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SOME PROPERTIES OF THE PISIER–XU
INTERPOLATION SPACES

BY

A. SERSOUR I (RABAT)

For a closed subset I of the interval [0, 1] we let A(I) = [v1(I), C(I)] 1
2 2.

We show that A(I) is isometric to a 1-complemented subspace of A(0, 1),
and that the Szlenk index of A(I) is larger than the Cantor index of I. We
also investigate, for ordinals η < ω1, the bases structures of A(η), A∗(η),
and A∗(η) [the isometric predual of A(η)].

All the results of this paper extend, with obvious changes in the proofs,
to the interpolation spaces [v1(I), C(I)]θq.

0. Preliminaries. In this section we will recall the definitions of the
concepts we are going to work with, and state some of the needed proper-
ties. In what follows ω0 denotes the first infinite ordinal, and ω1 the first
uncountable ordinal.

0.1. Real interpolation. We will give the definitions only in the case
that interests us.

Let X0 and X1 be two Banach spaces, and let j : X0 → X1 be an
injective continuous linear operator. By abuse of notation we will identify
X0 with j(X0), hence considering X0 as a (not necessarily closed) subspace
of X1.

For each t > 0 we define an equivalent norm Kt on X1 by

Kt(x;X0, X1) = Kt(x) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1}
and we define a new Banach space [X0, X1] 1

2 2 by

[X0, X1] 1
2 2 =

{
x ∈ X1 : ‖x‖ 1

2 2 =
( ∞∫

0

(Kt(x)/t)2 dt
)1/2

< ∞
}

.

It is known that X0 is ‖ · ‖ 1
2 2-dense in [X0, X1] 1

2 2, and that for some
constant k < ∞, ‖ · ‖ 1

2 2 ≤ k‖ · ‖X0 . Moreover, if X0 is ‖ · ‖X1-dense in X1,
then [X0, X1]∗1

2 2
may be canonically identified with [X∗

0 , X∗
1 ] 1

2 2 (the latter
interpolation space being defined via the map j∗ : X∗

1 → X∗
0 which is

injective since j has dense range).
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If (X0, X1) and (Y0, Y1) are two interpolation couples, and if T : X1 → Y1

is a linear map such that T (X0) ⊂ Y0 and ‖T‖=max(‖T‖X0→Y0 , ‖T‖X1→Y1)
< ∞, then T defines a bounded operator from [X0, X1] 1

2 2 into [Y0, Y1] 1
2 2 with

norm at most ‖T‖.
0.2. The Cantor index . Let K be a topological space. We define its

Cantor derived set K ′ by

K ′ = {x ∈ K : x is an accumulation point of K}
and its Cantor index o(K) by

o(K) = sup{α < ω1 : K(α) 6= ∅}
where the sets K(α) are defined inductively by

K(0) = K ,

K(α+1) = (K(α))′ ,

K(α) =
⋂

β<α

K(β) if α is a limit ordinal.

It is well known that for each ordinal α < ω1 one has o([0, ωα
0 ]) = α,

where [0, η] denotes the set {% ordinal : 0 ≤ % ≤ η} equipped with the order
topology.

0.3. The Szlenk index . Let X be a Banach space, C a bounded subset
of X, and K a weak∗ compact subset of X∗. For ε > 0 we define a weak∗

compact set by

σC,ε(K) = {x∗ ∈ K : ∃(xn)n≥1 ⊂ C,∃(x∗n)n≥1 ⊂ K with
0 = w -lim

n→∞
xn, x∗ = w∗-lim

n→∞
x∗n, and inf

n
|x∗n(xn)| ≥ ε} .

The Szlenk index Sz(X) of X is given by

Sz(X) = sup
ε>0

[sup{α < ω1 : Sα(ε) 6= ∅}]

where the sets Sα(ε) are defined inductively by

S0(ε) = Ball(X∗),
Sα+1(ε) = σBall(X),ε(Sα(ε)) ,

Sα(ε) =
⋂

β<α

Sβ(ε) if α is a limit ordinal .

It is known that if X is separable, then X∗ is nonseparable if Sz(X) = ω1.

0.4. Projectional resolution of the identity (P.R.I.), transfinite bases.
Let X be a Banach space and µ an ordinal number. A sequence of projec-
tions (Pα)0≤α≤µ is called a P.R.I. of X if the following holds:
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(i) P0 = 0 and Pµ = Id.
(ii) sup0≤α≤µ‖Pα‖ < ∞.
(iii) PαPβ = Pmin(α,β).
(iv) For every x ∈ X, the map ϕx: [0, µ] → X defined by ϕx(α) = Pα(x)

is continuous.

