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BOUNDS FOR CHERN CLASSES
OF SEMISTABLE VECTOR BUNDLES
ON COMPLEX PROJECTIVE SPACES

BY

WIERA BARBARA DOBROWOLSKA (WARSZAWA)

This work concerns bounds for Chern classes of holomorphic semistable
and stable vector bundles on Pn. Non-negative polynomials in Chern classes
are constructed for 4-vector bundles on P4 and a generalization of the pre-
sented method to r-bundles on Pn is given. At the end of this paper the
construction of bundles from complete intersection is introduced to see how
rough the estimates we obtain are.

We follow the terminology and notation used in [5].
There are no bounds for the first Chern class c1(E) of 1-bundles E on Pn.

In the case of 2-bundles the following Bogomolov–Gieseker–Schwarzenberger
inequalities (see e.g. [5]) are satisfied:

c2
1 − 4c2 ≤ 0 for semistable bundles,

c2
1 − 4c2 < 0 for stable bundles.

The polynomials above are invariant with respect to tensoring by OPn(k).
Schneider has obtained in [6] the following results for 3-bundles on Pn:

if c1 = 0 then |c3| ≤ c2
2 + 5c2 − 6 ,

if c1 = −1 then |c3 + 2| ≤ c2
2 + 2c2 − 2 ,

if c1 = 1 then |c3 − 2| ≤ c2
2 + 2c2 − 2 , for stable bundles,

and
if c1 = 0 then |c3| ≤ c2

2 + c2 ,

if c1 = −1 then |c3| ≤ c2
2 ,

if c1 = −2 then |c3| ≤ c2
2 − c2 − 2 , for semistable bundles.

In this paper we obtain the following results for 4-bundles on P4:

if c1(E) = 0 then c4 − 15
2 c3 + 3c4

2 + 29c3
2 + 155

2 c2
2 + 103

2 c2 ≥ 0 ,

if c1(E) = − 1 then c4 − 13
2 c3 + 3c4

2 + 35c3
2 + 371

2 c2
2 + 359c2 + 156 ≥ 0 ,
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if c1(E) = − 2 then c4 − 9
2c3 + 3c4

2 + 35c3
2 + 347

2 c2
2 + 657

2 c2 − 6 ≥ 0 ,

if c1(E) = − 3 then c4 − 15
2 c3 + 3c4

2 + 23c3
2 + 89

2 c2
2 + 47c2 + 6 ≥ 0 ,

and for stable bundles we get the same polynomials minus 18.

The author wishes to express her thanks to Dr. Micha l Szurek for sug-
gesting the problem, introduction to the subject and his help with the con-
struction of examples.

1. The case of stable and semistable 4-bundles on P4. We can
normalize each bundle by twisting it with a suitable line bundleOPn(k). This
operation does not affect the stability or semistability and we can express
the Chern classes of the twisted bundle by those of the original bundle. This
allows us to consider only normalized bundles.

As the Euler–Poincaré characteristic χ(E) of the bundle E on P4 is a
polynomial in Chern classes and

χ(E) ≤ h0(E) + h2(E) + h4(E)

we need to estimate the three components on the right hand side.
By Serre duality and semistability of E∗ we immediately obtain h4(E)

= 0. For E stable we have h0(E) = 0 and for E semistable we obtain
h0(E) ≤ 3 (except the case when E is trivial), according to

Lemma 1.1 [6, Sect. 2, Hilfssatz]. If V is a holomorphic semistable r-
vector bundle on Pn and c1(V) ≤ 0 then either V ∼= O⊕r or h0(V) ≤ r − 1.

Now we start to estimate h2(E). We use

Lemma 1.2 [6, Sect. 2, Satz 1]. Let V be a holomorphic vector bundle on
Pn and H ⊂ Pn a hyperplane. Then for q ≤ n− 2,

hq(V) ≤
∑
v≤0

hq(V|H(v)) .

From this lemma and Serre duality on P4 we obtain the estimate

h2(E) ≤
∑

j≥−4

h1(E∗|P3(j)) .

