VOL. LXV 1993 FASC. 1

SOME PROPERTIES OF THE PISIER-XU INTERPOLATION SPACES

BY

A. SERSOURI (RABAT)

For a closed subset I of the interval [0,1] we let $A(I) = [v_1(I), C(I)]_{\frac{1}{2}2}$. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals $\eta < \omega_1$, the bases structures of $A(\eta), A^*(\eta)$, and $A_*(\eta)$ [the isometric predual of $A(\eta)$].

All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces $[v_1(I), C(I)]_{\theta q}$.

- **0. Preliminaries.** In this section we will recall the definitions of the concepts we are going to work with, and state some of the needed properties. In what follows ω_0 denotes the first infinite ordinal, and ω_1 the first uncountable ordinal.
- **0.1.** Real interpolation. We will give the definitions only in the case that interests us.

Let X_0 and X_1 be two Banach spaces, and let $j: X_0 \to X_1$ be an injective continuous linear operator. By abuse of notation we will identify X_0 with $j(X_0)$, hence considering X_0 as a (not necessarily closed) subspace of X_1 .

For each t > 0 we define an equivalent norm K_t on X_1 by

$$K_t(x; X_0, X_1) = K_t(x) = \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1} : x = x_0 + x_1\}$$

and we define a new Banach space $[X_0, X_1]_{\frac{1}{2}2}$ by

$$[X_0, X_1]_{\frac{1}{2}2} = \left\{ x \in X_1 : ||x||_{\frac{1}{2}2} = \left(\int_0^\infty (K_t(x)/t)^2 dt \right)^{1/2} < \infty \right\}.$$

It is known that X_0 is $\|\cdot\|_{\frac{1}{2}2}$ -dense in $[X_0,X_1]_{\frac{1}{2}2}$, and that for some constant $k<\infty$, $\|\cdot\|_{\frac{1}{2}2}\leq k\|\cdot\|_{X_0}$. Moreover, if X_0 is $\|\cdot\|_{X_1}$ -dense in X_1 , then $[X_0,X_1]_{\frac{1}{2}2}^*$ may be canonically identified with $[X_0^*,X_1^*]_{\frac{1}{2}2}$ (the latter interpolation space being defined via the map $j^*:X_1^*\to X_0^*$ which is injective since j has dense range).

If (X_0,X_1) and (Y_0,Y_1) are two interpolation couples, and if $T:X_1\to Y_1$ is a linear map such that $T(X_0)\subset Y_0$ and $\|T\|=\max(\|T\|_{X_0\to Y_0},\|T\|_{X_1\to Y_1})<\infty$, then T defines a bounded operator from $[X_0,X_1]_{\frac{1}{2}2}$ into $[Y_0,Y_1]_{\frac{1}{2}2}$ with norm at most $\|T\|$.

0.2. The Cantor index. Let K be a topological space. We define its Cantor derived set K' by

$$K' = \{x \in K : x \text{ is an accumulation point of } K\}$$

and its Cantor index o(K) by

$$o(K) = \sup\{\alpha < \omega_1 : K^{(\alpha)} \neq \emptyset\}$$

where the sets $K^{(\alpha)}$ are defined inductively by

$$\begin{split} K^{(0)} &= K\,,\\ K^{(\alpha+1)} &= (K^{(\alpha)})'\,,\\ K^{(\alpha)} &= \bigcap_{\beta < \alpha} K^{(\beta)} \quad \text{if α is a limit ordinal.} \end{split}$$

It is well known that for each ordinal $\alpha < \omega_1$ one has $o([0, \omega_0^{\alpha}]) = \alpha$, where $[0, \eta]$ denotes the set $\{\varrho \text{ ordinal} : 0 \leq \varrho \leq \eta\}$ equipped with the order topology.

