COLLOQUIUM MATHEMATICUM

VOL. LXV 1993 FASC. 2

ON FIBRED SASAKIAN SPACES WITH VANISHING
CONTACT BOCHNER CURVATURE TENSOR

BY

KAZUHIKO TAKANO (TOKYO)

1. Introduction. Recently, Y. Tashiro and B. H. Kim ([12]) studied
fibred Riemannian spaces with almost complex, almost contact or contact
structures. For fibred Sasakian spaces with conformal fibres, B. H. Kim ([4],
[5]) studied total spaces of constant 5—holomorphic sectional curvature and
total spaces with vanishing contact Bochner curvature tensor, and obtained
the following theorems:

THEOREM A ([4]). Let M be a fibred Sasakian space with conformal

fibres. If M is a space of constant ¢-holomorphic sectional curvature ¢,
then

(1) the total space is a Sasakian space of constant g-holomorphic sec-
tional curvature —3,

(2) the base space M is locally Fuclidean, and

(3) each fibre F is a Sasakian space of constant ¢-holomorphic sectional
curvature —3.

Conversely, if the base space M is locally Euclidean and each fibre F is
a Sasakian space of constant ¢-holomorphic sectional curvature —3, then M
is a Sasakian space of constant ¢-holomorphic sectional curvature —3.

THEOREM B ([5]). Let M be a fibred Sasakian space with conformal fibres
of dimension s > 3. If the contact Bochner curvature tensor of M vanishes,
then the base space M is of constant holomorphic sectional curvature and
each fibre F is of constant ¢-holomorphic sectional curvature

4K—-s+1)—(3s—5)(s—1)
(s—1)(s+1)
We recall the definition of the Bochner curvature tensor in a Kéhlerian
space and the contact Bochner curvature tensor in a Sasakian space in §2.
In §3, we define fibred Sasakian spaces and prove certain equations valid in

such spaces. We discuss fibred Sasakian spaces of constant g—holomorphic
sectional curvature in §4 and fibred Sasakian spaces with vanishing contact
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Bochner curvature tensor in §5, without the assumption that the space in
question has conformal fibres.

The author would like to express his hearty thanks to Professors S. Ya-
maguchi and N. Abe for their helpful advice.

2. Preliminaries. Let M be an n-dimensional Riemannian space.
Throughout this paper, we assume that the spaces considered are connected
and of class C°. Denote respectively by g;;, Rkjih, Rj; = thih and R the
metric tensor, the curvature tensor, the Ricci tensor and the scalar curvature
of M in terms of local coordinates {z'}, where the Latin indices run over
the range {1,...,n}.

An n(= 2l)-dimensional Kdhlerian space with metric g is a Riemannian
space admitting a structure tensor ¢;” such that

¢i" ¢’ = =07, ji=—¢ij, Vidji=0,
where we put ¢;; = ¢,;"g,; and V}, denotes the covariant derivative.

A Kaéhlerian space is said to be of constant holomorphic sectional cur-
vature ¢ if the curvature tensor satisfies

c
Ry;i" = Z(gjifskh — 986" + Gjitr" — drih;™ — 20n;0:™) .

The Bochner curvature tensor Bkjih of a Kahlerian space M™ is de-
fined by

Biji" = Riji"

1
+ ——(griR;" — gji Re" + Rii6i™ — Rjid" + 0riS;" — 6,5k

n+4
+ Skig;" = Sjidr" + 28k 0" + 201, 9:™)
R
D 0" T 00" s — 5"+ 26005017,

where we put Sj; = ¢;" R,.
For the Bochner curvature tensor M. Matsumoto and S. Tanno proved:

THEOREM C ([7]). If a Kdhlerian space M with vanishing Bochner cur-
vature tensor has constant scalar curvature, then either

(1) M is a space of constant holomorphic sectional curvature, or
(2) M is locally a product of two spaces of constant holomorphic sectional
curvatures ¢ (> 0) and —c.

Next, an n(= 2l 4+ 1)-dimensional Riemannian space M" is called a
Sasakian space if it admits a unit special Killing 1-form n with constant 1
such that

Vidii = 0jgki — Migkj, Gk; = Vin; and € =n;g’".
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On a Sasakian space, the following identities are well-known:

(2.1) Ryji"nn = mkgji — 0j i
(2.2) Ry = (n — 1)y,
(2.3) £V Ry =0.