We show that the sum on the right side is finite by finding k0 which
satisfies the condition (1) in the following

Lemma 1.3 [1, Lemma 3.2]. Let Y ⊂ Pn be a hyperplane and V a vector
bundle on Pn. Let k0 be an integer such that

(1) h1(V|Y (k)) = h1(Ω1
Y ⊗ V|Y (k + 1)) = 0 for all k ≥ k0 .

Then for every m ≥ k0 − 1,

h1(V(m)) ≥ h1(V(m + 1)) ,
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and equality holds if and only if

H1(V(m)) = 0 .

We begin studying the values of h1(E∗|P2(k)). We will discuss in detail
the case of c1(E) = 0 only, because the remaining cases are similar.

Theorem 1.1 (Spindler) [1, Theorem 2.7]. Let V be a semistable vector
bundle on Pn of generic splitting type a1 ≥ . . . ≥ ar. Then it satisfies the
Grauert–Mülich condition (GM , for short), i.e.

ai − ai+1 ≤ 1 for i = 1, . . . , r − 1 .

With the help of this theorem we will be able to determine the generic
splitting type of the bundles considered.

Lemma 1.4. Let E be a holomorphic, normalized and semistable bundle
of rank 4 on P4. Then

h0(E|P2(−1)) = 0 and h0(E∗|P2(−2)) = 0 .

P r o o f. We only consider the case of E(−1); the other case is similar.
We use

Lemma 1.4.1 [2, Lemma 2.3]. Let V be a normalized semistable n-vector
bundle on Pn. Then its restriction to a hyperplane H ⊂ Pn is a semistable
bundle except the cases

V ∼= Ω1
Pn(−1), V ∼= TPn(−2) .

If E|P3 is semistable and (a1, a2, a3, a4) is its generic splitting type (E|P3

satisfies the GM condition and
∑4

i=1 ai = c1), then either only one of the
ai is zero or they are all negative. When ai = 0 for some i we use

Lemma 1.4.2 [6, Sect. 1, Satz 1]. Let V be a holomorphic r-bundle on Pn.
For a line L ⊂ Pn we have

V|L ∼= O(a1)⊕O(a2)⊕ . . .⊕O(ar−s)⊕O⊕s ,

where a1 ≤ a2 ≤ . . . ≤ ar−s < 0 and h0(Pn,V) ≤ s − 1. Then h0(V|H) ≤
s− 1, where H ⊂ Pn is a general hyperplane.

By taking in this lemma n = 3, H = P2 and from semistability of E|P3

we get

h0(E|P3(−1)) ≤ s− 1 = 0 ,

so h0(E|P2(−1)) = 0.
If all ai are negative we consider the exact sequence

0 → E|P2(k − 1) → E|P2(k) → E|L(k) → 0
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where L is a line in P2 and from the associated cohomology sequence we
obtain

h1(E|P2(k − 1)) ≥ h1(E|P2(k)) for k ≤ −1
because H0(E|L(−1)) = 0. Now since there exists k0 such that H0(E|P2(k))
= 0 for k ≤ k0 [5, Theorem B], we get h0(E|P2(−1)) = 0.

If E ∼= Ω1
P4(−1) or E ∼= TP4(−2) we use the formula

TPn|H ∼= TH ⊕OH(−1)

for H = P3 and then for H = P2. From Bott’s formula (see e.g. [5, Chap-
ter I, §1.1]) and Serre duality we easily calculate h0(E|P2(−1)) = 0 and
h0(E∗|P2(−2)) = 0. This completes the proof of Lemma 1.4.

By Lemma 1.4 we have h0(E∗|P2(−1)) = 0 and h0(E|P2(−1)) = 0 so by
Serre duality also h2(E∗|P2(−1)) = 0 and we conclude

−χ(E∗|P2) = h1(E∗|P2(−1)) .

Using c1(V(k)) = c1(V) + 4k, c2(V(k)) = 6k2 + 3kc1(V) + c2(V) [5, §1.2] and
the Riemann–Roch formula on P2, i.e.

