SOME REMARKS ABOUT MYCIELSKI IDEALS

BY
SHIZUO KAMO (SAKAI)

1. Introduction and definitions. Our set theoretic notation and terminology is standard (see e.g. [4], [5]). Let \mathbf{c} denote $|\mathcal{P}(\omega)|(=$ the cardinality of $\mathcal{P}(\omega)$). Let X be a subset of ω. The set $\{Y \subset X||Y|=\omega\}$ is denoted by $[X]^{\omega} .{ }^{\omega} X\left({ }^{\omega>} X\right)$ denotes the family of ω-sequences (finite sequences) of elements in X, respectively. $\forall^{\infty} n \in X(\ldots)$ means that $\{n \in X \mid$ not $\ldots\}$ is finite. $\exists^{\infty} n \in X(\ldots)$ means that $\{n \in X \mid \ldots\}$ is infinite. For $f, g \in{ }^{\omega} \omega$, g dominates f (denoted by $f \prec g$) if $\forall^{\infty} n<\omega(f(n)<g(n))$. For $F \subset{ }^{\omega} \omega$, F is called a dominating family of ${ }^{\omega} \omega$ if $\forall g \in{ }^{\omega} \omega \exists f \in F(g \prec f)$, and an unbounded family of ${ }^{\omega} \omega$ if $\forall g \in{ }^{\omega} \omega \exists f \in F(\operatorname{not} f \prec g)$. Denote by $\mathbf{d}(\mathbf{b})$ the least cardinality of a dominating (unbounded) family of ${ }^{\omega} \omega$, respectively.

Let $1<\mathcal{X} \leq \omega$. For $X \subset \omega$ and $A \subset{ }^{\omega} \mathcal{X}, \Gamma_{\mathcal{X}}(A, X)$ denotes the infinite game between two players, I and II. At each step $n<\omega$, player I chooses $k_{n}<\mathcal{X}$ if $n \in \omega \backslash X$ and player II chooses $k_{n}<\mathcal{X}$ if $n \in X$. Player I wins if $\left\langle k_{n} \mid n<\omega\right\rangle \in A$ and player II wins in the opposite case. A strategy is a function $\sigma:{ }^{<\omega} \mathcal{X} \rightarrow \mathcal{X} . \operatorname{STR}_{\mathcal{X}}$ denotes the set of strategies. For $\tau, \sigma \in \mathrm{STR}_{\mathcal{X}}$ and $X \subset \omega, \tau *_{X} \sigma$ denotes the resulting ω-sequence of the game $\Gamma_{\mathcal{X}}(A, X)$ when player I follows the strategy τ and II follows σ, i.e.

$$
\tau *_{X} \sigma(n)= \begin{cases}\tau\left(\tau *_{X} \sigma \upharpoonright n\right) & \text { if } n \in \omega \backslash X \\ \sigma\left(\tau *_{X} \sigma \upharpoonright n\right) & \text { if } n \in X\end{cases}
$$

For $f: \omega \rightarrow \mathcal{X}$, we identify f with $\sigma_{f} \in \operatorname{STR}_{\mathcal{X}}$ which is defined by

$$
\sigma_{f}(s)=f(\operatorname{length}(s)), \quad \text { for any } s \in^{<\omega} \mathcal{X}
$$

Note that f (i.e. σ_{f}) is a strategy which does not depend on the previous movements of the players. For $\sigma \in \operatorname{STR}_{\mathcal{X}}$ and $X \subset \omega, \operatorname{STR}_{\mathcal{X}} *_{X} \sigma$ denotes the set of all results of the game determined by X, in which the second player uses strategy σ, i.e.

$$
\operatorname{STR}_{\mathcal{X}} *_{X} \sigma=\left\{\tau *_{X} \sigma \mid \tau \in \operatorname{STR}_{\mathcal{X}}\right\}
$$

The following fact is easily checked.
FACT 1.1. For any $\sigma \in \operatorname{STR}_{\mathcal{X}}, X \subset \omega$ and $f \in{ }^{\omega} \mathcal{X}$, the following are equivalent.
(a) $f \in \operatorname{STR}_{\mathcal{X}} *_{X} \sigma$.
(b) $f \in\left\{g *_{X} \sigma \mid g \in{ }^{\omega} \mathcal{X}\right\}$.
(c) $f=f *_{X} \sigma$.
(d) $\forall n \in X(\sigma(f\lceil n)=f(n))$.