The contact Bochner curvature tensor Bkjih of a Sasakian space is de-

fined by
By;i" = Riji"
1

+ m(Rki(th — Rjioi" + gri Ry"™ — g;iRi" + Skith;™ — Sjion"

+ PriSi" — ;iSK" 4 2Sk;i™ + 2018
- kajgh + ijk:fh - 77k77ith + 77]‘772‘R1gh)
B k+n-—1 k—4

—— (Prid;™ — bjidr™ + 20k;0:™) — m(%ﬁf — g;iok™)

k h h h h
+ m(gkinjf + mknid;" — g€ — nmidk")
R—‘rn—l'

n+1
When the curvature tensor of a Sasakian space has the form

c+3
Ry :T(gﬁ(skh — grid;")
c—1
+ 1 (grimi€™ — gjame€™ + menid;™ — nmi0x"

— drit" + djitn" — 200" ,
then the Sasakian space is called a space of constant ¢-holomorphic sectional
curvature c. 1f the Ricci tensor Rj; of a Sasakian space M satisfies

R R
Rji = (n_ 1~ 1>9ji - (n—l ”)Wﬂlia

where k =

then M is called an n-Einstein space.
The following theorems were obtained by I. Hasegawa and T. Nakane:

THEOREM D ([2]). Let M™ (n > 7) be a Sasakian space with constant
scalar curvature R whose contact Bochner curvature tensor vanishes. If the
square of the length of the Ricci tensor is less than

n3 — bn? + Tn + 29R2 2(n* — 10n3 + 58n + 79)
(n+1)%(n—5)2 (n+1)%2(n—5)2
(n —1)2(n* — Tn3 +n? + 47n + 54)
(n+1)*(n —5)? ’

then M is a space of constant ¢-holomorphic sectional curvature.

R
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THEOREM E ([2]). Let M be a Sasakian space with constant scalar cur-
vature R whose contact Bochner curvature tensor vanishes. If the scalar
curvature is not —4, then M is of constant ¢-holomorphic sectional curva-
ture.

Finally, if a tensor T3, . ; 7*/7 on a Sasakian space satisfies

j ; bi...b
O I LV e

then the tensor Til_”ipjl“'jq is called n-parallel.

3. Fibred Riemannian spaces. Let {]\7 ,M,q,m} be a fibred space
with Riemannian metric g, that is, (]\7 ,g) is an m-dimensional total space
with Riemannian metric g, M an n-dimensional base space, and 7 : M — M
a projection with maximal rank n. The fibre through a point in M is denoted
by F, and it is s-dimensional. Throughout this paper the ranges of indices
are as follows:

A B,C,D,...=1,2,....n,n+1,...,m,
hoi,j5,k,...= 1,2,...,n,
a,B,7,6,...= n+1,...,m.

We take coordinate neighborhoods {U, 2%} on M and {U,v"} on M such

that 7(U) = U, where 27 and v" are coordinates in U and U, respectively.
Then the projection 7 is expressed by

o= o),
and the Jacobian (Ov"/0x™) has maximum rank n. Take a fibre F' such
that ' NU # (. Then there is a coordinate system (v, y®) in U such that

y® are local coordinates in F'N U.
If we put

then E;" are components of a local covector field E” in U for each fixed
index h and CH, are those of a vector field C, for each fixed index «.
Denoting by g7 the components of § in {U, 2}, we put

9.5 = 9,1C7,C'5.
Then the g, 45 are the components of the induced metric tensor g of F along
FnU. If we put

Cr* = grjg*’C’s,
where (g°?) is the inverse matrix of (Jap), and denote by C* the local co-

vector field with components C;® in U for each index «, then (E", C®) forms
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a coframe in U. Denoting by (EH,, CH, 3) the inverse matrix of (E;%, C%),
we have

EIhEIi — 5ih’ E[hclg —

3.1

( ) CIaEIi — 07 CIQCIB — 6ﬁa
and

(3.2) E[hEHh + C]aCHa = (SIH

Denoting by (g7!) the inverse matrix of (g;;) and putting
g9ji = g BB
we obtain
E™) =M gniBr".
The EH}, are the components of a local vector field Ej, defined in {U, 2},
for each fixed index h. Thus, we find that the set (E;, C3) forms in U a
frame dual to the coframe (E", C%). By analogy with the above notation,
we often denote by (BIg) (resp. (B;#)) the matrix (E;,C%3) (resp. the
matrix (E;7,C;%)). Then we can write (3.1) and (3.2) as
B[ABIB:(sBA and B[ABHA:5[H,
respectively. . _ ~
Any tensor field in M, say T of type (1,2), is represented in U in the
form
(3.3) T=T"E' @E QEp,+Tj°F Q B'@Co + ...
+T,5"C"® C° @ Ej + To5°C" @ CP @ Cy
where
T;" = EJjEIz‘EHhTJIHy T = EJjEIz‘CHaTJIHv ces
= 7 CIEg" Ty, T5% =C7,C1CyoTy
The first term T’ ],th ® E' ® E), is called the horizontal part of T and

denoted by T. The last term T 78YCT® ch ®( C, is called the vertical part of

T and denoted by T. For a function f on M we define its horizontal part
f and vertical part f by f f f.