0.3. The Szlenk index. Let X be a Banach space, C a bounded subset of X, and K a weak* compact subset of X^* . For $\varepsilon > 0$ we define a weak* compact set by

$$\sigma_{C,\varepsilon}(K) = \left\{ x^* \in K : \exists (x_n)_{n \ge 1} \subset C, \exists (x_n^*)_{n \ge 1} \subset K \text{ with } \right.$$
$$0 = \underset{n \to \infty}{w\text{-}\lim} \, x_n, \ x^* = \underset{n \to \infty}{w^*\text{-}\lim} \, x_n^*, \text{ and } \inf_n |x_n^*(x_n)| \ge \varepsilon \right\}.$$

The Szlenk index Sz(X) of X is given by

$$\operatorname{Sz}(X) = \sup_{\varepsilon > 0} [\sup \{ \alpha < \omega_1 : S_{\alpha}(\varepsilon) \neq \emptyset \}]$$

where the sets $S_{\alpha}(\varepsilon)$ are defined inductively by

$$\begin{split} S_0(\varepsilon) &= \mathrm{Ball}(X^*), \\ S_{\alpha+1}(\varepsilon) &= \sigma_{\mathrm{Ball}(X),\varepsilon}(S_\alpha(\varepsilon)), \\ S_\alpha(\varepsilon) &= \bigcap_{\beta < \alpha} S_\beta(\varepsilon) \quad \text{if } \alpha \text{ is a limit ordinal}. \end{split}$$

It is known that if X is separable, then X^* is nonseparable if $Sz(X) = \omega_1$.

0.4. Projectional resolution of the identity (P.R.I.), transfinite bases. Let X be a Banach space and μ an ordinal number. A sequence of projections $(P_{\alpha})_{0 \leq \alpha \leq \mu}$ is called a P.R.I. of X if the following holds:

- (i) $P_0 = 0$ and $P_{\mu} = \text{Id.}$
- (ii) $\sup_{0 \le \alpha \le \mu} ||P_{\alpha}|| < \infty$.
- (iii) $P_{\alpha}P_{\beta} = P_{\min(\alpha,\beta)}$.
- (iv) For every $x \in X$, the map φ_x : $[0, \mu] \to X$ defined by $\varphi_x(\alpha) = P_\alpha(x)$ is continuous.

Under conditions (ii) and (iii), it is not hard to prove that (iv) is equivalent to (see [JZ])

(iv)' For every
$$\alpha \leq \mu$$
, $P_{\alpha}(X) = \overline{\bigcup_{\beta < \alpha} P_{\beta+1}(X)}$.

A sequence of vectors $(x_{\alpha}) \subset X$ is called a *basis* of X if every $x \in X$ has a unique decomposition $x = \sum_{\alpha < \mu} a_{\alpha} x_{\alpha}$ (with norm convergence).

It is well known and easy to check that basic sequences are (up to normalization) in 1-1 correspondence with P.R.I.'s that satisfy rank $(P_{\alpha+1}-P_{\alpha})=1$ for every α .

1. The spaces A(I). Let Γ denote either a closed subset I of \mathbb{R} , or the compact space $[1, \eta]$ for some ordinal number η . We denote by $C(\Gamma)$ the space of continuous functions on Γ , and we define the spaces $v_p(\Gamma), 1 \leq p \leq \infty$, by

$$v_p(\Gamma) = \left\{ f \in C(\Gamma) : \|f\|_{v_p} = \sup \left(|f(t_0)|^p + \sum_{i=1}^n |f(t_i) - f(t_{i-1})|^p \right)^{1/p} < \infty \right\}$$

where the sup runs over all ordered finite subsets $\{t_0 < t_1 < \ldots < t_n\}$ of Γ . The spaces $A(\Gamma)$ are defined by

$$A(\Gamma) = [v_1(\Gamma), C(\Gamma)]_{\frac{1}{2}2}.$$

Let us show first that for every ordinal $\eta < \omega_1$, the space $A(\eta) = A([1, \eta])$ is isometric to $A(I_{\eta})$ for some closed subset I_{η} of [0, 1]. Indeed:

For every $\eta < \omega_1$, let $\phi_{\eta} : [0, \eta] \to [0, 1]$ be a continuous map with the property that $\phi_{\eta}(\alpha) < \phi_{\eta}(\beta)$ whenever $\alpha < \beta \leq \eta$. (The existence of such maps is well known, and can be easily proved by transfinite induction). From the definitions it is clear that the map Φ_{η} defined by $\Phi_{\eta}(f) = f\phi_{\eta}$ is an onto isometry from the interpolation couple $(v_1(I_{\eta}), C(I_{\eta}))$ into $(v_1(\eta), C(\eta))$ where $I_{\eta} = \phi_{\eta}([0, \eta])$. Hence Φ_{η} also defines an onto isometry between $A(I_{\eta})$ and $A(\eta)$.