χ(V) = 1
2c2

1(V)− c2(V) + 3
2c1(V) + r, r = rankV ,

we can easily calculate

h1(E∗|P2(−1)) = c2(E∗|P2).

Similarly we obtain h1(E|P2(−2)) = c2(E|P2) and from Serre duality

h1(E|P2(−2)) = h1(E∗|P2(−1))

so c2(E∗|P2) = c2(E|P2) (for short, we will write c2(E|P2) = c2).
From the exact sequence

0 → E∗|P2(−1) → E∗|P2 → E∗|L → 0

where L is a line in P2 and from the cohomology sequence we get

h1(E∗|P2(−1)) ≥ h1(E∗|P2)

because H1(E∗|L) = 0 (since E∗|L = O ⊕ O ⊕ O ⊕ O or E∗|L = O(−1) ⊕ O ⊕
O ⊕O(1)). We now use

Lemma 1.5 (Le Potier) [1, Lemma 2.17]. Let V be a vector bundle on P2

and a1 ≥ . . . ≥ ar its generic splitting type. Then

h1(V(m)) ≥ h1(V(m + 1))

for m ≥ −ar − 1, and we have equality if and only if H1(P2,V(m)) = 0.

With the help of the lemma above we get

h1(E∗|P2(k + 1)) ≤ h1(E∗|P2(k)) for k ≥ 0 .
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The same results can be obtained for E (c1(E|P2) = c1(E∗|P2)) so we also have

c2 = h1(E|P2(−1)) ≥ h1(E|P2) ,

h1(E|P2(k)) ≥ h1(E|P2(k + 1)) for k ≥ 0 .

By Serre duality we get

h1(E∗|P2(−3)) ≤ h1(E∗|P2(−2)) = c2 ,

h1(E∗|P2(k − 1)) ≤ h1(E∗|P2(k)) for k ≤ −3 .

Finally, we obtain

(∗) h1(E∗|P2(k)) =


0 if k ≤ −c2 − 3,
k + c2 + 3 if −c2 − 3 ≤ k ≤ −3,
c2 if −3 ≤ k ≤ 0,
−k + c2 if 0 ≤ k ≤ c2,
0 if k ≥ c2.

Hence we can estimate
∞∑

j=−∞
h1(E∗|P2(j)) ≤ 1

2 (2c2 + 6)c2 = c2
2 + 3c2 .

To apply Lemma 1.3 we start to seek j0 such that for j ≥ j0,

h1(E∗|P2 ⊗Ω1
P2(j)) = 0 .

Lemma 1.6 [4, Corollary 3.1.1]. Let V be a semistable bundle on Pn with
rankV ≤ 2n−2 and c1(V) = d·rankV, d ∈ Z. Then for a general hyperplane
H ⊂ Pn, V|H is a semistable bundle.

Putting in this lemma n = 4, H = P3 and then n = 3, H = P2 we
conclude that E∗|P2 is a semistable bundle. The tensor product of semistable
bundles is semistable so E∗|P2 ⊗Ω1

P2 is semistable.
We show that h0(E∗|P2 ⊗Ω1

P2(1)) = 0.
Suppose that 0 6= s ∈ H0(E∗|P2 ⊗Ω1

P2(1)). Then we have the imbedding

OP2 ↪→ E∗|P2 ⊗Ω1
P2(1) .

But µ(OP2) = 0 and µ(E∗|P2 ⊗ Ω1
P2(1)) = −4/8 = −1/2 (recall that µ(V) =

c1(V)/ rankV) because c1(E∗|P2 ⊗Ω1
P2(1)) = −4, which we calculate e.g. from

the generic splitting type of E∗|P2 ⊗ Ω1
P2(1) (Ω1

P2 |L = O(−1) ⊕ O(−2)). We
thus get a contradiction with semistability of E∗|P2 ⊗Ω1

