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SOME PROPERTIES OF THE PISIER-XU
INTERPOLATION SPACES

BY
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For a closed subset I of the interval [0,1] we let A(I) = [vi(1), C(])]1o-
We show that A(I) is isometric to a 1-complemented subspace of A(0,1),
and that the Szlenk index of A([) is larger than the Cantor index of 1. We
also investigate, for ordinals 7 < w1, the bases structures of A(n), A*(n),
and A,(n) [the isometric predual of A(n)].

All the results of this paper extend, with obvious changes in the proofs,
to the interpolation spaces [v1 (1), C(I)]aq-

0. Preliminaries. In this section we will recall the definitions of the
concepts we are going to work with, and state some of the needed proper-
ties. In what follows wy denotes the first infinite ordinal, and w; the first
uncountable ordinal.

0.1. Real interpolation. We will give the definitions only in the case
that interests us.

Let Xo and X; be two Banach spaces, and let 7 : Xg — X3 be an
injective continuous linear operator. By abuse of notation we will identify
Xo with j(Xo), hence considering X as a (not necessarily closed) subspace
of X1 .

For each t > 0 we define an equivalent norm K; on X; by

(i Xo, X) = Kil@w) = if{ao] x, + 1 Lx, 2 = 70 -+ 1}

and we define a new Banach space [Xo, X1]1, by

[Xo, Xi]yo = {o € X1+ ally = ( jo(Kt(x)/t)zdt)l/z <oo}.
0

It is known that Xo is || - || 1o-dense in [Xo, X1]1,, and that for some
constant k < oo, || [[15 < k| - |x,. Moreover, if X is || - || x,-dense in X,
then [XO,Xl]’%2 may be canonically identified with [X¢, X7]1, (the latter
interpolation space being defined via the map j* : Xy — X which is
injective since j has dense range).
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If (X, X1) and (Yo, Y1) are two interpolation couples, and if T : X7 — Y3
is a linear map such that T'(Xo) C Yp and ||T'||= max(||T'|| x,—ve, | T x,—v1 )
< 00, then T" defines a bounded operator from [Xo, X1]1, into [Yp, Y1]1, with
norm at most ||77]|.

0.2. The Cantor index. Let K be a topological space. We define its
Cantor derived set K’ by

K' ={z € K : z is an accumulation point of K}
and its Cantor index o(K) by
o(K) = sup{a < w; : K™ #£ 0}

where the sets K(® are defined inductively by

KO — K,

K(at+l) (K(a))"
K® = () K® if ais a limit ordinal.
B<a

It is well known that for each ordinal o < w; one has o([0,w§]) = «,
where [0, 1] denotes the set {p ordinal : 0 < ¢ < n} equipped with the order
topology.

0.3. The Szlenk index. Let X be a Banach space, C' a bounded subset
of X, and K a weak® compact subset of X*. For ¢ > 0 we define a weak*
compact set by

oce(K)={2" € K :3(xp)n>1 C C,3(z),)n>1 C K with

0 =w-limz,, * = w*-limz,, and inf |z} (z,)] >} .
n—oo n—o0 n

The Szlenk indexr Sz(X) of X is given by
Sz(X) = sup[sup{a < wy : Sy (g) # 0}]
e>0

where the sets S, (¢) are defined inductively by
So(e) = Ball(X™),
Sat1(e) = UBall(X),s(Sa(E)) )
Sa(e) = ﬂ Sp(e) if o is a limit ordinal.
B<a
It is known that if X is separable, then X * is nonseparable if Sz(X) = w.

0.4. Projectional resolution of the identity (P.R.1.), transfinite bases.
Let X be a Banach space and p an ordinal number. A sequence of projec-
tions (Pa)o<a<pu is called a P.R.I of X if the following holds:
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(i) Po=0and P, =Id.
() 5ozl < o0
(111) P, Pg = mm(a,ﬁ)

(iv) For every x € X, the map ¢,: [0, u] — X defined by ¢, (a) = P,(x)
is continuous.

Under conditions (ii) and (iii), it is not hard to prove that (iv) is equiv-
alent to (see [JZ])

(iv)" For every o < p, Po(X) = Ug.,, Pa+1(X).

A sequence of vectors (z,) C X is called a basis of X if every x € X has
a unique decomposition z = 3 o aaZo (With norm convergence).

It is well known and easy to check that basic sequences are (up to normal-

ization) in 1-1 correspondence with P.R.I.’s that satisfy rank(P,+1—P,) =1
for every a.

1. The spaces A(I). Let I' denote either a closed subset I of R,
or the compact space [1,n] for some ordinal number 7. We denote by

C(I') the space of continuous functions on I, and we define the spaces
vp(I),1 < p < oo, by

v (D)={f € O) < [l =sup (IF ()P + D217 (0) - f(ti_1)|p>1/p<oo}

where the sup runs over all ordered finite subsets {to < t; < ... <t,} of I'.
The spaces A(I") are defined by

A(D) = [0a (1), C(D)] .