A tensor field, say T of type (1 2) with local expression (3.3) on M, is
projectable if and only if the T;;" are projectable, or equivalently, if and
only if

0
oy~

If the metric tensor ¢ in a fibred space {]\7, M, g, 7} is projectable, then

T;" =0.

{]Téf, M,q, 7} or simply (M, g) is called a fibred Riemannian space.
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Let V be the Riemannian connection of the Riemannian space (M ,g) and

H
denote by { JI

Let V and V be the Riemannian connections determined by the induced
metrics g in M and g in F', respectively.

} the Christoffel symbols constructed from gy; in {U,z}.

ji
gji in {U,v"} and G5 in {F-NU,y*}, respectively.
If we put

h
We denote by { } and {7023 } the Christoffel symbols constructed from

V,BH g =TI ,B,°B",
in (7, where I CAB are local functions defined in U , then the following hold
[14]:

wor-{2)

(b) 1% = {vaﬁ }

(c) Writing I}%; and I} (= Fﬂhj) as hj;* and h";s respectively, we
have

hjia + hija = 0, hhjg = ghzhijagaﬁ.

Along each fibre F', the hhﬂ are the connection coefficients of the in-
duced connection of the normal bundle of the submanifold F' embedded in
(M, q) with respect to the normals E,.

(d) Writing I',"s (= I'3",) and I',*; as L.g" and —L.%; respectively,
we have

L% = Lyg"gnig™™,  Ij% = Pjg™ — Lg®;.

If we denote by Zcﬁ the Lie derivation with respect to Cz on M , then the
Pjg™ appear in

Lo,E" =0, Lc,Bj =—Pjg*Ca, Lc,C, =0, Lo,C% = Pjg“E.

Along each fibre F', the Lwh are the components of the second funda-
mental tensor of the submanifold F' embedded in (M ,g) with respect to the
normals Ej,. If L,g" = 0, then {]TI/, M,q,n} is called a fibred Riemannian
space with isometric fibres. If L,z" = gwAh, where A = A"E}, is the mean

curvature vector along each fibre and a horizontal vector field in M , then
{M,M,qg,n} is called a fibred Riemannian space with conformal fibres.
Summing up the results mentioned above, we have

h
I = {jz’}’ g =Tp"; = hPg,
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(3.4) Ll =Ly, I%=hu®, D% =—Ly%,
[0
[ =P — L2, IL° :{ }
i =1 B v B e

Let fé’(ﬂ) be the space of all tensor fields of type (p,q) on M. Let

Fr(hM) (resp. FL(vM)) be the space of all horizontal (resp. vertical) tensor
fields of type (r,s) (resp. (t,u)) on M. We consider formal tensor products
on M such as fp(M) ® Fr(hM) @F:(vM). We call an element T of this

Tt
space a (p )—partml tensor on M. We may identify .7-"588( ), FOrO(M)
qsu

and FO! (M) with .7:5(]\7) ]:’"(h]\?) and Ft(vM), respectively. For any
element of FPIL (M), say T in .7-"111111( ) with components T ;7 ;"3 we define

the (x)-covariant derivative V*T of T as a partial tensor with components

i T H
35 Wy = T+ T — Ty
(85) ViTr's" = 5o {KH} H\ KJ
+ (LT + T T —T TS — T.'.'ércaﬁ)BKc
in U, where I"'s are given by (3.4) (see [14]). For any element T of Fri(M M),
we have V*T = VT
Denote two covariant derivations 'V and ”V acting on elements of
t
Fort (M) by
'Vi=E" Vi, "V,=0F,Vi.
For any element of FFI!(M M), say T in ]-"111111( M) with components T 5,

'VT and "VT are clements of FIAL(M) and FLL(M) respectively, with
components

W 0 .. N (H
R (A FA)

+ LMTS + DTS =TS - T IS,

vt D ([T Vg g (T
T =g ({7 T s ) O

+ F’yheT..cj. + F’y ET....E - T.Pi:‘l_"ye =T ety ﬁ
PROPOSITION F ([14]). On M we have
Vikgir=0, Vikgi=0, Vikg,z3=0,
'Vigir =0, 'Vigji=0, 'Vig,;=0,
"Vagir =0, "Vagji=0, "Vag,;=0.



188 K. TAKANO

We denEEe by IN(KJIH, Kkjih and I?Mgo‘ the components of the curvature
tensor of (M, g) in {g, '}, of the base space (M, g) in {U,v"}, and of each
fibre (F,g) in {F NU,y*}, respectively.

