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MULTIPLIER THEOREM
ON GENERALIZED HEISENBERG GROUPS

BY

WALDEMAR H E B I S C H (WROC LAW)

Introduction. Let N be a homogeneous stratified Lie group (cf. [3]),
L = −(X2

1 + . . .+X2
k)

a sublaplacean. Let

Lf =
∞∫

0

λ dE(λ)f

be its spectral resolution (on L2(N)), and for m ∈ L∞(R+),

m(L)f =
∞∫

0

m(λ) dE(λ)f .

Conditions on the function m which guarantee boundedness of m(L) on
Lp(N), 1 < p <∞, have a long history. In 1960 L. Hörmander proved that
if N is abelian and for a nonzero φ ∈ C∞

c (R+),

sup
t>0

‖φm(t ·)‖H(s) <∞

for an s greater than half of the (topological) dimension of N , then m(L) is
of weak type 1-1 and bounded on Lp, 1 < p <∞.

For general stratified groups M. Christ [1] and G. Mauceri and S. Meda
[10] showed that the Hörmander theorem holds if the topological dimen-
sion is replaced by the homogeneous dimension. Recently D. Müller and
E. M. Stein [12] showed that if N is a cartesian product of copies of Heisen-
berg groups and abelian groups then, in fact, in the Hörmander theorem s
greater than half of the topological dimension suffices. A bit earlier J. Ran-
dall [13] obtained estimates for the heat kernel on generalized Heisenberg
groups which imply the multiplier theorem with s greater than half of the
euclidean dimension plus a constant, so if the dimension of the center is
large this is less than half of the homogeneous dimension.

The aim of this note is to prove by a different method a somewhat
more general theorem than the above mentioned theorem by D. Müller and
E. M. Stein.
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Preliminaries. We say that a two-step nilpotent Lie algebra N is a
generalized Heisenberg Lie algebra if there is a scalar product on N and an
orthogonal decomposition

N = W ⊕ [N,N ]

such that for each x ∈ W of length 1 the mapping ad∗x is an isometry from
[N,N ]∗ into W ∗. We call W the generating subspace of N . We identify
Lie algebras with Lie groups (using the exponential map), and we say that
N is a generalized Heisenberg group if, as a Lie algebra, it is a generalized
Heisenberg Lie algebra. With this identification 0 is the neutral element in
our groups.

As a matter of fact we use only two properties of a generalized Heisenberg
group: first, that the dimension of its center is at most half of the topological
dimension of the group; second, that the euclidean Fourier transform of the
heat kernel has a particularly simple form [13] which implies our formula
replacing the convolution kernels associated with L by kernels associated
with a Grushin operator.

In the sequel we assume that N =
∏
Ni with each Ni being a generalized

Heisenberg group with generating subspace Wi. Let |x|i be the length of x
in Wi (we fix a scalar product). We write W =

⊕
Wi. We may consider

N as a direct sum of Wi and [Ni, Ni] so the projection πi : N →Wi is well
defined. Put

wi(x) = |πi(x)|i .
N has also a natural structure of a homogeneous group: elements in W are
of degree 1 and elements in [N,N ] are of degree 2. Assume that Xj are left
invariant vector fields on N such that there exist ji such that j0 = 1 and
{Xj : j = ji−1, . . . , ji} is an orthonormal basis of Ni. Let

L = −
dim(W )∑

j=1

X2
j .

We say that a curve γ ∈ C∞([0, 1], N) is admissible if

γ′(s) =
dim(W )∑

j=1

aj(s)Xj(γ(s))

and we write

|x|2 = inf
1∫

0

dim(W )∑
j=1

aj(s)2

where the inf is taken over all admissible curves γ such that γ(0) = 0 and
γ(1) = x. |x| is the optimal control distance to 0. Of course, on Wi we have
|x|i = |x|.
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(1.1) Theorem. If N is a product of generalized Heisenberg groups, L a
sublaplacean on N as described above, n = dim(N), s > n/2, φ ∈ C∞

c (R+),
φ 6= 0 and m satisfies

sup
t>0

‖φm(t)‖H(s) <∞

then m(L) is of weak type 1-1 and bounded on Lp, 1 < p <∞.