Under conditions (ii) and (iii), it is not hard to prove that (iv) is equiv-
alent to (see [JZ])

(iv)′ For every α ≤ µ, Pα(X) =
⋃

β<α Pβ+1(X).

A sequence of vectors (xα) ⊂ X is called a basis of X if every x ∈ X has
a unique decomposition x =

∑
α≤µ aαxα (with norm convergence).

It is well known and easy to check that basic sequences are (up to normal-
ization) in 1-1 correspondence with P.R.I.’s that satisfy rank(Pα+1−Pα) = 1
for every α.

1. The spaces A(I). Let Γ denote either a closed subset I of R,
or the compact space [1, η] for some ordinal number η. We denote by
C(Γ ) the space of continuous functions on Γ , and we define the spaces
vp(Γ ), 1 ≤ p ≤ ∞, by

vp(Γ )=
{

f ∈ C(Γ ) : ‖f‖vp=sup
(
|f(t0)|p +

n∑
i=1

|f(ti)− f(ti−1)|p
)1/p

<∞
}

where the sup runs over all ordered finite subsets {t0 < t1 < . . . < tn} of Γ .
The spaces A(Γ ) are defined by

A(Γ ) = [v1(Γ ), C(Γ )] 1
2 2 .

Let us show first that for every ordinal η < ω1, the space A(η) = A([1, η])
is isometric to A(Iη) for some closed subset Iη of [0, 1]. Indeed:

For every η < ω1, let φη : [0, η] → [0, 1] be a continuous map with the
property that φη(α) < φη(β) whenever α < β ≤ η. (The existence of such
maps is well known, and can be easily proved by transfinite induction). From
the definitions it is clear that the map Φη defined by Φη(f) = fφη is an onto
isometry from the interpolation couple (v1(Iη), C(Iη)) into (v1(η), C(η))
where Iη = φη([0, η]). Hence Φη also defines an onto isometry between
A(Iη) and A(η).

Theorem 1. For every closed subset I of [0, 1], the space A(I) is iso-
metric to a 1-complemented subspace of A(0, 1).

P r o o f. It is enough to construct operators E : (v1(I), C(I)) →
(v1(0, 1), C(0, 1)) and R : (v1(0, 1), C(0, 1)) → (v1(I), C(I)), both of norm 1,
and such that RE is the identity map. Indeed, this will imply that
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ER[A(0, 1)] is a 1-complemented subspace of A(0, 1) which is isometric
to A(I).

For R we take the formal restriction map: Rf = f|I . It is clear that R
sends C(0, 1) into C(I), and v1(0, 1) into v1(I), and that ‖R‖ = 1.

Let us now define the operator E. In the next definition we will use the
conventions min ∅ = max I, and max ∅ = min I. With these conventions we
define, for t ∈ [0, 1],

t+ = t+I = min{s ∈ I : s ≥ t} ,

t− = t−I = max{s ∈ I : s ≤ t} .

Observe that since I is closed, t± ∈ I for every t ∈ [0, 1], and t+ = t− if
and only if t ∈ [0,min I] ∪ [max I, 1] ∪ I.

If f ∈ C(I) is given, we define its extension Ef to [0, 1] by

Ef(t) =

 f(t+) if t+ = t− ,

f(t+)− t+ − t

t+ − t−
(f(t+)− f(t−)) if t+ 6= t− .

Observe that Ef is linear on any interval of the form [t−, t+].
It is clear from this definition that E sends C(I) into C(0, 1), and that

‖Ef‖C(0,1) = ‖f‖C(I). All what remains to check now is that ‖Ef‖v1(0,1) =
‖f‖v1(I). For this we need only check that ‖Ef‖v1(0,1) ≤ ‖f‖v1(I) since the
other inequality is trival.

Let f ∈ v1(I), fix {t0 < t1 < . . . < tk} ⊂ [0, 1], and let us show that

|Ef(t0)|+
k−1∑
i=0

|Ef(ti+1)− Ef(ti)| ≤ ‖f‖v1(I) .

It is clear from the definition of Ef that we can suppose t0 ≥ min I and
tk ≤ max I, so we will suppose that this is the case.

Consider now the sets P = {ti : 1 ≤ i ≤ k} ∪ {t±i : 1 ≤ i ≤ k} and
Q = P ∩ I, and order them, i.e. P = {t̃0 < t̃1 < . . . < t̃l}, Q = {s0 < s1 <
. . . < sm}.