A strategy σ is called a winning strategy for player II in the game $\Gamma_{\mathcal{X}}(A, X)$ if $\left(\operatorname{STR}_{\mathcal{X}} *_{X} \sigma\right) \cap A=\emptyset$. Denote by $V_{\mathrm{II}}(\mathcal{X}, X)$ the family of all sets $A \subset{ }^{\omega} \mathcal{X}$ for which player II has a winning strategy in $\Gamma_{\mathcal{X}}(A, X)$ and $V_{\mathrm{II}}^{*}(\mathcal{X}, X)$ the family of all sets $A \subset{ }^{\omega} \mathcal{X}$ for which player II has in $\Gamma_{\mathcal{X}}(A, X)$ a winning strategy which does not depend on the movements of player I, i.e.

$$
\begin{aligned}
& V_{\mathrm{II}}(\mathcal{X}, X)=\left\{A \subset{ }^{\omega} \mathcal{X} \mid \exists \sigma \in \operatorname{STR}_{\mathcal{X}}\left(\left(\mathrm{STR}_{\mathcal{X}} *_{X} \sigma\right) \cap A=\emptyset\right)\right\}, \\
& V_{\mathrm{II}}^{*}(\mathcal{X}, X)=\left\{A \subset{ }^{\omega} \mathcal{X} \mid \exists f \in{ }^{\omega} \mathcal{X}\left(\left(\operatorname{STR}_{\mathcal{X}} *_{X} f\right) \cap A=\emptyset\right)\right\}
\end{aligned}
$$

A family $\mathcal{K} \subset[\omega]^{\omega}$ is said to be a normal system if for any $X \in \mathcal{K}$ there exist $X_{1}, X_{2} \in \mathcal{K}$ such that $X_{1}, X_{2} \subset X$ and $X_{1} \cap X_{2}=\emptyset$.

For any normal system \mathcal{K}, let

$$
\begin{aligned}
\mathcal{M}_{\mathcal{X}, \mathcal{K}} & =\bigcap_{X \in \mathcal{K}} V_{\mathrm{II}}(\mathcal{X}, X) \\
& =\left\{A \subset{ }^{\omega} \mathcal{X} \mid \forall X \in \mathcal{K} \exists \sigma \in \operatorname{STR}_{\mathcal{X}}\left(\left(\operatorname{STR}_{\mathcal{X}} *_{X} \sigma\right) \cap A=\emptyset\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{M}_{\mathcal{X}, \mathcal{K}}^{*} & =\bigcap_{X \in \mathcal{K}} V_{\mathrm{II}}^{*}(\mathcal{X}, X) \\
& =\left\{A \subset{ }^{\omega} \mathcal{X} \mid \forall X \in \mathcal{K} \exists f \in{ }^{\omega} \mathcal{X}\left(\left(\operatorname{STR}_{\mathcal{X}} *_{X} f\right) \cap A=\emptyset\right)\right\}
\end{aligned}
$$

These are σ-ideals (called Mycielski ideals), introduced by Mycielski [6], and generalized by Rosłanowski [9, 10] and studied in [1, 3, 8-10]. The ideals $\mathcal{M}_{\mathcal{X},[\omega]^{\omega}}$ and $\mathcal{M}_{\mathcal{X},[\omega] \omega}^{*}$ will be denoted by $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$, respectively.

We shall consider ${ }^{\omega} \mathcal{X}$ with the product measure and the product topology. The σ-ideals of null sets and meager sets are denoted by $\mathbf{L}_{\mathcal{X}}$ and $\mathbf{K}_{\mathcal{X}}$, respectively.
2. Orthogonality. Throughout this section, we assume that $1<\mathcal{X}<$ ω. Two ideals \mathcal{I}, \mathcal{J} of $\mathcal{P}\left({ }^{\omega} \mathcal{X}\right)$ are called orthogonal if there exist sets $A \in \mathcal{I}$ and $B \in \mathcal{J}$ such that $A \cup B={ }^{\omega} \mathcal{X}$. We study conditions on a normal system \mathcal{K} which imply the orthogonality of $\mathcal{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$. For each $X \in[\omega]^{\omega}$, let e_{X} denote the order isomorphism from ω to X. Rosłanowski [10] proved the following two results:

Theorem 2.1. If a normal system \mathcal{K} satisfies

$$
\begin{equation*}
\forall Y \in[\omega]^{\omega} \exists X \in \mathcal{K} \forall^{\infty} n<\omega\left(\left|\left[e_{Y}(n), e_{Y}(n+1)\right) \cap X\right| \leq 1\right) \tag{2.1}
\end{equation*}
$$

then $\mathcal{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$ are not orthogonal.