If we put Ppp it = BE,BY. B, By K1, then

Ppep® + Pepp® =0,  Ppep® + Pepp™ + Pepe™ =0
and the following equations hold [14]:
Proji™ = Kiji" — 2hi 0", + hyi*hP . — hyithl_
Pjg" ='Vih" 5 = 'V ;b5 — 2 Logh
Py = = 'V;hls + hhisLéej + Ls"hji® + hhstéeia
Psjg" ="Vsh" 5 —'V;Lsg" + Ls%Leg" + h¢5h". 5,
10) Py ="Vsh", ="V b5+ h" ¢
—h"sh®, — Ls"L .5 + L " L%,
(3.11) Py ="VsLyp" ="V, Lss",
(3.12)  Poyp™ = Ksyp® — Ls" Lo + L% Lsp",
(313)  P5y® = —"VsL "+ "V, L,
(3.14)  Pyjp® ="VgLs" — 995" VeLsp®,
( ) Ppig™ = — /VkLﬂaj + /VjLﬁak - ZNVﬁhk]—O‘ — hkeahejﬁ
+ hjeahekﬁ — Lao‘kLﬁgj + LsajLﬁek,
(3.16) Psji® ="Vshji® +'V;Ls% — L L% 4 h€5hei®
(B17)  Poji®™ = Vihy® — 'V hii® + 2" L% .

Also, we denote by K g1, Kj; and K 3o the components of the Ricci

tensors of M, M and F, respectively. Then from (3.6), (3.7), (3.9), (3.12),
(3.14) and (3.16) we have

(318) E’;EVK;r = Kj; — 2he;he,. +"Veh;i + VL5 — Nji
(3.19) E’;C'aK 1 ="V, — 2he; Lo +"Va L5 + Qaj
(3.20) C73CT oK1 = Ko — h? esh® o +'VeLpa® — L% Lga®

where we put Nj; = L_7,L.% and Qn; = —"V.L.;.

Let M be a Sasakian space with Sasakian structure (EE, E, 7,9) such that

;5 is projectable and each fibre is g—invariant and tangent to the vector £.
Then {M,M,g,7} is called a fibred Sasakian space. In [4] and [5], the
following is shown:
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_ ProposiTioN G. Let the induced almost contact metric structure
(¢,£,7,9) on M be Sasakian. Then the base space M is Kdhlerian with
Kdhlerian structure (¢, g) and each fibre F is Sasakian with Sasakian struc-

ture (,€,7,9)-

Also, we have the following equations:

(3.21) hji® = —¢5i”,
(3.22) ELS=0,
(3.23) 'V =0,

(3.24) 'Vigp* =0,
(3-25) Lﬁeiqgsa - Lgae¢ie =0,
(3.26) L, =0.

From (3.26), each fibre F' is minimal in M. Moreover, if M is a fibred
Sasakian space with conformal fibres, then M has isometric fibres.
We define skew-symmetric tensors S, Sj; and S Ba Dy

Syt = b Krr, Sji=¢;"K,; and Sgo = ¢ K q

on M , M and F respectively. Since S;rand S Ba are skew-symmetric, from

(3.9), (3.12), (3.21)(3.24) and (3.25) we find

(3.27) 'VeLpa® =0.

From (3.6), (3.7), (3.9), (3.12), (3.14), (3.16) and (3.27), it is clear that
(3.28) EJjEIigJI = Sji — 2¢ji — ¢ Nei

(329) EJ]'CIQSJI = ¢jeQae ;

(3.30) C7 501,551 = Spa.

Moreover, by (3.21), (3.22), (3.26) and (3.27), equations (3.18)—(3.20) can
be rewritten as follows:

(3.31) E7;ENK 1 = Kji — 295 — Ny,
(3.32) EJjCIaKJI = Qaj »
(3.33) C'5C" K1 = K go + 147, -

Denote by K , K and K the scalar curvatures of M , M and F, respec-
tively. Then from (3.6), (3.9), (3.12) and (3.16) we find

(3.34) K=K'+K-n-N,

where K is the horizontal lift of K and N = §EB§TO‘gh8LET6L5ah. In the
sequel, we denote K by K.
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We put Wpa = Ls%eLea® and Z,pa” = Lya®Ls®e — Lga®Ly“e. By

(3.22), (3.25), (3.28) and (3.29), it is easy to see that
(3.35)  ¢j°Nei = —¢;°Nje,

(3.36) 35" Qri = —0,°Que

(337) &5 Wra = —da W,

(838)  Zepa® = Wpa.

(3.39)  Z,pa” + Z/ga,y + Zayg® =0,

(3.40) Zvﬁa - Zﬁwa )

(3~41) Zwﬂaw - ZOM"/B,

(3.42) ”V5Z-ygaw + ”VVZ@;Q“’ + NVﬁZ&mw

= (Hvz;Lwae - //VvLéae)Lﬂwe + (vaLﬂae - //vﬂLvae)Léwe
+ ("VgLoa —"VsLga) Ly e + Lyo ("VsLg”e — "V Ls% )
+ Lpa®("VyLs¥e = "V5L,%e) + Loa®("V LY e — "NV Lg¥e),
(343)  6,°65" Zera® = Zopa®
(344) 30 Zera® = 07 Zear® = =9 W,
(345)  Zypa"M. =0,

where ngaw = ng,ygas. The tensor Z,Yga” vanishes identically if and
only if the fibred Sasakian space has isometric fibres.