Theorem 1. For every closed subset I of [0,1], the space A(I) is isometric to a 1-complemented subspace of A(0,1).

Proof. It is enough to construct operators $E:(v_1(I),C(I))\to (v_1(0,1),C(0,1))$ and $R:(v_1(0,1),C(0,1))\to (v_1(I),C(I))$, both of norm 1, and such that RE is the identity map. Indeed, this will imply that

ER[A(0,1)] is a 1-complemented subspace of A(0,1) which is isometric to A(I).

For R we take the formal restriction map: $Rf = f_{|I|}$. It is clear that R sends C(0,1) into C(I), and $v_1(0,1)$ into $v_1(I)$, and that ||R|| = 1.

Let us now define the operator E. In the next definition we will use the conventions $\min \emptyset = \max I$, and $\max \emptyset = \min I$. With these conventions we define, for $t \in [0,1]$,

$$t^{+} = t_{I}^{+} = \min\{s \in I : s \ge t\},\$$

$$t^{-} = t_{I}^{-} = \max\{s \in I : s \le t\}.$$

Observe that since I is closed, $t^{\pm} \in I$ for every $t \in [0,1]$, and $t^{+} = t^{-}$ if and only if $t \in [0, \min I] \cup [\max I, 1] \cup I$.

If $f \in C(I)$ is given, we define its extension Ef to [0,1] by

$$Ef(t) = \begin{cases} f(t^+) & \text{if } t^+ = t^-, \\ f(t^+) - \frac{t^+ - t}{t^+ - t^-} (f(t^+) - f(t^-)) & \text{if } t^+ \neq t^-. \end{cases}$$

Observe that Ef is linear on any interval of the form $[t^-, t^+]$.

It is clear from this definition that E sends C(I) into C(0,1), and that $||Ef||_{C(0,1)} = ||f||_{C(I)}$. All what remains to check now is that $||Ef||_{v_1(0,1)} = ||f||_{v_1(I)}$. For this we need only check that $||Ef||_{v_1(0,1)} \leq ||f||_{v_1(I)}$ since the other inequality is trival.

Let $f \in v_1(I)$, fix $\{t_0 < t_1 < \ldots < t_k\} \subset [0,1]$, and let us show that

$$|Ef(t_0)| + \sum_{i=0}^{k-1} |Ef(t_{i+1}) - Ef(t_i)| \le ||f||_{v_1(I)}.$$

It is clear from the definition of Ef that we can suppose $t_0 \ge \min I$ and $t_k \le \max I$, so we will suppose that this is the case.

Consider now the sets $P = \{t_i : 1 \leq i \leq k\} \cup \{t_i^{\pm} : 1 \leq i \leq k\}$ and $Q = P \cap I$, and order them, i.e. $P = \{\tilde{t}_0 < \tilde{t}_1 < \ldots < \tilde{t}_l\}, \ Q = \{s_0 < s_1 < \ldots < s_m\}.$

For each $j, 0 \leq j \leq m$, let $\pi(j)$ be such that $s_j = \tilde{t}_{\pi(j)}$. Observe that $\pi(j-1) \leq \pi(j) - 1$ for every $j \in [1, m]$. Moreover, if $\pi(j-1) \neq \pi(j) - 1$, then Ef is linear on $[s_{j-1}, s_j]$. (Indeed, if $i \in]\pi(j-1), \pi(j)[$, then $\tilde{t}_i^- = s_{j-1}$ and $\tilde{t}_i^+ = s_j$.)

From the above observation one can easily deduce that for every $j \in [1, m]$,

$$\sum_{i=\pi(j-1)}^{\pi(j)-1} |Ef(\tilde{t}_{i+1}) - Ef(\tilde{t}_{i})| = |f(s_j) - f(s_{j-1})|.$$

We are now ready to show that $||Ef||_{v_1(0,1)} \leq ||f||_{v_1(I)}$. We distinguish two cases for the set $\{t_i : 0 \leq i \leq k\}$.

