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PAWE L G. W A L C Z A K ( LÓDŹ)

Introduction. In [Wa2], while studying the geodesic flow of a foliation,
we introduced the notion of Jacobi fields along geodesics on the leaves of a
foliation F of a Riemannian manifold M . Jacobi fields occur as variation
fields while varying a leaf geodesic c among leaf geodesics. They satisfy the
equation

JY = 0 ,

where J is a second order differential operator acting in the space of vector
fields along c (see (16) in Section 4). The Jacobi operator J depends on the
curvature of M as well as on the second fundamental form B of F . In the
trivial case, F = {M}, J reduces to the classical Jacobi operator studied in
Riemannian geometry [Kl].

In this article, we show that J plays a role in the second variational
formula for the arclength L and energy E of leaf curves (Section 4). Since leaf
geodesics appear to be critical for L and E for some variations only (Section
3), we have to distinguish a suitable class of variations called admissible here
(Section 4). We collect a number of properties of the operator J (Section 5)
acting particularly on the tangent space TcΩ of the space Ω of all the leaf
curves. (The space TcΩ is described in Section 2.) Some particular cases
are considered in Section 6. The results lead to some consequences relating
geometry and topology of (M,F) (Propositions 2 and 9).

Further development of the variational theory is obstructed in general by
the possibility of non-existence of admissible variations for some variation
fields (see Proposition 4 and the Remark following it). The problem could
be overcome by suitable assumptions on the exterior geometry of F .

1. Notation. Throughout the paper ∇ is the Levi-Civita connection
on an n-dimensional Riemannian manifold (M, g), R is its curvature tensor
and K is the sectional curvature of M . F is a p-dimensional foliation of
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M , v = v> + v⊥ is the decomposition of a vector v into the parts tangent
and orthogonal to F . ∇> is the connection in TF , the tangent bundle
of F , induced by ∇ and the orthogonal projection. ∇⊥ is the analogous
connection in T⊥F , the orthogonal complement of TF . All the connections
in different tensor bundles induced by ∇, ∇> and ∇⊥ are denoted, maybe
abusively, by ∇.

A (resp., A⊥) is the Weingarten operator of F (resp., of the orthog-
onal distribution T⊥F), defined by AY X = −(∇XY )> (resp., A⊥XY =
−(∇Y X)⊥) for X tangent and Y orthogonal to F . Similarly, B and B⊥ are
the second fundamental tensors of F and T⊥F : 〈B(U, V ), X〉 = 〈AXU, V 〉
and 〈B⊥(X, Y ), U〉 = 〈A⊥UX, Y 〉 for U and V tangent to F , and X and
Y orthogonal to it. In other words, B(U, V ) = (∇UV )⊥ and B⊥(X, Y ) =
(∇XY )>. Note that the form B is symmetric while B⊥ in general is not.

2. Space of curves. Let F be a foliation of a Riemannian manifold
(M, g). Denote by Ω the space of piecewise smooth curves c : [0, 1] → M
tangent to the leaves of F . We equip Ω with the uniform C1-topology
induced by g and the Sasaki metric gS on TF . In this way, Ω becomes a
metric space with the distance function dΩ given by

(1) dΩ(c1, c2) = sup
0≤t≤1

d(c1(t), c2(t)) + sup
0≤t≤1

dS(ċ1(t), ċ2(t)) ,

where d is the distance function on (M, g) and dS the distance function on
(TF , gS), and the supremum in the second term is taken over all the t’s for
which ċ1(t) and ċ2(t) do exist.

A curve in Ω is meant to be a continuous map V : [0, 1] × (a, b) → M
such that V (·, s) ∈ Ω for all s in (a, b) and there exist numbers 0 = t0 <
t1 < . . . < tk = 1 for which V |[ti, ti+1]× (a, b), i = 1, . . . , k− 1, are smooth.
If s0 ∈ (a, b) and c = V (·, s0), then V is called an F-variation of c.

The tangent space TcΩ (c ∈ Ω) is considered to be the space of all
variation fields corresponding to all the F-variations of c. TcΩ consists of
continuous piecewise smooth vector fields along c. Obviously, TcΩ is a vector
space containing all the fields tangent to F .