4. Fibred Sasakian spaces of constant qb-holomorphlc sectional
curvature. Let M be a fibred Sasakian space of constant ¢-holomorphic
sectional curvature ¢. The curvature tensor K ;™ has the form

~ C+ 3 - ~
Kyt = 1 (QJI5K — gr10,7)
c—1 L~ o~ o~
+ 1 (gKme — Gorn € o — o

— ox10s™ + o™ = 20K101™) .
Transvecting the above equation with BX, B/, B, By and using (3.6),

(3.9)—(3.12) and (3.15), we see that the above equation is equivalent to the
following:

1) Kiji" + 34 3)(gri0;" — gji0k" + drid;" — ¢jz¢kh + 2¢5;0") =0,
2) /VkLoz - v ch k+Ls kLa j L L %(E—Fg)(bk]&aw = 07
3)  LyLg — Lp"L.5 — 3¢+ 3) 30" =0,
4)

(4.
(
( 3

( 'Vilya" = L5 Lea™ = $(€43)(0,00;" = T,71a0;" + d1a¢;") = 0,

PN
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(4.5) "V Lga" —"VgLy" =0,
(4.6)  Kyga® + Zyga® + 1(€+3)(7,005" — Tgady™)
+3 (= D@70+ = 171008 + Gpallr & — Grallpl”
‘ngaﬁgﬁw - ?Eﬂoﬂ;vw + 25575%04“}) =0.
From (3.27) and (4.4), it is easy to see that
(4.7) Woa = =30(€+3)(Fy0 = Ty7a)
(4.8) N =—in(s—1)(c+3).
Also, by contraction of (4.6) in the indices v and w and owing to (4.7),
we find
Kgo = 1{(n+s+1)c+3n+3s—5}7s,
—H{n+s+1)c+3n—s— 13757, -
Furthermore, transvecting this with g°%, we get
K=1(s—1){(n+s+1)c+3n+3s—1},
which implies that

Hence, we have

THEOREM 4.1. If (]\7, g) is a fibred Sasakian space of constant g—holo-
morphic sectional curvature ¢, then

(1) c¢ < =3,

(2) the base space M s of constant holomorphic sectional curvature ¢+ 3,
and

(3) each fibre F' (with dim F' > 3) is an 7-Einstein space.

In the case of ¢ = —3, from (4.8) and Theorem A we deduce

COROLLARY 4.2. If (M, g) is a fibred Sasakian space of constant -
holomorphic sectional curvature —3, then

(1) the base space M is locally FEuclidean, and ~
(2) each fibre F' (with dim F' > 3) is a Sasakian space of constant ¢-
holomorphic sectional curvature —3.

5. Fibred Sasakian spaces with vanishing contact Bochner cur-
vature tensor. In this section, we consider a fibred Sasakian space M™
with vanishing contact Bochner curvature tensor. Then the curvature tensor
of M is given by

_ 1 -~ o~ o . . .
Kyt =— m(KKI(sJH — Ko™ + grr K" — G K™ + Skros™
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- gJI(EKH + ¢~5KI§JH - ¢~5JI§KH + 2§KJ$1H + 2$KJ§]H
— Kgrns& + Ky —nem K7 + 550 K™

B %@KN;JH — 1o + 20K0,7)

- M(gKIgJH — Grrogth)

+ mlj-?,@KIﬁJgH + ik = G - ﬁJﬁIgKH) ’
where we put k = [N(;rﬁ:f L

Transvecting the above equation with BX, B/, B! BBHA and applying
(3.6), (3.8)—(3.12) and (3.15), we see that the above equation is equivalent
to the following equations:

1
(5.1) K"+ — (Kid;" — Kjior" + gra K" — 956 K" + Skiop;"

+3
— Sjitn" + oriS;" — 8" + 250" + 261;.5:™)
k
T3 (gri0;" — 950" + Prich;" — djid™ + 20n;0:™)
1
pieea 3(Nki6jh — Njiok" + griN;" — g5 Ni"

+ O Neithi" — & Nyt + drid N — ¢jipy) N
+ 20 Npjoi + 2010, N") = 0,
(5:2) Qyib;" = 9jiQy" + 647 Qrithi" — 6idy Q" + 26,7 Q7" =0,
(5.3) L,Leg" — Lg% Ley"