Case 1: $t_0 \in I$. In this case we have $t_0 = \tilde{t}_0 = s_0$, i.e. $\pi(0) = 0$. We also have $\pi(m) = l$. In what follows the first inequality comes from the triangular inequality.

$$|Ef(t_0)| + \sum_{i=0}^{k-1} |Ef(t_{i+1}) - Ef(t_i)|$$

$$\leq |Ef(\tilde{t}_0)| + \sum_{i=0}^{l-1} |Ef(\tilde{t}_{i+1}) - Ef(\tilde{t}_i)|$$

$$= |Ef(\tilde{t}_0)| + \sum_{j=1}^{m} \sum_{i=\pi(j-1)}^{\pi(j)-1} |Ef(\tilde{t}_{i+1}) - Ef(\tilde{t}_i)|$$

$$= |f(s_0)| + \sum_{j=1}^{m} |f(s_j) - f(s_{j-1})| \leq ||f||_{v_1(I)}.$$

Case 2: $t_0 \not\in I$. In this case we have $\tilde{t}_0 = s_0 < \tilde{t}_1 = t_0 < s_1$, which implies $s_0 = t_0^-$ and $s_1 = t_0^+$ and so Ef is linear on $[s_0, s_1]$. Let $\lambda = (s_1 - t_0)/(s_1 - s_0)$, i.e. $t_0 = \lambda s_0 + (1 - \lambda)s_1$. Then

$$|Ef(t_0)| + \sum_{i=0}^{k-1} |Ef(t_{i+1}) - Ef(t_i)|$$

$$\leq |Ef(\tilde{t}_1)| + \sum_{i=0}^{\pi(1)-1} |Ef(\tilde{t}_{i+1}) - Ef(\tilde{t}_i)|$$

$$+ \sum_{j=2}^{m} \sum_{i=\pi(j-1)}^{\pi(j)-1} |Ef(\tilde{t}_{i+1}) - Ef(\tilde{t}_i)|$$

$$= |Ef(\tilde{t}_1)| + |Ef(s_1) - Ef(\tilde{t}_1)| + \sum_{j=2}^{m} |f(s_j) - f(s_{j-1})|$$

$$\leq \lambda (|f(s_0)| + |f(s_1) - f(s_0)|)$$

$$+ (1 - \lambda)|f(s_1)| + \sum_{j=2}^{m} |f(s_j) - f(s_{j-1})|$$

$$\leq ||f||_{v_1(I)}.$$

This concludes the proof of the theorem.

Remark. With the same proof, Theorem 1 can be extended as follows: if I and J are two closed subsets of \mathbb{R} with $I \subset J$ and if B is a Banach space, then A(I;B) is isometric to a 1-complemented subspace of A(J;B).

Theorem 2. $Sz(A(I)) \ge o(I)$ for every closed subset I of [0,1].

Proof. Observe first that Weierstrass' theorem implies that $v_1(I)$ is norm dense in C(I). Therefore (§0.1), $A^*(I) = [\mathcal{M}(I), v_1^*(I)]_{\frac{1}{2}2}$ (where $\mathcal{M}(I)$ stands for the space of random measures on I). In particular, $\mathcal{M}(I)$ is norm dense in $A^*(I)$.

Let k > 0 be such that $||x||_{A(I)} \le k||x||_{v_1(I)}$ for every $x \in v_1(I)$, and $||x^*||_{A^*(I)} \le k||x^*||_{\mathcal{M}(I)}$ for every $x^* \in \mathcal{M}(I)$.

The result of the theorem will be an immediate consequence of the following:

LEMMA 3. If $x \in I$ and $(x_n)_{n\geq 1} \in I \setminus \{x\}$ are such that $x = \lim_{n\to\infty} x_n$, then:

- (i) $\delta_x = \lim_{n \to \infty} \delta_{x_n}$ in the weak* topology of $A^*(I)$, where δ_y denotes the Dirac measure at y.
- (ii) There exist functions $f_n \in v_1(I), n \ge 1$, with $||f_n||_{v_1(I)} = 2$, such that

$$\langle \delta_{x_n}, f_n \rangle = 1$$
 for every $n \ge 1$, and $0 = \lim_{n \to \infty} f_n$ in the weak topology of $A(I)$.