In the sequel we will identify functions of L (which are operators) with
functions on N (their convolution kernels). Put ε = (s − n/2)/3. Let
φ ∈ C∞

c (R+), suppφ ⊂ (1/2, 2),
∑
φ(2kx) = 1 for x > 0. Write mk(x) =

φ(2kx)m(x). It is enough to show that:

(1.2) Lemma. There exists C such that for all m as in (1.1) and all
integers k, ∫

|x|ε|mk(L)|(x) dx ≤ C2kε/2

and ∫
|x|ε|Xjmk(L)|(x) dx ≤ C2k(ε−1)/2, j = 1, . . . ,dim(W ) .

We will prove the first estimate with k = 0. We pass to arbitrary k using
dilations. The second estimate (for k = 0) follows from the first estimate
applied to

√
Lm0(L) and continuity of Xj(

√
L)−1 on weighted Lp spaces.

In fact, the second estimate is not necessary to prove multiplier theorems
(in [5] we show how to do this for L being a Schrödinger operator), but in
the present setting it is easily available.

Before proving the theorem we need to study the structure of L. This
part of our analysis remains valid on any two-step stratified group. First,
let us note the following :

(1.3) Lemma. If {ai,k}n
i,k=1 is an orthogonal matrix and Yi =

∑
ai,kXk,

then
∑
Y 2

i =
∑
X2

k .

Next, in an appropriate basis of N we have

Xi = ∂i + Vi

where Vi is a vector field with linear coefficients and containing only deriva-
tives in [N,N ] directions. Then

L = −
∑

X2
i = −

∑
∂2

i −
∑

V 2
i − 2

∑
∂iVi .

The third term of this sum (we call it the mixed terms) complicates the
structure of L, so we would like to get rid of it. To do this we are going to
prove that the mixed terms commute with L. Note that the mixed terms
are invariant under central translations. Hence it is enough to show that the
Fourier transform of the mixed terms in [N,N ] variables commutes with the
Fourier transform of L in [N,N ] variables. This is equivalent to looking at
all quotients of N by codimension 1 subspaces of [N,N ]. Such a quotient is
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(isomorphic to) the product of a euclidean space and the Heisenberg group.
After a linear change of coordinates we may assume that the projection of
L onto such a quotient has the following canonical form:

L = −
∑

λi

(
X2

i + Y 2
i

)
−

∑
R2

j ,

where the fields Xi, Yi, Rj , Z form a basis, [Xi, Yi] = Z and the other
brackets (of the base fields) are zero. Indeed, an orthogonal transformation
(which by (1.3) leaves L invariant) allows us to reduce symplectic forms (i.e.
the bracket) to the canonical form with [Xi, Yi] = 1/λi. After rescaling Xi

and Yi we get our form.
Next, in exponential coordinates,

Xi =
∂

∂xi
− 1

2
yi
∂

∂z
, Yi =

∂

∂yi
+

1
2
xi
∂

∂z
,

so

L = −
∑

λi

((
∂

∂xi

)2

+
(
∂

∂yi

)2)
−

∑
R2

j

− 1
4

∑
λi(x2

i + y2
i )

(
∂

∂z

)2

−
∑

λi

(
xi

∂

∂yi
− yi

∂

∂xi

)
∂

∂z
.

In this case the mixed terms reduce to the product of the derivative in
the central direction and the vector field generating rotations in the (xi, yi)
planes. Of course L commutes with such rotations, which gives our claim.

Another important property of the mixed terms is that when applied
to δ0 (the unit mass at 0), they give zero. This follows from the argument
above (δ0 is rotation invariant). Let A be L with the mixed terms omitted.
Our previous considerations imply

e−tLδ0 = e−tAδ0 .

Indeed,

e−tLδ0 = e−tA−t(L−A)δ0 = e−tAet(A−L)δ0 = e−tAδ0 .

This formula is an abstract reformulation of the formulas given by A. Hu-
lanicki [8], B. Gaveau [4] and J. Cygan [2].