2 _ -
+ (860" + 6,5{Si" — ;"N — (k= 2)¢:"}] = 0,

m+ 3
(54) — /VkLawj + /VjLawk — ngkLaE]’ + stjLask
2 ~ _ _
+ m[{skj — 0" Npj — (K —2)bnj }da™ + 157 =0,

(5.5) —'V;Lya" 4+ L, ;L"
1 — — _ _
+ m{K’Yaéjh + S7a¢jh + (g'ya - n'yna)(KJh - Njh)
+ &'ya(th - ‘z’jTth)}

+m—+377~,77a5j _m(%aqﬁj +9400;) =0,

(5.6) "V Lga" —"V5Ly"
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1 _ _ _ _
+— (g'ya - nyna)Qﬁh - (gﬁa - nﬂna)Q')’h

m+ 3
+ (z)'ya(z),Bngh - Qbﬁa(;swaQsh + 2¢7,8¢o¢€@€h} = 07
(5.7) Kypa® + Zypa®

1 _ . _ _ _
+ — = (K 005" — Kpgady® +§waKﬁw — Gl + Syats”

m+ 3
= S8a®y" + PyaSp” = PpaSy” + 25yp0a" + 204554"
- Kwaﬁﬁgw + Kﬁaﬁvgw - ﬁ'yﬁaKﬁw + ﬁﬁﬁaK’Yw)
7{;+n77*w = — T w —= = fw —= = fw
+ m(nynaéﬁ - nﬁna6’7 + g'yanﬂg - gﬁan'yg )
E—i_m_ 1 - - w T T w T T w
- W(¢7a¢ﬁ _¢,8a¢'y +2¢'y[3¢a )
k—4

m@mgﬂw —Jpad,) = 0.

Contracting (5.5) with g7, we easily get
(5.8) (s —D)K;" + (n+4)N;" + {K — (s — 1)(k - 1)}3;" =0,
and consequently,
(5.9 (s+D(s=1)K+ n+2){nK+(n+2s+2)N+n(s—1)}=0.
Substituting this into (5.1), we have

1

1 K-ih:—i
(5.10) ki n+s+3

(Kgid;" — Kjion" + gri K"
+ g5 K" + Spith;™ — Sjidn" + briS;"
— $;iSK™ + 2816 + 201, 8i")
(n—s+ 1)K
n(n+2)(n+s+3)

X (gri6;" = gji0k" + drid;" — Gjidr" + 201, 0:")

1 N N
— A Npi— —gri |6:" = (| N;y — —q.; | 6:"
+n+5+3{< b ngk>j ( / ngj>k
N N
+ Gri (Njh - 5jh> — Yji (Nk:h - 5k:h>
n n

N N
+ ¢° (Nsi - ngsi> o;" — ¢;° <Nsi - ngsi> or"

N N
+ ¢ki¢jS<Nsh — n5sh) — ¢ji¢ks<Nsh — n5sh)
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N N
+ 2¢ks (st - ngsj)¢ih + 2¢kj¢is (Nsh - n(ssh) } .

By contraction of (5.10) in k& and h, we obtain

N s—1 K
(5.11) Nji = i = R (Kji - ngji> :
Substituting (5.11) into (5.10), we have
1
K" = = g (Kt = Kjidi" + 90 K5" = 950 K0 + Sy = Sjidn”

+ OriS;" — Sk + 28k ™ + 2¢15:™)

K
+ m(gm&h — 90" + Prid;" — jidk" + 20n; ") .

Hence we get

LEMMA 5.1. Let;]\z be a fibred Sasakian space. If the contact Bochner
curvature tensor of M vanishes, then the base space M is a Kdhlerian space
with vanishing Bochner curvature tensor.

Next, by contraction of (5.2) in h and j, we find

Q'yi =0.
Substituting this into (5.6), we get
(5.12) "Ny Lga" —"VLy" =0.

By transvection of (5.7) in v and w, it is clear that

(5.13)  Kga :n(sl—l){nK+ (n+s+3)N —n(s —1)}g5,
_ n(sl—l){nK—i_ (n+s5+3)N —ns(s — 1)}757,
— %(n+s+3)Wga.

Applying "V to (5.13) and making use of (2.3), (3.22), (3.25), (3.26) and
(5.12), we obtain

(5.14) "Vg{nK +(n+s+3)N} =0,
provided s > 3. In the sequel, we assume that s > 3.
Substituting (5.13) into (5.7), we have
(5.15) I?Vﬂaw + Zvﬁaw
N nK + (n+2s+2)N +n(s—1)
n(s+1)(s—1)