P2(1).
By Serre duality and semistability of E|P2 ⊗ TP2 we also have h2(E∗|P2 ⊗

Ω1
P2(1)) = 0 so

h1(E∗|P2 ⊗Ω1
P2(1)) = −χ(E∗|P2 ⊗Ω1

P2(1)) .
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If A is a bundle of rank 2 and B of rank 4 then one has
c1(A⊗B) = 4c1(A) + 2c1(B) ,

c2(A⊗B) = 6c2
1(A) + 4c2(A) + c2

1(B) + 2c2(B) + 7c1(A)c1(B) ,

so
c1(E∗|P2 ⊗Ω1

P2(1)) = −4 and c2(E∗|P2 ⊗Ω1
P2(1)) = 2c2 + 10 ,

and finally we get −χ(E∗|P2 ⊗Ω1
P2(1)) = 2c2 = h1(E∗|P2 ⊗Ω1

P2(1)). Tensoring
the exact sequence

0 → E∗|P2(−1) → E∗|P2 → E∗|L → 0

by Ω1
P2(2) we deduce

h1(E∗|P2 ⊗Ω1
P2(1)) ≥ h1(E∗|P2 ⊗Ω1

P2(2))

from the associated cohomology sequence, because H1(E∗|L ⊗Ω1
P2(2)|L) = 0.

We also have either

E∗|L ⊗Ω1
P2|L

∼= O(−2)⊕4 ⊕O(−1)⊕4

or
E∗|L ⊗Ω1

P2|L
∼= O(−3)⊕O(−2)⊕3 ⊕O(−1)⊕3 ⊕O ,

so by Le Potier’s Lemma 1.5 we obtain

h1(E∗|P2 ⊗Ω1
P2(j)) ≥ h1(E∗|P2 ⊗Ω1

P2(j + 1))

for j ≥ 2, and equality occurs if and only if H1(E∗|P2 ⊗Ω1
P2(j)) = 0. Finally,

we conclude that for j ≥ j0 = 2c2 + 2,

h1(E∗|P2 ⊗Ω1
P2(j)) = 0 .

From the formula (∗) we get

h1(E∗|P2(k)) = 0 for k ≥ k0 = c2 .

Applying Lemma 1.3 to these results we obtain

h1(E∗|P3(l)) ≥ h1(E∗|P3(l + 1)) for l ≥ 2c2 ,

and equality holds if and only if H1(E∗|P3(l)) = 0. Using Lemma 1.2 we can
estimate

h1(E∗|P3(2c2)) ≤
∑
j≤0

h1(E∗|P2(2c2 + j)) =
∞∑

j=−∞
h1(E∗|P2(j)) ≤ c2

2 + 3c2

and with the aid of the inequality above we conclude

(∗∗) h1(E∗|P3(l)) = 0 for l ≥ l0 = c2
2 + 5c2 ,

(∗
∗
) c2

2+5c2−1∑
j=2c2

h1(E∗|P3(j)) ≤ 1
2 (c2

2 + 3c2)(c2
2 + 3c2 + 1) .
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By Lemma 1.2 we have an estimate

h2(E) ≤
∑

j≥−4

h1(E∗|P3(j))

and applying (∗∗) we obtain

h2(E) ≤
c2
2+5c2−1∑
j=−4

h1(E∗|P3(j)) .

By the same Lemma 1.2 and from (∗) we get

j = −4 : h1(E∗|P3(−4)) ≤
∑
j≤0

h1(E∗|P2(−4 + j)) ≤ 1
2c2(c2 − 1) ,

j = −3 : h1(E∗|P3(−3)) ≤ 1
2c2(c2 + 1) ,

j = −2 : h1(E∗|P3(−2)) ≤ 1
2c2(c2 + 1) + c2 = 1

2c2(c2 + 3) ,

j = −1 : h1(E∗|P3(−1)) ≤ 1
2c2(c2 + 1) + 2c2 = 1

2c2(c2 + 5) ,

j = 0 : h1(E∗|P3) ≤ 1
2c2(c2 + 5) + c2 ,

...
...

j = c2 − 1 : h1(E∗|P3(c2 − 1)) ≤ 1
2c2(c2 + 5) + c2 + (c2 − 1) + . . . + 1 .