Theorem 2.2. There exists a normal system \mathcal{K} (with cardinality \mathbf{c}) such that $\left\{e_{X} \mid X \in \mathcal{K}\right\}$ is unbounded in ${ }^{\omega} \omega$ and $\mathcal{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal.

He called a normal system \mathcal{K} which satisfies the condition (2.1) dominating. This condition is a little stronger than the condition that $\left\{e_{X} \mid\right.$ $X \in \mathcal{K}\}$ is a dominating family of ${ }^{\omega} \omega$. In fact, it is easy to check that, for any $\mathcal{U} \subset[\omega]^{\omega},\left\{e_{X} \mid X \in \mathcal{U}\right\}$ is a dominating family of ${ }^{\omega} \omega$ if and only if for each $Y \in[\omega]^{\omega}$ there exists an $X \in \mathcal{U}$ such that $\forall^{\infty} n<\omega$ $\left(\left|\left[e_{Y}(n), e_{Y}(n+1)\right) \cap X\right| \leq n\right)$. Using this and the fact that a small set $\left(I_{n}, S_{n}\right)_{n<\omega}$ can be choosen which satisfies $\left|S_{n}\right| \cdot \mathcal{X}^{-\left|I_{n}\right|}<\mathcal{X}^{-2 n}$ for any $n<\omega$, a slight modification of Rosłanowski's proof of Theorem 2.1 yields a proof of

Theorem 2.3. For any normal system \mathcal{K}, if $\left\{e_{X} \mid X \in \mathcal{K}\right\}$ is a dominating family of ${ }^{\omega} \omega$, then $\mathcal{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$ are not orthogonal.

The following theorem and corollary show that unboundedness is not a sufficient condition for non-orthogonality.

Theorem 2.4. Let κ be an uncountable cardinal and P the notion of forcing adjoining κ Cohen reals. Then, in $V^{P}, \mathcal{M}_{\mathcal{X}, \mathcal{K}}^{*}$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal, for any normal system $\mathcal{K} \subset[\omega]^{\omega}$ with cardinality $<\kappa$.

Proof. Let $\mathcal{K} \in V^{P}$ be a normal system with cardinality $<\kappa$. Since $|\mathcal{K}|<\kappa$, we may assume that $\mathcal{K} \in V$. From now on, we work in V^{P}.

Claim 1. There exists a sequence $\left\langle S_{n} \mid n<\omega\right\rangle$ such that
(1) $\forall n<m<\omega\left(S_{n} \subset \omega \&\left|S_{n}\right| \geq n \& S_{n} \cap S_{m}=\emptyset\right)$,
(2) $\forall X \in \mathcal{K} \exists^{\infty} n<\omega\left(S_{n} \subset X\right)$.

Proof of Claim 1. Take a Cohen generic subset $U \subset \omega$ over V. For each $n<\omega$, set $S_{n}=\left[e_{U}\left(n^{2}\right), e_{U}\left((n+1)^{2}\right)\right) \cap U$. Then $\left\langle S_{n} \mid n<\omega\right\rangle$ is as required.

Take a sequence $\left\langle S_{n} \mid n<\omega\right\rangle$ which satisfies (1), (2) of Claim 1. Set

$$
A=\left\{f \in{ }^{\omega} \mathcal{X} \mid \exists^{\infty} n<\omega\left(f \upharpoonright S_{n} \equiv 0\right)\right\} \in \mathbf{L}_{\mathcal{X}}
$$

Since $\operatorname{STR}_{\mathcal{X}} *_{X}$ Const $_{0} \subset A$ for all $X \in \mathcal{K}$, we conclude that ${ }^{\omega} \mathcal{X} \backslash A \in$ $\mathcal{M}_{\mathcal{X}, \mathcal{K}}^{*}$.

Corollary 2.5. It is consistent with $\mathbf{b}<\mathbf{d}=\mathbf{c}$ that "for any normal system \mathcal{K} with cardinality $<\mathbf{c}, \mathcal{M}_{\mathcal{K}, \mathcal{X}}$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal".

