y_{n+1} \ge (d/2)^2 y_n$. In view of (2.8),

$$y_{\overline{N}+1} \ge (d/2)^2 y_{\overline{N}} \ge (d/2)^2 \left[y_{n+1} - y_{n-m_K} \frac{d}{2} \right]$$
$$\ge (d/2)^2 y_{n+1} + (d/2)^3 \left[y_{\overline{N}+1} + y_{\overline{N}-m_K} \frac{d}{2} \right]$$

or

$$y_{\overline{N}+1}[1-(d/2)^3] \ge y_{\overline{N}-m_K}(d/2)^4$$
.

Hence

$$\frac{y_{\overline{N}-m_K}}{y_{\overline{N}+1}} \le \frac{1 - (d/2)^3}{(d/2)^4} = l_1.$$

From (2.8) and (2.7) it follows that

$$y_{\overline{N}+1} \ge \left(\frac{d}{2}\right)^2 \left[y_{n+1} + y_{n-m_K} \frac{d}{2}\right] \ge y_{n-m_K} \left(\frac{d}{2}\right)^2 \left(\frac{d}{2} + \frac{1}{l_1}\right)$$

$$\ge \left(y_{\overline{N}+1} + y_{\overline{N}-m_K} \frac{d}{2}\right) \left(\frac{d}{2}\right)^2 \left(\frac{d}{2} + \frac{1}{l_1}\right).$$

Hence

$$\frac{y_{\overline{N}-m_K}}{y_{\overline{N}+1}} = \frac{1 - \left(\frac{d}{2}\right)^2 \left(\frac{d}{2} + \frac{1}{l_1}\right)}{\left(\frac{d}{2}\right)^3 \left(\frac{d}{2} + \frac{1}{l_1}\right)} = l_2 < l_1.$$

By induction we can show that

(2.11)
$$\frac{y_{\overline{N}-m_K}}{y_{\overline{N}+1}} \le l_n , \quad n = 1, 2, \dots,$$

and $0 < l_n < l_{n-1} < \ldots < l_1$, where

$$l_n = \frac{1 - \left(\frac{d}{2}\right)^2 \left(\frac{d}{2} + \frac{1}{l_{n-1}}\right)}{\left(\frac{d}{2}\right)^3 \left(\frac{d}{2} + \frac{1}{l_{n-1}}\right)}.$$

Clearly $\lim_{n\to\infty} l_n = l$ exists and

(2.12)
$$l = \frac{1 - \left(\frac{d}{2}\right)^2 \left(\frac{d}{2} + \frac{1}{l}\right)}{\left(\frac{d}{2}\right)^3 \left(\frac{d}{2} + \frac{1}{l}\right)} .$$

From (2.12) we get

(2.13)
$$l = \frac{1 - 2\left(\frac{d}{2}\right)^3 \pm \sqrt{1 - 4\left(\frac{d}{2}\right)^3}}{2\left(\frac{d}{2}\right)^4}.$$

Combining (2.11) and (2.13) and noting that \overline{N} is arbitrary we get (2.10). This completes the proof of the lemma.

3. Main results

Theorem 3.1. In addition to the hypotheses of Lemma 2.1 suppose that

(3.1)
$$\liminf_{n \to \infty} \frac{1}{m_K} \sum_{j=n-m_K}^{n-1} \sum_{i=1}^K p_{ij} > \frac{m_K^{m_K}}{(m_K+1)^{m_K+1}}.$$

Then every solution of (1.2) is oscillatory.

Proof. If not, let $\{y_n\}$ be an eventually positive solution of (1.2). Then by Lemma 2.1,

(3.2)
$$y_{n+1} - y_n \le \sum_{i=1}^K p_{in} y_{n-m_K} \le -\sum_{i=1}^K p_{in} y_n.$$

Hence, eventually

$$1 - \frac{y_{n+1}}{y_n} \ge \sum_{i=1}^{K} p_{in}$$

and so

$$(3.3) \quad \frac{1}{m_K} \sum_{j=n-m_K}^{n-1} \sum_{i=1}^K p_{ij} \le \frac{1}{m_K} \sum_{i=n-m_K}^{n-1} \left(1 - \frac{y_{i+1}}{y_i}\right)$$

$$= 1 - \frac{1}{m_K} \sum_{i=n-m_K}^{n-1} \frac{y_{i+1}}{y_i} \le 1 - \left(\prod_{i=n-m_K}^{n-1} \frac{y_{i+1}}{y_i}\right)^{1/m_K}$$

$$= 1 - \left(\frac{y_n}{y_{n-m_K}}\right)^{1/m_K}.$$

It follows from (3.1) that there exist constants α and β such that for n sufficiently large,

(3.4)
$$\frac{m_K^{m_K}}{(m_K+1)^{m_K+1}} = \alpha < \beta \le \frac{1}{m_K} \sum_{j=n-m_K}^{n-1} \sum_{i=1}^K p_{ij}.$$