If j ∈ {c2, c2 + 1, . . . , 2c2 − 1} then

h1(E∗|P3(j)) ≤
∞∑

k=−∞

h1(E∗|P2(k)) ≤ c2
2 + 3c2

so
2c2−1∑
j=c2

h1(E∗|P3(j)) ≤ (c2
2 + 3c2)c2.

Finally, using the results above and
(∗
∗
)

we obtain

h2(E) ≤
∑

j≥−4

h1(E∗|P2(j))

≤ 1
2c2(c2 − 1) + 1

2c2(c2 + 1) + 1
2c2(c2 + 3)

+ 1
2c2(c2 + 5)(c2 + 1) + c2

2 + (c2 − 1)2 + . . . + 1 + c2(c2
2 + 3c2)

+ 1
2 (c2

2 + 3c2)(c2
2 + 3c2 + 1)

= 1
2c4

2 + 29
6 c3

2 + 13c2
2 + 17

3 c2 .

We have

χ(E) = 1
12c2

2 − 1
6c4 + 5

4c3 − 35
12c2 + 4
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for a 4-vector bundle E on P4 with c1 = 0, because

χ(V) = 1
24 (c4

1 + 4c1c3 − 4c2
1c2 + 2c2

2 − 4c4)
+ 5

12 (c3
1 − 3c1c2 + 3c3) + 35

24 (c2
1 − 2c2) + 25

12c1 + r

for every r-vector bundle V on P4.
At the beginning of this chapter we got the two inequalities:

χ(E) ≤ h2(E) + 3 if E is semistable and non-trivial,

χ(E) ≤ h2(E) if E is stable.

Using our last result we obtain the following non-negative polynomials:

c4 − 15
2 c3 + 3c4

2 + 29c3
2 + 155

2 c2
2 + 103

2 c2 ≥ 0
for semistable non-trivial bundles

and

c4 − 15
2 c3 + 3c4

2 + 29c3
2 + 155

2 c2
2 + 103

2 c2 − 18 ≥ 0
for stable bundles.

In the cases of c1(E) = −1,−2,−3 we apply almost the same procedure.
There is a difference when we want to estimate h0(E∗|P2 ⊗ Ω1

P2(k)) and
h2(E∗|P2 ⊗ Ω1

P2(k)) because we cannot use Lemma 1.6. We just take
Lemma 1.2 and get an estimate

h0(E∗|P2 ⊗Ω1
P2(k)) ≤

∑
j≤0

h0(E∗|P1 ⊗Ω1
P1(k + j)) .

There exists j0 such that h0(E∗|P1 ⊗Ω1
P1(k + j)) = 0 for j ≤ j0 so the sum

on the right side is finite and the non-trivial values are easily calculated by
taking the generic splitting type of E∗|P1⊗Ω1

P1(k+j) and from Bott’s formula
[5, Chapter I, §1.1]. Using Serre duality in a similar way we can estimate
h2(E∗|P2⊗Ω1

P2(k)). Finally, we obtain the following non-negative polynomials
for semistable, non-trivial 4-bundles on P4:

if c1(E) = −1 then

c4 − 13
2 c3 + 3c4

2 + 35c3
2 + 371

2 c2
2 + 359c2 + 156 ≥ 0 ,

if c1(E) = −2 then

c4 − 9
2c3 + 3c4

2 + 35c3
2 + 347

2 c2
2 + 657

2 c2 − 6 ≥ 0 ,

if c1(E) = −3 then

c4 − 15
2 c3 + 3c4

2 + 23c3
2 + 89

2 c2
2 + 47c2 + 6 ≥ 0 ,

and for stable bundles we get the same polynomials minus 3× 6 = 18.
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2. Generalization to semistable r-bundles on Pn. In this chapter
we will need a more general version of Lemma 1.2:

Theorem 2.1 [1, Theorem 1.6a]. Let E be a vector bundle on Pn and
Y ⊂ Pn be a complete intersection. Then for q ≤ dim Y ,

hq(E) ≤
∑
v≥0

hq(E|Y ⊗ SvN∗
Y )

where SvN∗
Y is the v-th symmetric power of the conormal bundle N∗

Y/Pn .