Proposition 1. Z ∈ TcΩ if and only if Z⊥· = −A⊥ċZ⊥.

Here and in the sequel, the upper dot denotes the covariant differentia-
tion in the bundle T⊥F in the direction of c.

P r o o f. Let V : [0, 1] × (−ε, ε) → M be a smooth F-variation of c =
V (·, 0) and let Z = V∗(d/ds)(·, 0) be the variation field. Assume that Z
is orthogonal to F . Let X = V∗(d/dt) and Y = V∗(d/ds) be fields along
V so that Z = Y (·, 0). Since the fields d/dt and d/ds commute, and the
Levi-Civita connection ∇ on M is torsion free, we have ∇d/dsX = ∇d/dtY
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and therefore,

(2) Z· = (∇d/dtY )⊥ = (∇d/dtX)⊥ = −A⊥ċZ .

Conversely, assume that Z is orthogonal to F and satisfies (2). Consider
a chart x on M distinguished by F and such that x(c(t)) = (t, 0, . . . , 0) for
any t. (This can be done for any short piece of any curve c ∈ Ω for which
ċ 6= 0, so it is sufficient to consider curves of this form.) Take an (n − 1)-
dimensional (n = dim M) ball B(ε) centered at the origin and extend Z
along {0} × B(ε) keeping it orthogonal to F . For any u ∈ B(ε) there
exists a unique solution Yu along the curve t 7→ (t, u) of Y · = −A⊥(d/dt)Y
satisfying the initial condition Yu(0, u) = Z(0, u). The field Y defined by all
the fields Yu satisfies

(3) [d/dt, Y ]⊥ = 0

on [0, 1]×B(ε). Let (ϕs) be a local flow of Y in a neighbourhood of [0, 1]×
{0}. The map V : [0, 1] × (−ε, ε) 3 (t, s) 7→ ϕs(c(t)) is a variation of c,
V∗(d/ds) = Z along c and V (·, s) is tangent to F for any s because of (3).

R e m a r k. For any leaf curve c : [0, 1] → L the linear isomorphism

Z⊥
c(0)F 3 v 7→ Zv(1) ∈ T⊥c(1)F ,

where Zv is the unique solution of (2) satisfying the initial condition Zv(0) =
v, represents the linear holonomy hc of F along c. In particular, Zv(1)
depends only on the homotopy class of c.

In fact, if H : [0, 1] × [0, 1] → L is a homotopy satisfying H(0, s) = x
and H(1, s) = y for all s and some x and y in L, Z is a vector field along H
perpendicular to F , X = H∗(d/dt), Y = H∗(d/ds),

(4) ∇⊥
XZ = −A⊥XZ ,

W = ∇⊥
Y Z and f = ‖W‖2, then for any s ∈ [0, 1] we have

1
2

df

dt
= 〈∇⊥

XW,W 〉 = 〈R(X, Y )Z,W 〉+ 〈∇⊥
Y ∇⊥

XZ,W 〉(5)

− 〈B(AZX, Y ),W 〉+ 〈B(X, AZY ),W 〉 .
Ranjan’s formula (*) ([Ra], p. 87) implies that

〈R(X, Y )Z,W 〉 = 〈(∇Y B⊥)(Z,W ), X〉 − 〈(∇XB⊥)(Z,W ), Y 〉(6)
− 〈AZY, AW X〉+ 〈AZX, AW Y 〉
− 〈A⊥XA⊥Y Z,W 〉+ 〈A⊥Y A⊥XZ,W 〉 .

The formulae (4)–(6) together with the obvious relations between A and B
(A⊥ and B⊥, resp.) and their covariant derivatives imply that

1
2

df

dt
=

d

dt
〈A⊥Y Z,W 〉 .
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Therefore,

f(1, s)− f(0, s) = 〈A⊥Y Z,W 〉(1, s)− 〈A⊥Y Z,W 〉(0, s) = 0

because Y (0, s) = 0 and Y (1, s) = 0 for all s. If Z(0, s) = v for all s, then
f(0, s) = 0, f(1, s) = 0 and Z(1, s) is constant on the interval [0, 1].