Let us show first that for every ordinal n < wy, the space A(n) = A([1,7])
is isometric to A(I,) for some closed subset I, of [0,1]. Indeed:

For every n < wy, let ¢, : [0,7] — [0,1] be a continuous map with the
property that ¢,(a) < ¢,(8) whenever o < § < 1. (The existence of such
maps is well known, and can be easily proved by transfinite induction). From
the definitions it is clear that the map &,, defined by &,,(f) = f¢, is an onto
isometry from the interpolation couple (vi(1,),C(I,)) into (vi(n),C(n))
where I,, = ¢,([0,1]). Hence &, also defines an onto isometry between
A(I,) and A(n).

THEOREM 1. For every closed subset I of [0,1], the space A(I) is iso-
metric to a 1-complemented subspace of A(0,1).

Proof. It is enough to construct operators E : (vi(I),C(I)) —
(v1(0,1),C(0,1)) and R : (v1(0,1),C(0,1)) — (v1(I),C(I)), both of norm 1,
and such that RFE is the identity map. Indeed, this will imply that
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ER[A(0,1)] is a l-complemented subspace of A(0,1) which is isometric
to A(I).

For R we take the formal restriction map: Rf = f|;. It is clear that R
sends C'(0,1) into C(I), and v1(0,1) into v1(I), and that ||R| = 1.

Let us now define the operator E. In the next definition we will use the

conventions min () = max I, and max () = min I. With these conventions we
define, for t € [0,1],

tt =t =min{s e l:s>t},
t=t;, =max{sel:s<t}.
Observe that since I is closed, t* € I for every t € [0,1], and t+ =t~ if
and only if ¢ € [0,min ]| U [max [, 1] U I.
If f € C(I) is given, we define its extension Ef to [0,1] by
f(th) if tt =t

BIO= sen - Fotgan ooy e 2

Observe that Ef is linear on any interval of the form [t~ ¢%].

It is clear from this definition that E sends C(I) into C'(0, 1), and that
IEfllco,) = I fller)- All what remains to check now is that || Ef]],, 0,1) =
| flloy(r)- For this we need only check that ||Ef||,, 0,1) < [|f]lv; (1) since the
other inequality is trival.

Let f e vi(1), fix {to < t;1 < ... <tg} C[0,1], and let us show that

k—1
|Ef(to)| + Y |Ef(ti1) = Ef ()] < | Fllosca) -
i=0

It is clear from the definition of E f that we can suppose tg > min I and
tr, < maxlI, so we will suppose that this is the case.

Consider now the sets P = {t; : 1 <i < k}U{tf : 1 <i < k} and
Q = PN 1, and order them, i.e. P={fp <11 <...<h},Q={s0 <51 <
oo < Sm}

For each 5,0 < j < m, let m(j) be such that s; = f,r(j). Observe that
(5 —1) < 7w(j) — 1 for every j € [1,m]. Moreover, if w(j — 1) # n(j) — 1,
then Ef is linear on [s;_1, s;]. (Indeed, if i €]m(j—1),7(4)[, thent; = s;_1
and t] = s;.)

From the above observation one can easily deduce that for every j €
[1,m],

m(j)—1
Y BfEin) — EFE)] = 11(s) = f(s;-1)]-

i=r(j—1)
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We are now ready to show that ||Ef||,, 0,1) < [[f|lv, (). We distinguish
two cases for the set {t; : 0 <1i < k}.

Case 1: tg € I. In this case we have tg = ty = sg, i.e. 7(0) = 0.
We also have m(m) = [. In what follows the first inequality comes from the
triangular inequality.

k—1

|Ef(to)| + Z |Ef(tit1) — Ef(t:)]
i=0

-1
<|Ef(to)| + > |Ef(li1) — Ef (L)
=0

m  7w(j)—1

= [Efo)l +> . Y. |Ef(ti1) — Ef (%)

j=1i=r(j—1)
=1 (s0)| + D> 1£(s;) = f(si-)| < I fllos ) -
=1

Case 2: to ¢ I. In this case we have tg = sog < t; = ty < s1,
which implies sp = t; and s; = tar and so Ef is linear on [sg, s1]. Let
A= (81 — to)/(Sl — 80), ie. tg = Asp + (1 - A)Sl. Then

k—

[Ef(to)l + > |Ef(tis1) — Ef(t:)]

i=

—_

w(1)—1
<|Ef(t)|+ Z |Ef(tiv1) — Ef(L:))
i=0
m  m(j)—1

=2 i=n(j—1)

= [Ef )|+ [Ef(s1) = Ef @)+ 3 1f(s5) = f(s5-1)]
< A(f(s0)| + £ (s1) = f(s0)])
+ (1= MIf () + D 1f(s5) = f(s5-1)]
j=2

< 1 llorcay -

This concludes the proof of the theorem. m
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Remark. With the same proof, Theorem 1 can be extended as follows:
if I and J are two closed subsets of R with I C J and if B is a Banach
space, then A([; B) is isometric to a 1-complemented subspace of A(J; B).

THEOREM 2. Sz(A(I)) > o(I) for every closed subset I of [0,1].

Proof. Observe first that Weierstrass’ theorem implies that vy (I) is
norm dense in C(1). Therefore (§0.1), A*(I) = [M(I),v{(I)]1, (Where M(I)
stands for the space of random measures on I). In particular, M(I) is norm
dense in A*(I).