Relating to orthogonality, Balcerzak and Rosłanowski [1] proved that
Theorem 2.6. For each $A \in \mathbf{K}_{\mathcal{X}}$, there exists a normal system \mathcal{K} such that $A \in \mathcal{M}_{\mathcal{X}, \mathcal{K}}^{*}$.

They asked whether a measure analogue of Theorem 2.6 holds. I.e., does, for each $A \in \mathbf{L}_{\mathcal{X}}$, exist a normal system \mathcal{K} such that $A \in \mathcal{M}_{\mathcal{X}, \mathcal{K}}$? The following example gives a negative answer to this question.

EXAmple 2.7. Let s be the unique $t<\omega$ such that $2 t \leq \mathcal{X}<2(t+1)$ and set

$$
A=\left\{f \in{ }^{\omega} \mathcal{X} \mid \exists^{\infty} n<\omega(|\{k<n \mid f(k) \geq s\}|<n / 4)\right\} .
$$

Then A is a Lebesgue measure zero set and, for any normal system $\mathcal{K} \subset[\omega]^{\omega}$, $A \notin \mathcal{M}_{\mathcal{X}, \mathcal{K}}$.

Proof. In order to show that $A \notin \mathcal{M}_{\mathcal{X}, \mathcal{K}}$ for all normal systems $\mathcal{K} \subset$ $[\omega]^{\omega}$, we need the following lemma.

Lemma 2.8. Let X be a subset of ω such that $A \in V_{\mathrm{II}}(\mathcal{X}, X)$. Then

$$
\forall^{\infty} n<\omega(|X \cap n| \geq n / 4)
$$

Proof. Take $\tau \in \operatorname{STR}_{\mathcal{X}}$ such that $\left(\operatorname{STR}_{\mathcal{X}} *_{X} \tau\right) \cap A=\emptyset$. Set $f=$ Const $_{0} *_{X} \tau$. Since $f \notin A$, we have $\forall^{\infty} n<\omega(|\{k<n \mid f(k) \geq s\}| \geq n / 4)$. The assertion follows from this and the fact that $\forall k \in \omega \backslash X(f(k)=0<s)$.

By Lemma 2.8, for any disjoint subsets X_{i} (for $i<5$) of ω, there is some $i<5$ such that $A \notin V_{\text {II }}\left(\mathcal{X}, X_{i}\right)$. So, $A \notin \mathcal{M}_{\mathcal{X}, \mathcal{K}}$ for all normal \mathcal{K}.

We must show that A has Lebesgue measure zero. Let μ denote the Lebesgue measure on ${ }^{\omega} \mathcal{X}$. For each $n<\omega$, define $B_{n}=\left\{f \in{ }^{\omega} \mathcal{X} \mid\right.$ $|\{k<n \mid f(k) \geq s\}|<n / 4\}$. Since $A=\bigcap_{m<\omega} \bigcup_{m \leq n<\omega} B_{n}$, we have $\mu(A) \leq$ $\lim _{m<\omega}\left(\sum_{m \leq n<\omega} \mu\left(B_{n}\right)\right)$. So, it suffices to show

$$
\begin{equation*}
\sum_{n<\omega} \mu\left(B_{n}\right)<\omega . \tag{C.1}
\end{equation*}
$$

Lemma 2.9. $\binom{4(n+1)}{n} \leq\left(\frac{4^{4}}{3^{3}}\right)^{n}$ for all $1 \leq n<\omega$.
Proof. Since $\binom{8}{1}=8 \leq 4^{4} / 3^{3}$, it suffices to show that

$$
\binom{4(n+1)}{n} \leq \frac{4^{4}}{3^{3}} \cdot\binom{4 n}{n-1} \quad \text { for } n \geq 2
$$

Indeed,

$$
\binom{4(n+1)}{n}=\frac{4}{3} \cdot \frac{(4 n+3)(4 n+2)(4 n+1)}{n(3 n+4)(3 n+2)}\binom{4 n}{n-1} \leq \frac{4^{4}}{3^{3}} \cdot\binom{4 n}{n-1}
$$

By Lemma 2.9, for any $0<m<\omega$,

$$
\left(\frac{2}{3}\right)^{m}\left(\frac{1}{2}\right)^{3 m} \sum_{k \leq m}\binom{4(m+1)}{k} \leq(m+1)\left(\frac{2 \cdot 4^{4}}{3 \cdot 8 \cdot 3^{3}}\right)^{m}=(m+1)\left(\frac{64}{81}\right)^{m} .
$$