We need the form of A on products of generalized Heisenberg groups.
Let ∆0 be the Laplace operator on W , and ∆i be the Laplace operator on
[Ni, Ni]. Then

A = −∆0 −
1
4

∑
w2

i∆i .

([N,N ]∗ is the product of the [Ni, Ni]∗.) This holds since the quotient of a
generalized Heisenberg group by a codimension one subspace of its center
is the Heisenberg group, and the image of our sublaplacean is the standard
sublaplacean on the Heisenberg group. In the case of generalized Heisenberg
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groups our formula for e−tL and the expression for A are a restatement of
the formula given by J. Randall [13] (where the reader can find a more
detailed exposition).

The essential part of our argument is contained in the following lemma.

(1.4) Lemma. For every 0 < αi < dim([Ni, Ni]) there exists C such that
for every f ∈ C∞

c (R+) with supp f ⊂ [1/2, 2],∫ ∏
wαi

i |f(L)|2(x) dx ≤ C‖f‖2L2 .

R e m a r k. From [7] and [9] we know that f(L) is a well defined rapidly
decaying (Schwartz class) function, so all we do is to get the estimate.

We write si for the projection of s ∈ [N,N ]∗ onto [Ni, Ni]∗. Put

As = −∆0 +
1
4

∑
|si|2w2

i .

As is a (rescaled) Hermite operator on L2(W ). Put w =
∏
w

αi/2
i . By the

Plancherel formula on [N,N ] we have∫
N

w2|f(L)|2(x) dx = C
∫

[N,N ]∗

‖wf(As)δ0‖2 ds .

(1.5) Lemma. There exists C such that for all s and all f ∈ C∞
c (R+)

with supp f ⊂ [1/2, 2] we have
2∫

1

‖f(Ats)δ0‖2L2 dt ≤ C‖f‖2L2 .

P r o o f. We define Dt, for t > 0, by the formula

(Dtφ)(x) = tdim(W )φ(t−1x) for φ ∈ L1(W )

and extend it by continuity to measures. One easily checks that

Dt−1/2(f(Ats)δ0) = f(Dt−1/2AsDt1/2)Dt−1/2δ0 = f(tAs)δ0

so
2∫

1

‖f(Ats)δ0‖2L2 dt ≤ C
2∫

1

‖Dt−1/2(f(Ats)δ0)‖2L2 dt = C
2∫

1

‖f(tAs)δ0‖2L2 dt.

For Es(λ) being the spectral measure ofAs we write dµ(λ) = d(Es(λ)e−Asδ0,
e−Asδ0). By the Feynman–Kac formula (see for example [11]), 0≤e−Asδ0(x)
≤ p1(x), p1(x) = (4π)− dim(W )/2e−|x|

2/4 being the euclidean heat kernel.
Hence ∫

dµ = ‖e−Asδ0‖2L2 ≤ Cdim(W ) .
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We have
2∫

1

‖f(tAs)δ0‖2L2 dt ≤
2∫

1

∫
|f(tλ)|2e2λ dµ(λ) dt ≤ C‖f‖2L2

∫
dµ ≤ C‖f‖2L2 ,

which gives (1.5).

Put

‖s‖ = max |si|, s(α) =
∏

|si|αi .

Note that

s(α)‖wf(As)δ0‖2L2 ≤ C‖A|α|/2
s f(As)δ0‖2L2 ≤ C ′‖f(As)δ0‖2L2 .

Also, if si ≥ 2 then As is greater than the two-dimensional Hermite operator
so As ≥ 2. Therefore if ‖s‖ ≥ 2 then f(As) = 0. We need a version of
polar coordinates: there exist measures ηk such that for all positive Borel
measurable φ we have∫

[N,N ]∗

φ = C
∑

k

2k
∫

‖s‖=2k

2∫
1

tdim([N,N ])−1φ(ts) dt dηk(s) .