Since for every bundle E on Pn,

χ(E) ≤ h0(E) + h2(E) + . . . + h2k(E), k =
[
n

2

]
,

and the Euler–Poincaré characteristic χ(E) is a polynomial in Chern classes,
we have to estimate the components on the right side.

By substituting Y = P2l+1 in the theorem above we get

h2l(E) ≤
∑
v≥0

h2l(E|P2l+1 ⊗ SvN∗
P2l+1) ,

but
N∗

P2l+1/Pn = (n− 2l − 1)OP2l+1(−1)
so

SvN∗
P2l+1 =

∑
v≥0

(
n− 2l − 2 + v

v

)
OP2l+1(−v)

and we obtain

h2l(E) ≤
∑
v≥0

(
n− 2l − 2 + v

v

)
h2l(E|P2l+1(−v)) .

Then immediately by Serre duality we get

(∗) h2l(E) ≤
∑
v≥0

(
n− 2l − 2 + v

v

)
h1(E∗|P2l+1(−2l − 2 + v)) .

Now we need to show that the sum (∗) above is finite and estimate the
values of h1(E∗|P2l+1(v)) by polynomials in the second Chern class of E .

We first study h1(E∗|P2(j)). As we have

h1(E∗|P2(j)) = −χ(E∗|P2(j)) + h0(E∗|P2(j)) + h2(E∗|P2(j))

and χ(E∗|P2(j)) is a polynomial in Chern classes, we shall estimate h0(E∗|P2(j))
and h2(E∗|P2(j)).

From Lemma 1.2 we get

h0(E∗|P2(j)) ≤
∑
v≤0

h0(E∗|P1(j + v))
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where h0(E∗|P1(j + v)) = 0 for v small enough. We have finitely many possi-
bilities for the generic splitting type a∗1 ≤ . . . ≤ a∗r of E∗(k). Therefore using
h0(E∗|P1(k)) =

∑r
i=1 h0(O(a∗i )) where

h0(O(a∗i )) =
{
−a∗i+1 if a∗i ≥ 0,
0 if a∗i < 0,

we can calculate the values of h0(E∗|P1(k)).
Finally, taking the maximum of those values we are able to estimate

h0(E∗|P2(j)) and, by Serre duality, h2(E∗|P2(j)), so we obtain an estimate for
h1(E∗|P2(j)).

Now from Le Potier’s Lemma we get

h1(E∗|P2(m)) ≥ h1(E∗|P2(m + 1)) ,(1)

h1(E|P2(n)) ≥ h1(E|P2(n + 1))(2)

for m ≥ −a∗r − 1 and n ≥ −ar − 1, and equalities hold if and only if
H1(E∗|P2(m)) = 0 and H1(E|P2(n)) = 0.

We can easily calculate the minimal ar for normalized r-bundles with
c1(E) fixed: it is

ar =
[
c1(E)

r
− r − 1

2

]
.

By Serre duality h1(EP2(−ar − 1)) = h1(EP2(a∗r − 2)) so (2) implies

(2′) h1(E∗|P2(n)) ≤ h1(E∗|P2(n + 1))

for n ≤ a∗r − 2.
Finally, from (1) and (2′) we conclude that there are a finite number of j

such that h1(E∗|P2(j)) 6= 0 so we can get an estimate for
∑∞

j=−∞ h1(E∗|P2(j))
because we have one for h1(E∗|P2(j)).

Using this result we estimate h1(E∗|P2l+1(v)). Taking, in Theorem 2.1,
n = 2l + 1, Y = P2, E = E∗|P2l+1 , q = 1 we obtain

h1(E∗|P2l+1(v)) ≤
∑
j≥0

h1(E∗|P2 ⊗ SjN∗
P2(v)) ;

but
N∗

P2/Pn = (2l + 1− 2)OP2(−1) = (2l − 1)OP2(−1)
so

h1(E∗|P2l+1(v)) ≤
∑
j≥0

(
2l − 2 + j

j

)
h1(E∗|P2(v − j)) .