(g'yagﬂw - gﬁang)
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nK + (n+2s+2)N —ns(s — 1) 1-
H. 3, — =15, =0
* n(s+1)(s—1) vhe T b ’

where we put
Hoyg0" =Tg7a0+" = 1,7a08" + Ggally € — Gyallpt”
+ Gra®p” — Ppady” + 204504,
Lyga® = Waads” = Wgady® +G,0W5" = GaaWa" + 07" Wrags”
— 08" Wra®y” + rads" W = 9pady W + 20, Wo50a"
+ 2,50 W — W*yaﬁggw + Wﬁaﬁygw
= 1,71 W 5" + T WA .
Applying "V to (5.15) and using (5.14), we find
(5.16) "V5K 50 4+ "V Z50"

1 _ _ _
(G0 08Y — G50~ + H3,°) ' VsN
+ n(s+l) (g'ya B8 9809~ + VB ) 9

nK + (n+2s+2)N —ns(s—1),_ — 1, =
VsH 50" — ="Vl 5, =0.
n(s+1)(s—1) oHinpe n 0P

Furthermore, by contraction of (5.16) in ¢ and w, we have
(5.17) "VoKpo —"V5K 4
s—1 _ _ T _ — _\T
- m{(%a - %%)555 - (gﬁa - 77577a)576

+ $7a$ﬁ€ - &ﬁaggvs + QCEWﬁ?EaE}HvEN
nK+ (n+s+3)N—ns(s—1), -

+ 7’L(8 + 1) (¢'yaﬁ,8 - ggﬂaﬁ’y + 2$’Yﬂﬁa)

{4+ (VW g0 — "5 50)
+ 0,507 ("VWora ="V, Wea)
— 2000V Wrp = sTigdy " Wea + (s + 2)7,65"Wra
—2(s + )70y Wop} =0,

where we have used (3.26), (3.38), (3.42), (5.12) and Bianchi’s identity.
Also, by interchanging indices as § — v — [ in (5.16) and adding all
together, owing to (3.42), (5.12) and Bianchi’s identity, we obtain

(s = D{(F008% — Tpa0y" + Hypa")'VsN
+ (95a05" — G508 + Hpsa")"'V N
+ (T500+" — Gya0s” + Hsya) 'V N}
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+{nK + (n+2s+2)N —ns(s—1)}
x ("VsHypo +"VyHpso” +"VHsya")
—(s+1)(s = 1)("VsI,5a" +"Volgsa® +"Vlsya®) =0.
By contracting in § and w, from (3.38), (3.42), (5.12) and (5.14) we find
(5.18) (s+2)("VyWaa —"VWaa) + sT30, W1
— (54 2)71,05" Wra +2(s + )70y Worg
- ngaﬁgﬁT(HvsWTa - ,IVTWEOC) + 2<5a6€57THV6W7,3
— 580 = 1,72)05° = (Gpa = 57005
— 01a0p” + Ppady” — 20,500} VN =0.
If we transvect (5.18) with g7 and use (3.38), (3.42) and (5.12), then we
get

(5.19) ”VgN =0.
Substituting (5.19) into (5.18), we have
(s+ 2)(/IV’YW/30¢ - ”vﬁw’ya) + Sﬁﬁé’yTWTa
— (s +2)7,058"Wra + 2(s + 1)71,0, W
_ @%ﬁT(HVsz o //VTWEa) + 2(5066(Z’YTHVEWTB — 07
which implies that
(5.20) NVWWﬁa = ﬁﬂ&aTW’T’y + ﬁaggﬂTW,,—v .

Because of (2.2), (2.3), (5.19) and (5.20), equation (5.17) can be rewritten
as follows:

//vyl?ﬁa . //vﬁ-[?'ya
nK+n+s+3)N—-ns(s—1) - _  — _ -
n(s n 1) ((Z)'Wlnﬁ - Cbﬁany + 2¢75na)
1 [ o
- E(n +s+ 3)(775¢7 Wora — 77%755 Wra + 20,0, Wog) =0.
Applying £ to this, owing to (2.2), (2.3) and (5.13), we find
(5.21) nK+(n+s+3)N—-ns(s—1)=0,

and consequently, from (5.19) we see that the scalar curvature K is constant
on each fibre F'.
By (5.9) and (5.21), we get

(5.22) (n + 2)/V1’N + (s + 1)’VZ-K =0.
Also, substituting (5.3) into (5.4), we obtain
(5.23) ,vkLawj —'V;L,",=0.
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Applying 'V7 to (5.11) and using (3.27) and (5.23), we have
(n+4)V,N+(s—1)V,K =0,

from which, together with (5.22), we find

(5.24) 'V.K =0,

that is, the scalar curvature K is constant on the base space M. Since N is
a nonnegative constant, from (5.9), (5.19), (5.21), (5.22) and (5.24) we find

LEMMA 5.2. Let M be a fibred Sasakian space and dim F' > 3. If the
contact Bochner curvature tensor of M vanishes, then the scalar curvatures
K and K are constant. Moreover, K < —n(n+2) and K < s(s—1), where

equality holds when M has conformal fibres.
From Lemmas 5.1, 5.2 and Theorem C, we have

THEOREM 5.3. Let M be a fibred Sasakian space and dim F' > 3. If the
contact Bochner curvature tensor of M wvanishes, then either

(1) M is a space of constant holomorphic sectional curvature ¢ (< —4),
or

(2) M is locally a product of two spaces of constant holomorphic sectional
curvatures ¢ and —c, where |c| > 4.