Using those observations and (1.5) we have

C
∫

[N,N ]∗

‖wf(As)δ0‖2 ds ≤ C
∫

‖s‖≤2

s(−α)‖f(As)δ0‖2 ds

≤ C

∞∑
k=0

2−k
∫

‖s‖=2−k

2∫
1

s(−α)‖f(Ats)δ0‖2 dt dηk(s)

≤ C‖f‖2L2

∞∑
k=0

2−k
∫

‖s‖=2−k

2∫
1

s(−α) dt dηk(s)

≤ C‖f‖2L2

∫
‖s‖≤2

s(−α) ≤ C‖f‖2L2 ,

which ends the proof of (1.4).

From (1.4) by simple application of the Schwarz inequality, and since
dim[Ni, Ni] < dim(Wi), we obtain:

(1.6) Lemma. For every ε > 0 there exists C such that for every real
k > 0 and every f ∈ C∞

c (R+) with supp f ⊂ [1/2, 2] we have∫
|x|<k

|f(L)|(x) dx ≤ Ckn/2+ε‖f‖L2 .

We also need:
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(1.7) Lemma. Let I and J be closed intervals such that I ⊂ IntJ ⊂ J ⊂
(−π, π), f ∈ H(s), supp f ⊂ I, l > 0. There exist functions fj , j = 0, 1, . . . ,
satisfying the following conditions:

f =
∑

fj , supp fj ⊂ J ,

|f̂j(k)| ≤ C(s, I, J, l)2−sj(1 + max(0, |k| − 2j))−l−3 ,

‖fj‖L2 ≤ C(s, I, J, l)2−sj‖f‖H(s) ,

where C(s, I, J, l) depend only on s, I, J , l.

P r o o f. We choose smooth functions ϕ, ψ such that suppϕ ⊂ J , ϕ|I = 1,
ψ = 1 on [−1/2, 1/2], suppψ ⊂ [−1, 1] and we put

hj(x) =

{∑
ψ(k)f̂(k)eikx for j = 0 ,∑
[ψ(2−jk)− ψ(2−j+1k)]f̂(k)eikx otherwise,

fj = ϕhj .

The third condition holds because

f̂j(k) =
∑

r

ϕ̂(r)ĥj(k − r)

and |ϕ̂(k)| ≤ C(1 + |k|)−l−4.

To handle error terms we will use the following (cf. [6], [7], [9]):

(1.8) Lemma. There exist l, c and M such that∫
|x|ε|eike−L

e−L|(x) dx ≤ C(1 + |k|l),
∫
ec|x||e−L|(x) dx ≤M ,∫

ec|x||eike−L

e−L|(x) dx ≤MekM .

P r o o f o f (1.2). Put f(λ) = m0(− log λ)λ. We decompose f using
(1.7) with J = [e−2, e−1/2]. Then

m0(L) =
∑

fj(e−L)e−L .

Also fj(e−L)e−L = gj(L) with gj(x) = fj(e−x)e−x so supp gj ⊂ [1/2, 2].
Moreover,

‖gj‖L2 ≤ C2−js‖f‖H(s) .

Choose R so that cR/2 > 4M . We have∫
|x|ε|fj(e−L)e−L|(x) dx

≤ Rε2jε
∫

|x|<R2j

|gj(L)|(x) dx+
∫

|x|>R2j

|x|ε|fj(e−L)e−L|(x) dx .
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By (1.6) the first term is ≤ C2−jε. Expanding fj in a Fourier series and
using (1.8) and (1.7), we get∫
|x|>R2j

|x|ε|fj(e−L)e−L|(x) dx

≤
∑

|k|≤2j+2

|f̂j(k)|
∫

|x|>R2j

|x|ε|eike−L

e−L|(x) dx

+
∑

|k|>2j+2

|f̂j(k)|
∫
|x|ε|eike−L

e−L|(x) dx

≤
∑

|k|≤2j+2

|f̂j(k)|e−cR2j/2
∫
ec|x||eike−L

e−L|(x) dx+
∑

|k|>2j+2

|f̂j(k)|kl

≤
∑

k≤2j+2

|f̂j(k)|e−cR2j/2ekMM +
∑

|k|>2j+2

C|k|−l−2|k|l

≤ C2−j‖f‖H(s) .

This means that we can add the estimates of gj(L) to get an estimate of
m0(L), which ends the proof of (1.2).
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