Now we will show that the sum (∗) is finite.
Applying Lemma 1.3 we get

h1(E∗|P2l+1(m)) ≥ h1(E∗|P2l+1(m + 1))
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for m ≥ j0 − 1 and equality holds if and only if H1(E∗|P2l+1(m)) = 0 where
for j ≥ j0,

h1(E∗|P2l(j)) = h1(E∗|P2l ⊗Ω1
P2l(j + 1)) = 0 .

To find j0 we will be looking for l0 and l′0 which satisfy

h1(E∗|P2l(l)) = 0 if l ≥ l0 ,

h1(E∗|P2l ⊗Ω1
P2l(l′)) = 0 if l′ ≥ l′0 .

Then j0 will be equal to max(l0, l′0 − 1). Now once again from Lemma 1.3
we obtain

(∗∗) h1(E∗|P2l(s)) ≥ h1(E∗|P2l(s + 1))

for s ≥ s0, and equality holds if and only if H1(E∗|P2l+1(s)) = 0; moreover,
s0 satisfies h1(E∗|P2l−1(t)) = h1(E∗|P2l−1 ⊗Ω1

P2l−1(t + 1)) = 0 for t ≥ s0 − 1.
By Theorem 2.1 we get the estimate

h1(E∗|P2l(s0 − 1)) ≤
∑
v≥0

(
2l − 3 + v

v

)
h1(E∗|P2(s0 − 1− v))

and from our previous consideration of h1(E∗|P2(j)) we can represent this
estimate as a polynomial w(c2) in the second Chern class. Using (∗∗) we
conclude that l0 = w(c2) + s0 − 1. Similarly we can find l′0. In this way the
task of finding j0 is replaced by the problem of finding s0, s′0 which satisfy
the conditions of Lemma 1.3. By analogy we can replace the search for s0,
s′0 by looking for four other numbers which we determine by substituting,
in Lemma 1.3, n = 2l−1, Y = P2l−1 and taking for V a suitable restriction.

Further we proceed by iteration until Y = P1 in Lemma 1.3 and finally
we obtain explicitly 22l numbers which enable us to calculate j0.

3. Construction of examples. In this last section, in order to see
how rough the estimates we obtained are, we present some theorems which
are helpful in constructing semistable vector bundles on Pn from complete
intersection. Finally, we construct an example of a semistable 4-bundle on
P4 and calculate the value of its non-negative polynomial found in Section 1.

Theorem 3.1 [5, Chapter I, §5]. Let Y be a locally complete intersection
of codimension 2 in Pn (n ≥ 3) with sheaf of ideals TY ⊂ OPn and with
[det NY/Pn ](−k) (the determinant of the normal bundle) generated by n− 1
global sections. Then there exists an exact sequence

0 → Or−1
Pn → E → TY (k) → 0

where E is a bundle of rank r.
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Theorem 3.2 [3]. Let E be a bundle of rank r on Pn.

(a) E is semistable if and only if H0(ΛqE ⊗ O(−i)) = 0 for each q < r
and i > µq (where µ(E) = c1(E)/ rank E).

(b) If H0(ΛqE ⊗ O(−i)) = 0 for q < r and i ≥ µq then E is stable.

Theorem 3.3. Let Y be a complete intersection of two hyperplanes in Pn

(n ≥ 4) given by two equations of degree d1, d2 respectively and d1, d2 > 0.
Then for k ≤ d1 +d2 the bundle [det NY/Pn ](−k) is generated by n−1 global
sections.

P r o o f. We have an isomorphism

[det NY/Pn ](−k) ∼= OY (d1 + d2 − k)

so
h0(det NY/Pn(−k)) = h0(OY (d1 + d2 − k))

=
(

d1 + d2 + n− 2
n− 2

)
≥ n− 1 = dim Y + 1 .