3. First variational formula. The arclength L and the energy E are
continuous functionals on Ω given, as usual, by

(7) L(c) =
1∫

0

‖ċ(t)‖ dt and E(c) =
1∫

0

‖ċ(t)‖2 dt .

They are differentiable in the sense that if V is a smooth variation, then the
functions s 7→ E(V (·, s)) and s 7→ L(V (·, s)) are differentiable provided, in
the second case, that the curves V (·, s) are regular.

Let V : [0, 1] × (−ε, ε) → M be a smooth F-variation of a leaf curve
c = V (·, 0) parametrized proportionally to arclength (‖ċ‖ ≡ const.). Let
L(s) = L(V (·, s)), X = V∗(d/dt) and Y = V∗(d/ds). Then

(8) L′(s) =
1∫

0

〈∇d/dsX, X〉(t, s)
‖X(t, s)‖

dt =
1∫

0

〈∇d/dtY, X〉(t, s)
‖X(t, s)‖

dt ,

L′(0) =
1
l

1∫
0

〈Y ′, ċ〉 dt

and

(9) L′(0) =
1
l

(
〈ċ, Y 〉|10 −

1∫
0

〈Y >, ċ′>〉 dt−
1∫

0

〈Y ⊥, B(ċ, ċ)〉 dt
)

,

where l is the length of c.
A similar formula holds for piecewise smooth curves and F-variations.

One has to consider the integrals over the intervals [ti, ti+1], 0= t0 <t1 <. . .
. . . < tk = 1, for which both c and V are differentiable.

In the same way,

E ′(s) = 2
1∫

0

〈∇d/dtY, X〉(t, s) dt

and

(10) E ′(0) = 2l · L′(0) ,

where E(s) = E(V (·, s)).
From (8) and (9) it follows that any leaf curve c which is to minimize

either arclength or energy for F-variations V satisfying

(11) Y (0)⊥ ċ(0) and Y (1)⊥ ċ(1)
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should be a leaf geodesic. In this case, the variation formula (9) reduces to

(12) L′(0) = −1
l

1∫
0

〈Y ⊥, B(ċ, ċ)〉 dt .

Therefore, a leaf geodesic c is a critical point of L (equivalently, of E) for all
the F-variations V for which the variation field Y satisfies (11) and

(13)
1∫

0

〈Y ⊥, B(ċ, ċ)〉 dt = 0 .

The proposition below is a simple application of the above considerations.

Proposition 2. Let F be a transversely oriented codimension-one foli-
ation of a manifold M . Let X be a non-vanishing vector field transverse to
F . Assume that there exists a Riemannian metric g on M for which X ⊥F
and the scalar fundamental form h of F is positive. Then any leaf of F
admits at most one closed trajectory of X intersecting it.

P r o o f. Assume that a leaf of F intersects two closed trajectories T1 and
T2 of X. The subspace Ω̂ ⊂ Ω consisting of all the leaf curves joining T1 to
T2 is non-void and there exists a leaf geodesic c : [0, 1] → M for which L|Ω̂
attains its minimum. There exists a positive function f for which the field
Y = f ·X ◦ c belongs to TcΩ, and an F-variation V for which the variation
field equals Y . For this variation

1∫
0

f(t)‖X(c(t))‖h(ċ(t), ċ(t)) dt = 0.

Since h(v, v) > 0 for v 6= 0, the last equality implies that ċ(t) = 0 for any t.
Therefore, c(0) = c(1) ∈ T1 ∩ T2 and T1 = T2.

4. Admissible variations and second variational formula. As-
sume that V : [0, b]× (−ε, ε) → M is a smooth F-variation of a leaf geodesic
c : [0, b] → M for which the variation field Y satisfies

(14) Y (0, ·)⊥F , Y (b, ·)⊥F ,
b∫

0

〈Y ⊥, B(X, X)〉(t, ·) dt ≡ 0 ,

where, as before, X = V∗(d/dt). F-variations satisfying (14) are said to be
admissible here.

Proposition 3. For any admissible variation V of a normal leaf geodesic
c one has

(15) L′′(0) =
b∫

0

(〈JY, Y 〉 − 〈Y ′, ċ〉2)(t, 0) dt ,
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where

(16) JZ = −Z ′′ + R(ċ, Z)ċ + (∇ZB)(ċ, ċ) + 2B(Z ′>, ċ)

for any vector field Z along c. Similarly ,

(17) E ′′(0) = 2
b∫

0

〈JY, Y 〉(t, 0) dt .