Indeed, this lemma implies—with the notation of §0.2, §0.3—that $S_{\alpha}(1/(2k^2)) \supset \{(1/k)\delta_x : x \in I^{(\alpha)}\}$, which clearly implies the assertion of Theorem 2.

It remains to prove Lemma 3.

- (i) is clear as $\langle \delta_x, f \rangle = \lim_{n \to \infty} \langle \delta_{x_n}, f \rangle$ for every $f \in C(I)$.
- (ii) Let $F_n \in C(0,1)$ be defined by

$$F_n(t) = \left(1 - \frac{2|t - x_n|}{|x - x_n|}\right)^+,$$

and let $f_n = F_{n|I}$. It is clear that $||f_n||_{v_1(I)} = 2$, for every $n \ge 1$, and that $\lim_{n\to\infty} f_n(t) = 0$ for every $t \in I$.

If $\mu \in \mathcal{M}(I)$, then Lebesgue's dominated convergence theorem (applied to $|\mu|$) implies that $\lim_{n\to\infty} \langle \mu, f_n \rangle = 0$. This implies that $0 = \lim_{n\to\infty} f_n$ in the weak topology of A(I), as $(f_n)_{n\geq 1}$ is bounded in A(I), and $\mathcal{M}(I)$ is norm dense in $A^*(I)$.

This concludes the proof of the lemma and thus of the theorem.

Remark. Xu proved that the spaces A(I) have nontrivial types [X], which implies in particular that they do not contain the l_n^1 's uniformly [P], and therefore that $i(A(I)) = \omega_0$, where i denotes the l^1 -Bourgain index [B].

We then have a transfinite family of Banach spaces with separable duals, namely $(A(\eta))_{\eta<\omega_1}$, such that $\omega_1>\sup_{\eta<\omega_1}i(A(\eta))$, and $\omega_1=\sup_{\eta<\omega_1}\mathrm{Sz}(A(\eta))$ [as $o([1,\omega_0^\alpha])=\alpha$ for every ordinal $\alpha<\omega_1$]. This result can be looked at as a quantitative version of the—by now—well known result on the existence of separable Banach spaces not containing l^1 , and with nonseparable duals.

2. The spaces $A(\eta)$. For the next result we need the following notation: If A is a set, χ_A will denote the characteristic function of A. Clearly $\chi_{]\alpha,\eta]} \in v_1(\eta)$ for every $0 \le \alpha < \eta$. We also define for $1 \le \alpha \le \eta$ the element $e_\alpha \in C^*(\eta) = l^1(\eta)$ by $\langle e_\alpha, f \rangle = f(\alpha)$.

THEOREM 4. $(\chi_{]\alpha,\eta]})_{0\leq \alpha<\eta}$ and $(e_{\alpha})_{1\leq \alpha\leq\eta}$ are transfinite bases of $A(\eta)$ and $A^*(\eta)$ respectively.

Proof. (i) Let us show that $(\chi_{\alpha,\eta})_{0 \le \alpha < \eta}$ is a basis of $A(\eta)$.

For each α , define a projection $P_{\alpha}: (v_1(\eta), C(\eta)) \to (v_1(\eta), C(\eta))$ by $P_{\alpha}f(\beta) = f(\min(\alpha, \beta))$ and observe that the projections so defined are increasing, i.e. $P_{\alpha}P_{\beta} = P_{\min(\alpha,\beta)}$, and are of norm 1. Hence $(P_{\alpha})_{0 \leq \alpha \leq \eta}$ are increasing, norm 1 projections of $A(\eta)$. Let us show that they satisfy the continuity property (§0.4(iv)) on $A(\eta)$.