For each j, 0 ≤ j ≤ m, let π(j) be such that sj = t̃π(j). Observe that
π(j − 1) ≤ π(j) − 1 for every j ∈ [1,m]. Moreover, if π(j − 1) 6= π(j) − 1,
then Ef is linear on [sj−1, sj ]. (Indeed, if i ∈ ]π(j−1), π(j)[, then t̃−i = sj−1

and t̃+i = sj .)
From the above observation one can easily deduce that for every j ∈

[1,m],
π(j)−1∑

i=π(j−1)

|Ef(t̃i+1)− Ef(t̃i)| = |f(sj)− f(sj−1)| .
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We are now ready to show that ‖Ef‖v1(0,1) ≤ ‖f‖v1(I). We distinguish
two cases for the set {ti : 0 ≤ i ≤ k}.

C a s e 1: t0 ∈ I. In this case we have t0 = t̃0 = s0, i.e. π(0) = 0.
We also have π(m) = l. In what follows the first inequality comes from the
triangular inequality.

|Ef(t0)|+
k−1∑
i=0

|Ef(ti+1)− Ef(ti)|

≤ |Ef(t̃0)|+
l−1∑
i=0

|Ef(t̃i+1)− Ef(t̃i)|

= |Ef(t̃0)|+
m∑

j=1

π(j)−1∑
i=π(j−1)

|Ef(t̃i+1)− Ef(t̃i)|

= |f(s0)|+
m∑

j=1

|f(sj)− f(sj−1)| ≤ ‖f‖v1(I) .

C a s e 2: t0 6∈ I. In this case we have t̃0 = s0 < t̃1 = t0 < s1,
which implies s0 = t−0 and s1 = t+0 and so Ef is linear on [s0, s1]. Let
λ = (s1 − t0)/(s1 − s0), i.e. t0 = λs0 + (1− λ)s1. Then

|Ef(t0)|+
k−1∑
i=0

|Ef(ti+1)− Ef(ti)|

≤ |Ef(t̃1)|+
π(1)−1∑

i=0

|Ef(t̃i+1)− Ef(t̃i)|

+
m∑

j=2

π(j)−1∑
i=π(j−1)

|Ef(t̃i+1)− Ef(t̃i)|

= |Ef(t̃1)|+ |Ef(s1)− Ef(t̃1)|+
m∑

j=2

|f(sj)− f(sj−1)|

≤ λ (|f(s0)|+ |f(s1)− f(s0)|)

+ (1− λ)|f(s1)|+
m∑

j=2

|f(sj)− f(sj−1)|

≤ ‖f‖v1(I) .

This concludes the proof of the theorem.
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R e m a r k. With the same proof, Theorem 1 can be extended as follows:
if I and J are two closed subsets of R with I ⊂ J and if B is a Banach
space, then A(I;B) is isometric to a 1-complemented subspace of A(J ;B).

Theorem 2. Sz(A(I)) ≥ o(I) for every closed subset I of [0, 1].

P r o o f. Observe first that Weierstrass’ theorem implies that v1(I) is
norm dense in C(I). Therefore (§0.1), A∗(I) = [M(I), v∗1(I)] 1

2 2 (whereM(I)
stands for the space of random measures on I). In particular, M(I) is norm
dense in A∗(I).

Let k > 0 be such that ‖x‖A(I) ≤ k‖x‖v1(I) for every x ∈ v1(I), and
‖x∗‖A∗(I) ≤ k‖x∗‖M(I) for every x∗ ∈M(I).

The result of the theorem will be an immediate consequence of the fol-
lowing:

Lemma 3. If x ∈ I and (xn)n≥1 ∈ I \{x} are such that x = limn→∞ xn,
then:

(i) δx = limn→∞ δxn
in the weak∗ topology of A∗(I), where δy denotes

the Dirac measure at y.
(ii) There exist functions fn ∈ v1(I), n ≥ 1, with ‖fn‖v1(I) = 2, such

that
〈δxn

, fn〉 = 1 for every n ≥ 1, and
0 = lim

n→∞
fn in the weak topology of A(I) .

Indeed, this lemma implies—with the notation of §0.2, §0.3—that
Sα(1/(2k2)) ⊃ {(1/k)δx : x ∈ I(α)}, which clearly implies the assertion
of Theorem 2.

It remains to prove Lemma 3.
(i) is clear as 〈δx, f〉 = limn→∞〈δxn

, f〉 for every f ∈ C(I).
(ii) Let Fn ∈ C(0, 1) be defined by

Fn(t) =
(

1− 2|t− xn|
|x− xn|

)+

,

and let fn = Fn|I . It is clear that ‖fn‖v1(I) = 2, for every n ≥ 1, and that
limn→∞ fn(t) = 0 for every t ∈ I.