The differential operator J defined by (16) is called the Jacobi operator
here. It appeared in [Wa2], where the variations of leaf geodesics among
leaf geodesics were considered. Some properties of J are studied in the next
section.

P r o o f. From (8) we get

L′′(s) =
b∫

0

‖X‖−3

(
d

ds
〈∇d/dtY, X〉‖X‖2 − 〈∇d/dtY, X〉2

)
(t, s) dt

and

(18) L′′(0) =
b∫

0

(〈∇d/ds∇d/dtY, ċ〉+ ‖Y ′‖2 − 〈Y ′, ċ〉2)(t) dt .

Since the fields d/ds and d/dt commute,

(19) 〈∇d/ds∇d/dtY, ċ〉 = 〈R(Y, ċ)Y, ċ〉+ 〈∇d/dt∇d/dsY, ċ〉 .
Also,

〈∇d/dt∇d/dsY, ċ〉 =
d

dt
〈∇d/dsY, ċ〉 − 〈∇d/dsY, B(ċ, ċ)〉

=
d

dt
〈∇d/dsY, ċ〉 − d

ds
〈Y, B(X, X)〉

+ 〈Y, (∇Y B)(ċ, ċ) + 2B(Y ′>, ċ)〉 ,
b∫

0

d

dt
〈∇d/dsY, ċ〉 dt = 〈∇d/dsY, ċ〉|b0

and
b∫

0

d

ds
〈Y, B(X, X)〉 dt =

d

ds

b∫
0

〈Y, B(X, X)〉 dt = 0

because of (14). It follows that

L′′(0) =
b∫

0

(〈R(ċ, Y )ċ + (∇Y B)(ċ, ċ) + 2B(ċ, Y ′>), Y 〉(20)

+ ‖Y ′‖2 − 〈Y ′, ċ〉2) dt + 〈∇d/dsY, ċ〉|b0 .
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Finally,

‖Y ′‖2 =
d

dt
〈Y, Y ′〉 − 〈Y ′′, Y 〉 ,(21)

b∫
0

d

dt
〈Y, Y ′〉 dt = 〈Y, Y ′〉|b0(22)

and

(23) 〈∇d/dtY, Y 〉+ 〈∇d/dsY, X〉|b0 =
d

ds
〈X, Y 〉|b0 = 0 .

The formulae (20)–(23) yield (15).

Corollary 1. If an admissible variation V is geodesic, then

L′′(0) = E ′′(0) = 0 .

P r o o f. If all the curves V (·, s) are leaf geodesics, then the variation
field Y is Jacobi, i.e. it satisfies the Jacobi equation JY = 0. For a Jacobi
field Y along a leaf geodesic c one has 〈Y ′, ċ〉 ≡ const ([Wa2], Lemma 1).
Also, 〈Y, ċ〉′ = 〈Y ′, ċ〉+ 〈Y, B(ċ, ċ)〉 and if Y (t)⊥F for t = 0 and t = b, then

b∫
0

〈Y ′, ċ〉 dt = −
b∫

0

〈B(ċ, ċ)〉 dt .

If Y comes from an admissible variation, then
b∫

0

〈Y ′, ċ〉2 dt =
( b∫

0

〈Y ′, ċ〉 dt
)2

=
( b∫

0

〈B(ċ, ċ)〉 dt
)2

= 0 .

Now, we shall show the existence of admissible variations with prescribed
variation fields. To this end we need the following elementary fact.

Lemma 1. If f : [0, b] × (−ε, ε) → R is a smooth function such that∫ b

0
f(t, 0) dt = 0 and f(t, 0) 6= 0 for some t, then there exists a smooth

function λ : [0, b]×(−η, η) → R (0 < η < ε) for which λ(t, 0) = t, λ(0, s) = 0,
λ(b, s) = b, ∂λ/∂t > 0 and

(24)
b∫

0

∂λ

∂t
(λ(·, s)−1(u), s)f(u, s) du = 0

for all s and t.