It is well known and easy to check that $(P_{\alpha})_{0 \leq \alpha \leq \eta}$ form a P.R.I. of $v_1(\eta)$, therefore

$$P_{\alpha}(v_1(\eta)) = \overline{\bigcup_{\beta < \alpha} P_{\beta+1}(v_1(\eta))}^{\|\cdot\|_{v_1}} \quad \text{for every } 0 \le \alpha \le \eta.$$

On the other hand, $v_1(\eta)$ is $\|\cdot\|_A$ -dense in $A(\eta)$, so

$$P_{\alpha}(A(\eta)) = \overline{P_{\alpha}(v_1(\eta))}^{\|\cdot\|_A}$$

This implies that

$$P_{\alpha}(A(\eta)) = \overline{\bigcup_{\beta < \alpha} P_{\beta+1}(A(\eta))}^{\|\cdot\|_{A}}$$

since $\|\cdot\|_A \le k\|\cdot\|_{v_1}$ for some constant k.

This finishes the proof of the first part as

$$(P_{\alpha+1} - P_{\alpha})(f) = (f(\alpha+1) - f(\alpha))\chi_{\alpha,\eta}$$

for every f and every $\alpha < \eta$.

(ii) We show now that $(e_{\alpha})_{1\leq \alpha\leq \eta}$ is a basis of $A^*(\eta)$. Using the facts that $A(\eta) = [v_{4/3}(\eta), v_4(\eta)]_{\frac{1}{2}2}$ (see [X]), and that $(\chi_{]\alpha,\eta]})_{0\leq \alpha<\eta}$ is a basis for $v_p(\eta)$ if $1\leq p<\infty$ (see [E]), and therefore that $v_{4/3}(\eta)$ is $\|\cdot\|_{v_4}$ -dense in $v_4(\eta)$, we deduce that $A^*(\eta) = [v_4^*(\eta), v_{4/3}^*(\eta)]_{\frac{1}{2}2}$ (§0.1).

It is also proved in [E] that $(e_{\alpha})_{1 \leq \alpha \leq \eta}$ is a basis of $v_p^*(\eta)$ if $1 , therefore the operators <math>(Q_{\alpha})_{0 \leq \alpha \leq \eta+1}$ defined by $Q_{\alpha}(e_{\beta}) = \chi_{]0,\alpha[}(\beta)e_{\beta}$ define a P.R.I. of the spaces $v_p^*(\eta)$.

Using the same proof as in part (i) we deduce that $(Q_{\alpha})_{0 \leq \alpha \leq \eta+1}$ defines a P.R.I. of $A(\eta)$. This concludes the proof since

$$(Q_{\alpha+1}-Q_{\alpha})[A^*(\eta)]=\operatorname{sp}[e_{\alpha}]. \blacksquare$$

Remarks. (i) Using the same proof as for (ii) of Theorem 4, and the fact (see [E]) that $v_p(\eta) = Y_p^*(\eta)$ if 1 , where

$$Y_p(\eta) = \overline{\operatorname{sp}[e_\alpha : \alpha \leq \eta, \ \alpha \ \text{nonlimit}]}^{\|\cdot\|_{v_p^*}},$$

we can prove that $A(\eta) = B^*(\eta)$, where

$$B(\eta) = \overline{\operatorname{sp}[e_{\alpha} : \alpha \leq \eta, \ \alpha \ \text{nonlimit}]}^{\|\cdot\|_{A^*}}$$

(ii) Theorem 4 and the previous remark imply that $A(\eta)$ and $J(\eta)$ have the same measure theory properties. The proofs are the same as Edgar's proofs for $J(\eta)$.

REFERENCES

- [BL] J. Bergh and J. Löfström, *Interpolation Spaces*, Grundlehren Math. Wiss. 223, Springer, 1976.
- [B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235–249.
- [E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31–37.
- [JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1–15.
- [P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de l¹_n,
 C. R. Acad. Sci. Paris 277 (1973), 991–994.
- [PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces v_p , preprint.
 - [S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61.
 - [X] Q. Xu, Espaces d'interpolation réels entre les espaces v_p : Propriétés géométriques et applications probabilistes, preprint.

C.N.R. B.P. 1346 R.P. RABAT, MOROCCO

Reçu par la Rédaction le 5.8.1992