We conclude that the sections of H0(NY/Pn(−k)) are forms of degree d1 +
d2−k. For each y ∈ Y we can find a form which is non-trivial at this point.

Theorem 3.4. Let Y be the intersection of two hyperplanes in Pn given
by equations of degree d1, d2 > 0 respectively and k ≤ d1 + d2 − 1. Then the
Chern classes of the bundle E in the exact sequence

0 → O3
Pn → E → TY ⊗OY (k) → 0

are
c1(E) = k , c3(E) = d1d2(d1 + d2 − k) ,

c2(E) = d1d2 , c4(E) = d1d2(d1 + d2 − k)2 .

P r o o f. c(E) = c(TY (k)) · c(O3
Pn) = c(TY (k)) because c(OPn) = 1.

Tensoring the Koszul complex by OPn(k) we obtain

0 → OPn(−d1 − d2 + k) → OPn(−d1 + k)⊕OPn(−d2 + k) → TY (k) → 0 .

From this sequence we get

c(TY (k)) =
c(OPn(−d1 + k)⊕OPn(−d2 + k))

c(OPn(−d1 − d2 + k))
;

but c(OPn(j)) = 1 + jh, h ∈ H2(Pn, Z), so

c(TY (k)) =
(1− (d1 − k)h)(1− (d2 − k)h)

1− (d1 + d2 − k)h
and by quick calculation we obtain the assertion of the theorem.

Now we construct an example of a semistable 4-vector bundle E on Pn

with c1(E) = 0.
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Let Y be the intersection of two hyperplanes in P4 given by two equations
of degree d1, d2 respectively and d1, d2 > 0. By Theorem 3.3, the bundle
det NY/P4 is generated by three global sections.

We notice that Y satisfies the assumption of Theorem 3.1 (since Y is
a global complete intersection it is also a local one) so we get the exact
sequence

0 → O3
P4 → E → TY → 0

where E is a bundle of rank 4.
To show that E is semistable we consider the diagram

0
↓

0 → O3
P4 → E → TY → 0

↓
OP4 → OY → 0

Let us restrict it to a line L which does not meet Y . Then OY |L = 0 and
we get the exact sequence

0 → O3
|L → E|L → O|L → 0 .

Since Ext(OL,O3
L) = H1(O3

L) = 0, we get E|L = OL ⊕ OL ⊕ OL ⊕ OL.
By Theorem 3.4 we have c1(E) = 0 so µ(E) = 0 and by Theorem 3.2 we
conclude that E is semistable if and only if H0(Λq ⊗ O(−2)) = 0 for each
q < r and i > µq = 0, so it suffices to show that the bundle [ΛqE ](−1) has
only trivial sections for q = 1, 2, 3.

Suppose that one of the bundles above has a non-trivial section. Then
its restriction to an arbitrary line L is a section of the bundle

[ΛqE ]|L = OL(−1)⊕OL(−1)⊕ . . .⊕OL(−1) .

We can choose the line L on which there exist some points where the section
S is non-trivial. Then S|L 6= 0 and S|L ∈ H0([ΛqE ]|L(−1)), but

H0([ΛqE ]|L(−1)) = H0(OL(−1)⊕OL(−1)⊕ . . .⊕OL(−1)) = 0 ,

so we obtain a contradiction.
Finally, we calculate the value of the non-negative polynomial from Sec-

tion 1 for the bundle we have just constructed.
By Theorem 3.4 we get

c2(E) = d1d2, c3(E) = d1d2(d1 + d2) ,

c4(E) = d1d2(d1 + d2)2 ,

and substituting x = d1 + d2 and y = d1d2 we obtain the value

xy

(
x− 15

2

)
+

(
3y4 + 29y3 +

155
2

y2 +
103
2

y

)
.
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When d1, d2 ∈ N it is easy to see that the polynomial above has a minimal
value for d1 = 1, d2 = 1 and then the value is 150.
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