Let MY (c) and My "(—c) be a space of constant holomorphic sectional
curvature ¢ of dimension p and of constant holomorphic sectional curvature
—c of dimension n — p, respectively. By Theorem 5.3, the base space M™
is locally a product MY (c) x My P(—c); if p = 0 or p = n, then M is
considered to be a space of constant holomorphic sectional curvature —c
or ¢, respectively.

Remark. By Lemma 5.2, we find |c| > 4n/|n — 2p| if n # 2p.

We now consider the fibre F' of a fibred Sasakian space with vanishing
contact Bochner curvature tensor. It is easy to see from (5.13) and (5.20)
that

vakﬁa = _ﬁﬂgva - ﬁaEWﬂ + (s — 1)@,85704 +ﬁaq§’7ﬁ) .
Thus, we find

PRrROPOSITION 5.4. Let ]T{/vbe a fibred Sasakian space. If the contact
Bochner curvature tensor of M wvanishes, then the Ricci tensor of each fibre
F (s > 3) is n-parallel.

Denoting by B~ g," the contact Bochner curvature tensor of each fibre F,
from (5.15) and (5.21) we get

Evﬁaw = _Zvﬁaw‘i'

_ _ _ 1 -
(G855 0-C+ H o)~ ——T g0
(8+1)(8+3>(g'ya B8 gﬁa ol + B ) s+1 vB
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from which together with (3.25), (3.37), (3.38), (3.44) and (3.45), we have

e 8(s? +4s+11) ,
(s+1)2(s+3)2

16(s — 1) |
(s+1)2
where we put |B|? = B, gaw B, IN|? = N;;N7" and |W|? = W 5, WP,

We put |Ric|? = K 5, K%, From (5.11), (5.13), (5.21) and Theorem 5.3,
we obtain

B2 =2V -

LEMMA 5.5. Let M be a fibred Sasakian space with vanishing contact
Bochner curvature tensor. Then

(s+1)2 (1  4(s®>+4s+11) | —
8(s— 1) {n 120+ 3)2 }K

s(s+1)2 (1 4(s®+6s2—-55—18)) [= s(s—1)
4 {n_ s(s + 1)2(s + 3)2 }{K_ 2 }

1 D s+3)\° 9 o
— (1) (1 1 1)2¢2 |
+128p< n><+ n >(8 )(s+1)%

Ric|? <

Equality holds if and only if the contact Bochner curvature tensor Bgo" of
each fibre F' vanishes.

By (5.19), (5.21), Lemma 5.5, and Theorems D and E, we have

THEOREM 5.6. Let M be a fibred Sasakian space with vanishing contact
Bochner curvature tensor and dim F' > 7. If

(s+1)2 (1  4(s>+4s5+11) ] =
8(5(1)%;{1(521)2(5;?;)2}5 18)}{ ( 1)}
_ss+ s° + 6s8° — 58 — E_ss—

4 n s(s+1)2(s+3)? 2

+= (1 - :;) (1+ 81—3)2(3— 1)(s +1)2¢2

128p
9 4 1 3
(s 0s® + 58s + 79) ¢

53_552+78+297(2—

(s+1)%(s —5)2 (s+1)%(s —5)?
(s — 1)2(s* — 7% + 5% + 475 + 54)
(s+1)%(s—5)2 ’

< |Ric|]? <

then each fibre F is a space of constant ¢-holomorphic sectional curvature.

THEOREM 5.7. Let M be a fibred Sasakian space with vanishing contact
Bochner curvature tensor and dim F' = 5. If K # —4 and



SASAKIAN SPACES 199

L 9(1 T\ 1 29\ ,—
Ric2 > -+ — |K?>—45( - —— (K —-10
[Ric] _8<n+72) (n 360)( )

2
9
+p<1—p><l—|—8> &,
8 n n

then each fibre F is a space of constant ¢-holomorphic sectional curvature.

From Lemma 5.2 and Theorem B, we find

COROLLARY 5.8. If M isa fibred Sasakian space with vanishing contact

Bochner curvature tensor and conformal fibres of dimension s > 3, then the
base space M is of constant holomorphic sectional curvature —4 and each
fibre F is of constant ¢p-holomorphic sectional curvature 1.

Remark. By (5.13) and (5.20), [IW| and |Ric| are constant on each fibre

F (with s > 3).
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