Let £ > 0 be such that |[z]|a) < El|z|lv, (1) for every x € vi([), and
lz* (| a1y < Ellz*|| amry for every z* € M(T).

The result of the theorem will be an immediate consequence of the fol-
lowing:

LEMMA 3. If z € I and (x,)n>1 € I\ {z} are such that x = lim,,_ =,
then:

(i) 0y = limy,— o0 0y, @0 the weak™ topology of A*(I), where &, denotes
the Dirac measure at y.
(ii) There exist functions f, € vi(1),n > 1, with | fulle, ) = 2, such
that
(0g,,fn) =1 for every n>1, and

0= lim f, in the weak topology of A(I).

Indeed, this lemma implies—with the notation of §0.2, §0.3—that
S.(1/(2k2)) D {(1/k)6, = x € I®}, which clearly implies the assertion
of Theorem 2.

It remains to prove Lemma 3.

(i) is clear as (0, f) = lim, o0 {0z, , f) for every f € C(I).

(ii) Let F;, € C(0,1) be defined by

and let f, = F,;. It is clear that || fy[|,,(r) = 2, for every n > 1, and that
lim,, o0 frn(t) =0 for every t € I.

If w € M(I), then Lebesgue’s dominated convergence theorem (applied
to |u|) implies that lim, . (y, fn) = 0. This implies that 0 = lim, . fy
in the weak topology of A(I), as (fn)n>1 is bounded in A(I), and M(I) is
norm dense in A*(I).

This concludes the proof of the lemma and thus of the theorem. m

Remark. Xu proved that the spaces A(I) have nontrivial types [X],
which implies in particular that they do not contain the [!’s uniformly [P],
and therefore that i(A(I)) = wp, where i denotes the [-Bourgain index [B].
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We then have a transfinite family of Banach spaces with separable
duals, namely (A(7))y<w,, such that w; > sup, ., i(A(n)), and w; =
sup, ., 5z(A(n)) [as o[1,w§]) = « for every ordinal a < w;]. This re-
sult can be looked at as a quantitative version of the—by now—well known
result on the existence of separable Banach spaces not containing /', and
with nonseparable duals.

2. The spaces A(n). For the next result we need the following notation:
If Ais a set, x4 will denote the characteristic function of A. Clearly xja,, €
v1(n) for every 0 < a < 7. We also define for 1 < a < 7 the element

ea € C*(n) =11(n) by (ea, f) = f(a).

THEOREM 4. (Xja,n))o<a<n and (€q)i1<a<y are transfinite bases of A(n)
and A*(n) respectively.

Proof. (i) Let us show that (Xja,5)o<a<y is a basis of A(n).

For each a, define a projection P, : (vi(n),C(n)) — (vi(n),C(n)) by
P,f(#) = f(min(a,B3)) and observe that the projections so defined are
increasing, i.e. PyPg = Ppin(a,s), and are of norm 1. Hence (P, )o<a<y are
increasing, norm 1 projections of A(n). Let us show that they satisfy the
continuity property (§0.4(iv)) on A(n).

It is well known and easy to check that (Py)o<a<y form a P.R.I. of vi(n),
therefore

”'Hvl
P,(vi(n)) = U Pgiq(v1(n)) for every 0 < a < 1n.
B<a

On the other hand, v1(n) is || - || a-dense in A(7n), so

>
Po(A(n)=Pa(vi(n) "
This implies that

[l
) = | Por1(Aln
B<a
since || - ||a < k|| - ||o, for some constant k.

This finishes the proof of the first part as
(Pat1 — Po)(f) = (f(a+1) = f(a))Xjan)

for every f and every a < 7.
(ii) We show now that (eq)i<a<n is a basis of A*(n). Using the facts
that A(n) = [va/3(n),va(n)]12 (see [X]), and that (Xja,y)o<a<y is a basis for

(n
vp(n) if 1 < p < oo (see [E]), and therefore that vy 3(n) is || - [|,,-dense in
U4(7l) e deduce that A*(n) = [vi(n), v} /5(n)]1o (§0.1).
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It is also proved in [E] that (eq)i1<a<y is a basis of vy (n) if 1 < p < oo,
therefore the operators (Qa)o<a<n+1 defined by Qa(es) = Xjo,a[(6)es define
a P.R.L of the spaces v (7).

Using the same proof as in part (i) we deduce that (Qa)o<a<n+1 defines
a P.R.I. of A(n). This concludes the proof since

(Qa+1 — Qa)[A™(n)] = splea]. =
Remarks. (i) Using the same proof as for (ii) of Theorem 4, and the
fact (see [E]) that v,(n) = Y, () if 1 < p < oo, where

1l
9y

Y, (n) =spleq : @ <1, a nonlimit]
we can prove that A(n) = B*(n), where

]”'HA* ‘

B(n) = spleq : @« <1, « nonlimit

(ii) Theorem 4 and the previous remark imply that A(n) and J(n) have
the same measure theory properties. The proofs are the same as Edgar’s
proofs for J(n).
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