P r o o f. We shall find a piecewise linear function λ satisfying all the
conditions. It could be made smooth by a procedure analogous to that of
the proof of Lemma 2 of [Wa1], for example.
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First, we can find d ∈ (0, b) and η ∈ (0, ε) such that
∫ d

0
f(t, s) dt 6= 0, for

example
d∫

0

f(t, s) dt > 0 and
b∫

d

f(t, s) dt < 0 ,

for all s ∈ (−η, η). Let

λc(t) =


d

c
t if 0 ≤ t ≤ c ,

b− d

b− c
(t− c) if c ≤ t ≤ d ,

and

I(s, c) =
b∫

0

λ′c(λ
−1
c (u))f(u, s) du =

d

c

d∫
0

f(u, s) du +
b− d

b− c

b∫
d

f(u, s) du .

Then
∂I

∂c
< 0, lim

c→0+
I(s, c) = +∞, lim

c→b−
I(s, c) = −∞ ,

so for any s there exists a unique cs such that I(s, cs) = 0. Obviously,
c0 = d. The function λ given by λ(t, s) = λcs(t) satisfies all the conditions
of the lemma.

Proposition 4. Assume that Z ∈ TcΩ is a vector field orthogonal to F
and such that

b∫
0

〈Z,B(ċ, ċ)〉 dt = 0 and 〈Z,B(ċ, ċ)〉(t) 6= 0

for some t. There exists an admissible F-variation V : [0, b]× (−η, η) → M
for which Z is the normal component of the variation field.

P r o o f. Take any F-variation W : [0, b]× (−ε, ε) → M for which Z(t) =
W∗(d/ds)(t, 0) (0 ≤ t ≤ b). Apply Lemma 1 to the function

f = 〈W∗(d/ds), B(W∗(d/dt),W∗(d/dt))〉 .
Let

V (t, s) = W (λ(t, s), s), 0 ≤ t ≤ b, −η < s < η ,

where λ is any function satisfying the conditions of Lemma 1. Then

(25) V∗

(
∂

∂s

)
=

∂λ

∂s
W∗

(
∂

∂s

)
+ W∗

(
∂

∂s

)
and

(26) V∗

(
∂

∂t

)
=

∂λ

∂t
W∗

(
∂

∂t

)
.
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Formula (25) shows that the normal component of V∗(∂/∂s) equals Z along
c. Formulae (25) and (26) together with (24) show that the variation V is
admissible.

R e m a r k. (i) Note that the tangent component of the variation field
constructed in the course of the proof above is of the form f · ċ, where
f : [0, b] → R satisfies f(0) = f(b) = 0.

(ii) The assumption 〈Z,B(ċ, ċ)〉(t) 6= 0 is essential here. If, for example,
codimF = 1, F is transversely oriented and totally umbilical, B = λg ⊗N
for a unit field N orthogonal to F and a function λ : M → R, L is an isolated
totally geodesic leaf, λ is strictly positive in U \L for some neighbourhood U
of L and c : [0, b] → L is a geodesic, then there are no non-trivial transverse
to F admissible variations of c in spite of the identity B(ċ, ċ) ≡ 0.

5. Properties of the Jacobi operator. Consider the operator J
defined by (16) for a normal leaf geodesic c : [0, b] → L. Clearly, J is
R-linear and maps the space of vector fields along c into itself. Its kernel is
of dimension 2n while the intersection TcΩ ∩ kerJ of dimension n + p. It
consists of Jacobi fields (in the sense of [Wa2]) obtained by varying c among
leaf geodesics.

Proposition 5. Let X = Y + Z satisfy JX = 0, Y ⊥ = 0 and Z> = 0.
Then X ∈ TcΩ if and only if

Z·(0) = −A⊥ċ(0)Z(0) .

P r o o f. The “only if” part of the statement follows immediately from
Proposition 1. To prove the “if” part put

ζ = Z· −A⊥ċZ .

From Proposition 1 again it follows that it is sufficient to show that ζ satisfies
an ODE of the form

ζ· = Λζ ,

Λ being a linear operator on the space of vector fields along c orthogonal
to F .