If µ ∈ M(I), then Lebesgue’s dominated convergence theorem (applied
to |µ|) implies that limn→∞〈µ, fn〉 = 0. This implies that 0 = limn→∞ fn

in the weak topology of A(I), as (fn)n≥1 is bounded in A(I), and M(I) is
norm dense in A∗(I).

This concludes the proof of the lemma and thus of the theorem.

R e m a r k. Xu proved that the spaces A(I) have nontrivial types [X],
which implies in particular that they do not contain the l1n’s uniformly [P],
and therefore that i(A(I)) = ω0, where i denotes the l1-Bourgain index [B].
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We then have a transfinite family of Banach spaces with separable
duals, namely (A(η))η<ω1 , such that ω1 > supη<ω1

i(A(η)), and ω1 =
supη<ω1

Sz(A(η)) [as o([1, ωα
0 ]) = α for every ordinal α < ω1]. This re-

sult can be looked at as a quantitative version of the—by now—well known
result on the existence of separable Banach spaces not containing l1, and
with nonseparable duals.

2. The spaces A(η). For the next result we need the following notation:
If A is a set, χA will denote the characteristic function of A. Clearly χ]α,η] ∈
v1(η) for every 0 ≤ α < η. We also define for 1 ≤ α ≤ η the element
eα ∈ C∗(η) = l1(η) by 〈eα, f〉 = f(α).

Theorem 4. (χ]α,η])0≤α<η and (eα)1≤α≤η are transfinite bases of A(η)
and A∗(η) respectively.

P r o o f. (i) Let us show that (χ]α,η])0≤α<η is a basis of A(η).
For each α, define a projection Pα : (v1(η), C(η)) → (v1(η), C(η)) by

Pαf(β) = f(min(α, β)) and observe that the projections so defined are
increasing, i.e. PαPβ = Pmin(α,β), and are of norm 1. Hence (Pα)0≤α≤η are
increasing, norm 1 projections of A(η). Let us show that they satisfy the
continuity property (§0.4(iv)) on A(η).

It is well known and easy to check that (Pα)0≤α≤η form a P.R.I. of v1(η),
therefore

Pα(v1(η)) =
⋃

β<α

Pβ+1(v1(η))
‖·‖v1

for every 0 ≤ α ≤ η .

On the other hand, v1(η) is ‖ · ‖A-dense in A(η), so

Pα(A(η))=Pα(v1(η))
‖·‖A

.

This implies that

Pα(A(η)) =
⋃

β<α

Pβ+1(A(η))
‖·‖A

since ‖ · ‖A ≤ k‖ · ‖v1 for some constant k.
This finishes the proof of the first part as

(Pα+1 − Pα)(f) = (f(α + 1)− f(α))χ]α,η]

for every f and every α < η.
(ii) We show now that (eα)1≤α≤η is a basis of A∗(η). Using the facts

that A(η) = [v4/3(η), v4(η)] 1
2 2 (see [X]), and that (χ]α,η])0≤α<η is a basis for

vp(η) if 1 ≤ p < ∞ (see [E]), and therefore that v4/3(η) is ‖ · ‖v4-dense in
v4(η), we deduce that A∗(η) = [v∗4(η), v∗4/3(η)] 1

2 2 (§0.1).
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It is also proved in [E] that (eα)1≤α≤η is a basis of v∗p(η) if 1 < p < ∞,
therefore the operators (Qα)0≤α≤η+1 defined by Qα(eβ) = χ]0,α[(β)eβ define
a P.R.I. of the spaces v∗p(η).

Using the same proof as in part (i) we deduce that (Qα)0≤α≤η+1 defines
a P.R.I. of A(η). This concludes the proof since

(Qα+1 −Qα)[A∗(η)] = sp[eα] .

R e m a r k s. (i) Using the same proof as for (ii) of Theorem 4, and the
fact (see [E]) that vp(η) = Y ∗

p (η) if 1 < p < ∞, where

Yp(η) = sp[eα : α ≤ η, α nonlimit]
‖·‖v∗p ,

we can prove that A(η) = B∗(η), where

B(η) = sp[eα : α ≤ η, α nonlimit]
‖·‖A∗

.

(ii) Theorem 4 and the previous remark imply that A(η) and J(η) have
the same measure theory properties. The proofs are the same as Edgar’s
proofs for J(η).
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