Combining (3.3) and (3.4) one gets

(3.5)
$$\left(\frac{y_n}{y_{n-m_K}}\right)^{1/m_K} \le 1 - \beta \quad \text{for all large } n.$$

In particular, $\beta \in (0,1)$. From the fact that

$$\max_{0 \le \beta \le 1} [(1 - \beta)\beta^{1/m_K}] = \frac{m_K}{(m_K + 1)^{1 + 1/m_K}} = \alpha^{1/m_K}$$

it follows that (3.5) implies

(3.6)
$$\frac{\beta}{\alpha} y_n \le y_{n-m_K} \quad \text{ for all large } n.$$

Substituting (3.6) into (3.2) we have

$$y_{n+1} - y_n \le -\frac{\beta}{\alpha} \sum_{i=1}^K p_{in} y_n.$$

Hence

$$1 - \frac{y_{n+1}}{y_n} \ge \frac{\beta}{\alpha} \sum_{i=1}^K p_{in} \,,$$

and so

$$\frac{\beta}{\alpha} \cdot \frac{1}{m_K} \sum_{j=n-m_K}^{n-1} \sum_{i=1}^K p_{ij} \le 1 - \left(\frac{y_n}{y_{n-m_K}}\right)^{1/m_K}.$$

Thus

$$\left(\frac{y_n}{y_{n-m_K}}\right)^{1/m_K} \le 1 - \frac{\beta^2}{\alpha} \,,$$

and eventually $(\beta/\alpha)^2 y_n \leq y_{n-m_K}$. By induction, for every $m=1,2,\ldots$ there exists an integer n_m such that

(3.7)
$$\left(\frac{\beta}{\alpha}\right)^m y_n \le y_{n-m_K}, \quad n \ge n_m,$$

which implies that y_{n-m_K}/y_n is eventually unbounded. But this, in view of Lemma 2.3, is impossible. The proof is now complete.

If (3.1) is not satisfied then we have the following result:

Theorem 3.2. Assume that the hypotheses of Lemma 2.1 are satisfied. Further, suppose that

(3.8)
$$\limsup_{n \to \infty} \sum_{j=n-m_K}^{n} \sum_{i=1}^{K} p_{ij} > 1 - \frac{d^4}{8} \left(1 - \frac{d^3}{4} + \sqrt{1 - \frac{d^3}{2}} \right)^{-1},$$

where d is defined by (2.5). Then every solution of (1.2) is oscillatory.

Proof. If not, let $\{y_n\}$ be an eventually positive solution of (1.2). From (1.2) we have

(3.9)
$$y_{n+1} - y_n \le -y_{n-m_K} \sum_{i=1}^K p_{in}.$$

Summing (3.9) from $n - m_K$ to n we have

(3.10)
$$y_{n+1} - y_{n-m_K} \le -\sum_{j=n-m_K}^n y_{j-m_K} \sum_{i=1}^K p_{ij}$$
$$\le -y_{n-m_K} \sum_{j=n-m_K}^n \sum_{i=1}^K p_{ij}.$$

Using Lemma 2.4 we have

(3.11)
$$y_{n+1} \ge \frac{d^4}{8} \left(1 - \frac{d^3}{4} + \sqrt{1 - \frac{d^3}{2}} \right)^{-1} y_{n-m_K}.$$

Now we combine (3.10) and (3.11) to get

$$y_{n-m_K} \left(\sum_{j=n-m_K}^{n} \sum_{i=1}^{K} p_{ij} - 1 + \frac{d^4}{8} \left(1 - \frac{d^3}{4} + \sqrt{1 - \frac{d^3}{2}} \right)^{-1} \right) \le 0.$$

This contradicts (3.8) and hence the proof is complete.

Remarks. Theorem 3.1 improves Theorem 4.1 and Theorem 3.1 of [2] and Theorem 4.3 of [1]. It is easy to check that Theorem 1 of [3] and Theorem 3 of [4] are special cases of Theorem 3.1. In the linear case Theorem 3.2 improves Theorem 2.5 of [1]. Erbe and Zhang take $p_{in} \geq 0, i = 1, \ldots, K, n = N, N+1, \ldots$ We have removed this restriction by the technique of Lemma 2.1.

Acknowledgments. The authors are very grateful to the referee for pointing out an error.

REFERENCES

- [1] L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2 (1989), 300–309.
- [2] G. Ladas, Explicit conditions for the oscillation of difference equations, J. Math. Anal. Appl. 153 (1990), 276–287.
- [3] G. Ladas, C. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation 2 (1989), 101–111.
- [4] C. G. Philos, On oscillations of some difference equations, Funkcial. Ekvac. 34 (1991), 157–172.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF SASKATCHEWAN
SASKATOON, CANADA S7N 0W0

Reçu par la Rédaction le 26.11.1991; en version modifiée le 20.6.1992