Using this, we have

$$
\sum_{0<m<\omega}\left(\frac{2}{3}\right)^{m}\left(\frac{1}{2}\right)^{3 m} \sum_{k \leq m}\binom{4(m+1)}{k}<\omega
$$

(C.1) follows from this and from

$$
\begin{aligned}
\mu\left(B_{n}\right) & =\mathcal{X}^{-n} \sum_{X \in[n]^{<n / 4}}\left((\mathcal{X}-s)^{|X|} \cdot s^{|n \backslash X|}\right) \leq \sum_{X \in[n]^{<n / 4}}\left(\frac{2}{3}\right)^{|X|}\left(\frac{1}{2}\right)^{n-|X|} \\
& \leq\left(\frac{2}{3}\right)^{n / 4}\left(\frac{1}{2}\right)^{3 n / 4} \sum_{k<n / 4}\binom{n}{k}, \quad \text { for any } n<\omega .
\end{aligned}
$$

Remark. In [3], the definition of the ideals $\mathcal{P}_{\mathcal{X}}$ was generalized to all functions $\mathcal{X} \in{ }^{\omega}(\omega \backslash 2)$. A similar generalization is possible for the ideals $\mathcal{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathcal{M}_{\mathcal{X}, \mathcal{K}}^{*}$, for each $\mathcal{X}: \omega \rightarrow(\omega+1 \backslash 2)$. By modifying the construction of A in Example 2.7 a little, for each $\mathcal{X} \in{ }^{\omega}(\omega \backslash 2)$ we can construct a Lebesgue measure zero subset A of $\prod_{n<\omega} \mathcal{X}(n)$ such that $A \notin \mathcal{M}_{\mathcal{X}, \mathcal{K}}$ for any normal system \mathcal{K}.
3. Cardinal coefficients. In this section, we study the cardinal coefficients of the ideals $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$. For an ideal \mathcal{I} of $\mathcal{P}\left({ }^{\omega} \mathcal{X}\right)$, define

$$
\begin{aligned}
\operatorname{cof}(\mathcal{I}) & =\min \{|\mathcal{S}| \mid \mathcal{S} \subset \mathcal{I} \& \forall A \in \mathcal{I} \exists B \in \mathcal{S}(A \subset B)\} \\
\operatorname{non}(\mathcal{I}) & =\min \left\{|A| \mid A \subset{ }^{\omega} \mathcal{X} \& A \notin \mathcal{I}\right\} \\
\operatorname{cov}(\mathcal{I}) & =\min \left\{|\mathcal{S}| \mid \mathcal{S} \subset \mathcal{I} \& \bigcup \mathcal{S}=^{\omega} \mathcal{X}\right\} \\
\operatorname{add}(\mathcal{I}) & =\min \{|\mathcal{S}| \mid \mathcal{S} \subset \mathcal{I} \& \bigcup \mathcal{S} \notin \mathcal{I}\}
\end{aligned}
$$

The following facts are well-known.
FACT 3.1. Let \mathcal{I}, \mathcal{J} be σ-ideals of $\mathcal{P}\left({ }^{\omega} \mathcal{X}\right)$ such that ${ }^{\omega} \mathcal{X} \notin \mathcal{I}$ and $\{f\} \in \mathcal{I}$, for all $f \in{ }^{\omega} \mathcal{X}$. Then
(1) $\operatorname{non}(\mathcal{I}), \operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I})$.
(2) $\omega_{1} \leq \operatorname{add}(\mathcal{I}) \leq \operatorname{non}(\mathcal{I}), \operatorname{cov}(\mathcal{I})$.
(3) If \mathcal{I} and \mathcal{J} are orthogonal and translation invariant, then $\operatorname{cov}(\mathcal{I}) \leq$ $\operatorname{non}(\mathcal{J})$.