Take any vector field N = N⊥ along c. From the definitions of ζ, A and
A⊥ it follows easily that

〈ζ·, N〉 = 〈X ′′, N〉 − 〈Y ′′, N〉+ 〈B(AZ ċ, ċ), N〉(27)
− 〈(∇ċB

⊥)(Z,N), ċ〉 − 〈B⊥(Z·, N), ċ〉 .

Ranjan’s structure equation ([Ra], p. 87) in our notation reads

〈R(ċ, Z)ċ, N〉 = 〈B(AZ ċ, ċ), N〉+ 〈B⊥(A⊥ċZ,N), ċ〉(28)
− 〈(∇ZB)(ċ, ċ), N〉 − 〈(∇ċB

⊥)(Z,N), ċ〉 .
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We also have the Codazzi equation

(29) 〈R(ċ, Y )ċ, N〉 = 〈(∇ċB)(Y, ċ), N〉 − 〈(∇Y B)(ċ, ċ), N〉
and the equality

〈Y ′′, N〉 = 〈B(Y ′>, ċ), N〉+ 〈B(Y, ċ)·, N〉(30)
= 〈(∇ċB)(Y, ċ), N〉+ 2〈B(Y ′>, ċ), N〉 .

Now, JX = 0 together with (27)–(30) yield

〈ζ·, N〉 = −〈B⊥(ζ, N), ċ〉 .
This shows that ζ satisfies the required ODE with Λ = −〈B⊥(·, N), ċ〉.
Proposition 6. If Y ∈ TcΩ, then

(i) (JY )⊥ = 0,
(ii) JY = JLY if Y ⊥ = 0,
(iii) 〈JY,X〉 = 〈R(ċ, X)ċ, Y 〉 + 〈B(ċ, ċ), A⊥XY 〉 − 〈A⊥ċY, B(ċ, X)〉 −

〈Y ′, X〉′ if Y > = 0, X⊥ = 0 and X is ∇>-parallel along c.

Here, JL denotes the standard Jacobi operator on the leaf L [Kl]: If
Z⊥ = 0, then JLZ = −∇>

ċ ∇>
ċ Z + RL(ċ, Z)ċ with RL being the curvature

tensor on L.

P r o o f. (i) Assume first that Y is orthogonal to F and take a∇⊥-parallel
section X of T⊥F along c. Then

(31) 〈B(Y ′>, ċ), X〉 = −〈B(AY ċ, ċ), X〉
and

(32) Y ′′ = (Y · −AY ċ)′ = −(A⊥ċY + AY ċ〉′.
The last formula implies

(33) 〈Y ′′, X〉 = −〈(∇ċB
⊥)(Y, X), ċ〉+ 〈B⊥(A⊥ċY, X), ċ〉+ 〈AY ċ, AX ċ〉 .

Substitution of (31), (33) and (28) (where one has to replace Z by Y and
N by X) to (16) yields

(34) 〈JY,X〉 = 0 .

If Y is tangent to F and X is, as before, orthogonal to F and satisfies
X· = 0, then (34) follows immediately from (16) and the Codazzi equation

〈R(ċ, Y )ċ, X〉 = 〈(∇ċB)(Y, ċ), X〉 − 〈(∇Y B)(ċ, ċ), X〉 .
(ii) The Gauss equation

〈R(ċ, Y )ċ, X〉 = 〈RL(ċ, Y )ċ, X〉+ 〈B(ċ, ċ), B(X, Y )〉 − 〈B(ċ, X), B(ċ, Y )〉
implies that if X⊥ = 0 and X is ∇⊥-parallel along c, then

〈JY,X〉 = 〈RL(ċ, Y )ċ, X〉+ 〈B(ċ, ċ), B(X, Y )〉 − 〈B(ċ, X), B(ċ, Y )〉
+ 〈(∇Y B)(ċ, ċ), X〉 − 〈Y ′′, X〉 .
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Since

〈Y ′′, X〉 = 〈Y ′>′, X〉+ 〈Y ′⊥′, X〉 = 〈Y ′>′>, X〉+ 〈B(ċ, Y )′, X〉
and 〈B(ċ, Y )′, X〉 = −〈B(ċ, Y ), B(ċ, X)〉, we get

〈JY,X〉 = 〈JLY, X〉+ 〈(∇Y B)(ċ, ċ), X〉 − 〈B(ċ, ċ), B(X, Y )〉 = 〈JLY, X〉
because for any vector fields U , V and W tangent to F we have

〈(∇UB)(V, V ),W 〉 = 〈∇UB(V, V ),W 〉 = −〈B(V, V ),∇UW 〉(35)
= −〈B(V, V ), B(U,W )〉 .

(iii) The desired formula follows easily from (16) and (32).

Corollary 2. If X = Z+f ·ċ (Z> = 0, f(0) = f(b) = 0) is the variation
field of an admissible variation V of a normal leaf geodesic c : [0, b] → L,
then the variational formula (15) reduces to

(36) L′′(0) =
b∫

0

{f ′〈B(ċ, ċ), Z〉 − 〈B(ċ, ċ), Z〉2} dt .

P r o o f. The last proposition implies that

(37) 〈JX, X〉 = f〈B(ċ, ċ), Z〉′ − ff ′′ .

Also,

(38) 〈X ′, ċ〉 = f ′ − 〈B(ċ, ċ), Z〉 .
Substituting (37) and (38) into (15) and integrating by parts we get (36).

Corollary 3. Assume that c is a leaf geodesic minimizing arclength for
all the admissible variations. If Z is the variation field of an admissible
variation and Z is the orthogonal to F , then

〈B(ċ, ċ), Z〉 ≡ 0 .

If c admits q = codimF admissible variations with variation fields Z1, . . .
. . . , Zq orthogonal to F and linearly independent at a point , then c is an
M -geodesic contained in a leaf.

P r o o f. If c minimizes arclength, then L′′ ≥ 0 for all the admissible
variations of c. The formula (36) with f ≡ 0 implies that

b∫
0

〈B(ċ, ċ), Z〉2 dt ≤ 0 .

This holds if and only if 〈B(ċ, ċ), Z〉 ≡ 0.
The second part of the statement follows from the first one and Propo-

sition 1 which implies that the fields Z1, . . . , Zq are linearly independent
everywhere.
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6. Some particular cases

6.1. Totally geodesic foliations. If F is totally geodesic (B ≡ 0), then
any variation of a leaf geodesic for which the variation field is perpendicular
to F at the ends of the geodesic is admissible. Take any geodesic c : [0, b] →
L and any field Y ∈ TcΩ such that Y >(0) = 0 and Y >(b) = 0. From
Proposition 6 it follows that

〈JY, Y 〉 − 〈Y ′, ċ〉2 = 〈JY >, Y >〉+ 〈JY ⊥, Y >〉 − 〈Y >′, ċ〉2

= 〈R(ċ, Y >)ċ, Y >〉 − 〈Y >′′, Y >〉
+ 〈R(ċ, Y ⊥)ċ, Y ⊥〉 − 〈Y ⊥′′, Y >〉 − 〈Y >′, ċ〉2

= 〈R(ċ, Y >)ċ, Y >〉+ ‖Y >′‖2 − 〈Y >′, ċ〉2 − 〈Y >, Y >′〉′ .
Integrating over [0, b] we get, from (15),

L′′(0) =
b∫

0

(〈R(ċ, Z)ċ, Z〉+ ‖Z ′
⊥‖2) dt ,

where Z = Y > and Z ′
⊥ is the component of Z ′ orthogonal to c. The last for-

mula coincides with that for the second variation of arclength on L. There-
fore, the classical results of Riemannian geometry imply the following.

Proposition 7. If F is totally geodesic, then a geodesic c : [0, b] → L
minimizes arclength for all admissible variations if and only if there are no
Jacobi fields Z along c tangent to L and satisfying Z(0) = 0 and Z(t) = 0
for some t ∈ (0, b).

6.2. Riemannian foliations. Assume that F is a Riemannian foliation
for which the Riemannian structure of M is bundle-like [Re]. In this case,
F is given locally by a Riemannian submersion of an open subset of M onto
another Riemannian manifold. The following fact is a direct consequence of
Lemma 1.3 of [Es].

Lemma 2. If F is the foliation by the fibres of a Riemannian submersion
f : M → N , c : [0, b] → M is a curve tangent to F and Z is a vector field
along c orthogonal to F , then Z ∈ TcΩ if and only if f∗ ◦ Z ≡ const.

Now, let c : [0, b] ∈ L be a leaf curve and Z ∈ TcΩ a vector field
orthogonal to F . Put

(39) V (s, t) = expM (sZ(t)) for s ∈ (−ε, ε) and t ∈ [0, b] .

Lemma 3. For any s, V (s, ·) is a leaf curve.

P r o o f. It suffices to consider F given by the fibres of a Riemannian
submersion f : M → N .

Let v ∈ TN be a vector such that f∗(Z(t)) = v for any t (Lemma 2).
Let γ : (−ε, ε) → N be a geodesic satisfying γ̇(0) = v. Since horizontal
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(i.e. orthogonal to the fibres) lifts of N -geodesics are M -geodesics, we have
f(V (s, t)) = γ(s) for all s and t. In particular, the maps t 7→ f(V (·, t)) are
constant.

For the variation given by (39), the variational formula (15) is much
simpler. Also, since ∇d/dsY ≡ 0 (we keep the notation of the proof of
Proposition 3) we do not need the assumption of V being admissible. (Ac-
tually, in general it is not: the derivative

d

ds

b∫
0

〈B(X, X), Y 〉 dt =
b∫

0

〈∇d/ds∇d/dtX, Y 〉 dt

=
b∫

0

(〈R(Y, X)X, Y 〉 − ‖∇d/dtY ‖2) dt

need not vanish.)

Proposition 8. For the variation V given by (39) one has

(40) L′′(0) =
b∫

0

(〈R(ċ, Y )ċ, Y 〉+ ‖Y ′‖2 − 〈Y ′, ċ〉2) dt

and

(41) E ′′(0) = 2
b∫

0

(〈R(ċ, Y )ċ, Y 〉+ ‖Y ′‖2) dt .

P r o o f. The first formula follows immediately from (18) and (19) be-
cause ∇d/dsY ≡ 0 in our case. The second formula could be obtained in a
similar way.

R e m a r k. Since Y is orthogonal to F , the formulae (40) and (41) could
be written in the form

(42) L′′(0) =
b∫

0

(〈R(ċ, Y )ċ, Y 〉+ ‖A⊥ċY ‖2 + ‖AY (ċ)‖2 − 〈AY ċ, ċ〉2) dt

and

(43) E ′′(0) =
b∫

0

(〈R(ċ, Y )ċ, Y 〉+ ‖A⊥ċY ‖2 + ‖AY (ċ)‖2) dt .

The following result gives an application of the last formula. We use the
following notation:

‖A‖(x) = sup{‖Avw‖ | v ∈ T⊥x F , w ∈ TxF , ‖v‖ = ‖w‖ = 1}
and

Kmin(x) = min{KM (v ∧ w) | v ∈ T⊥x F , w ∈ TxF} .
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The norm ‖A⊥‖ is defined similarly to that of A. The argument in the proof
is analogous to that of Proposition 2.

Proposition 9. Assume that the inequality

‖A‖2 + ‖A⊥‖2 < Kmin

holds along a leaf L of a Riemannian foliation F . Then the bundle T⊥F
admits at most one closed integral manifold of dimension q = codimF in-
tersecting L.

P r o o f. Assume that T1 and T2 are two closed integral manifolds of T⊥F
such that L ∩ T1, L ∩ T2 6= ∅. The space Ω0 of leaf curves γ : [0, b] → M
with γ(0) ∈ T1 and γ(b) ∈ T2 is non-empty and the functional E|Ω0 (as well
as L|Ω0) attains its minimum for some curve c. From (9) it follows that c
is a leaf geodesic. Let V be an F-variation of c of the form (39). From (43)
it follows that

0 ≤ E ′′(0) =
b∫

0

(−KM (ċ ∧ Z)‖Z‖2 + ‖A⊥ċZ‖2 + ‖AZ ċ‖2) dt

≤
b∫

0

(‖A⊥‖2(c(t)) + ‖A‖2(c(t))−Kmin(c(t))) dt < 0 .

Contradiction.
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