Fact 3.2. The cardinal coefficients of the ideals $\mathbf{K}_{\mathcal{X}}$ and $\mathbf{L}_{\mathcal{X}}$ do not depend on the choice of \mathcal{X}, i.e. for any $1<\mathcal{X}, \mathcal{Y} \leq \omega, \operatorname{cof}\left(\mathbf{K}_{\mathcal{X}}\right)=\operatorname{cof}\left(\mathbf{K}_{\mathcal{Y}}\right)$, $\operatorname{cof}\left(\mathbf{L}_{\mathcal{X}}\right)=\operatorname{cof}\left(\mathbf{L}_{\mathcal{Y}}\right), \ldots$

For the ideals $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$, the following theorems are known.
THEOREM $3.3[8,10]$. (1) $\operatorname{non}\left(\mathcal{C}_{\mathcal{X}}\right)=\operatorname{non}\left(\mathcal{P}_{\mathcal{X}}\right)=\mathbf{c}$.
(2) $\operatorname{add}\left(\mathcal{C}_{\omega}\right)=\operatorname{add}\left(\mathcal{P}_{\omega}\right)=\operatorname{cov}\left(\mathcal{C}_{\omega}\right)=\operatorname{cov}\left(\mathcal{P}_{\omega}\right)=\omega_{1}$.
(3) $\operatorname{cov}\left(\mathcal{P}_{\mathcal{X}}\right)=\operatorname{add}\left(\mathcal{P}_{\mathcal{X}}\right)$.
(4) $\operatorname{cof}\left(\mathcal{P}_{\omega}\right)>\mathbf{c}$ and $\operatorname{cof}\left(\mathcal{C}_{\omega}\right)>\mathbf{c}$.
(5) If $\operatorname{cov}(\mathbf{K})=\mathbf{c}$, then $\operatorname{cof}\left(\mathcal{P}_{\mathcal{X}}\right)>\mathbf{c}$ and $\operatorname{cof}\left(\mathcal{C}_{\mathcal{X}}\right)>\mathbf{c}$.
(6) $\operatorname{cov}\left(\mathcal{P}_{2}\right) \leq \operatorname{cof}(\mathbf{L})^{+}$.

Theorem 3.4 (I. Recław, see [8]). The proper forcing axiom (PFA) implies that $\operatorname{cov}\left(\mathcal{P}_{2}\right)>\omega_{1}$.

Theorem 3.5 [3]. It is consistent with Martin's Axiom and $\mathbf{c}=\omega_{2}$ that $\operatorname{cov}\left(\mathcal{P}_{2}\right)=\omega_{1}$.

We shall show the following.
TheOrem 3.6. $\operatorname{cof}\left(\mathcal{P}_{\mathcal{X}}\right)>\mathbf{c}$ and $\operatorname{cof}\left(\mathcal{C}_{\mathcal{X}}\right)>\mathbf{c}$, for any $1<\mathcal{X}<\omega$.
Theorem 3.7. PFA implies that $\operatorname{add}\left(\mathcal{C}_{2}\right)>\omega_{1}$.
Theorem 3.8. $\operatorname{add}\left(\mathcal{C}_{2}\right) \leq \operatorname{cof}(\mathbf{L})$.
The case of $\mathcal{X}=2$ in Theorem 3.6 gives an affirmative answer to Problem 5.3 .18 (c) of [9].

Proof of Theorem 3.6. It suffices to show:
(*) For any $\left\{A_{\alpha} \mid \alpha<\mathbf{c}\right\} \subset \mathcal{C}_{\mathcal{X}}$, there exists $B \in \mathcal{P}_{\mathcal{X}}$ such that $\forall \alpha<\mathbf{c}$ ($B \not \subset A_{\alpha}$).
In order to show $(*)$, we need several definitions and two lemmas.
For any $A \subset{ }^{\omega} \mathcal{X}$ and $X \subset \omega$, the set $\{f|X| f \in A\}$ is denoted by $A \mid X$.
Note that $\mathcal{P}_{\mathcal{X}}=\left\{A \subset{ }^{\omega} \mathcal{X} \mid \forall X \in[\omega]^{\omega}\left(A \mid X \neq{ }^{X} \mathcal{X}\right)\right\}$.
Take a nonempty $A \in \mathcal{P}_{\mathcal{X}}$ such that

$$
\begin{equation*}
\forall c \in A \forall d \in{ }^{\omega} \mathcal{X}\left(\forall^{\infty} n<\omega(c(n)=d(n)) \Rightarrow d \in A\right) \tag{3.1}
\end{equation*}
$$

For each $X \in[\omega]^{\omega}$, take a sequence $\left\langle c_{\alpha, X} \mid \alpha<\mathbf{c}\right\rangle$ such that

$$
c_{\alpha, X} \in^{X} \mathcal{X} \backslash A \mid X \quad \text { and } \quad c_{\alpha, X} \neq c_{\beta, X} \text { if } \alpha \neq \beta
$$

Lemma 3.9. Suppose that $\mathcal{F} \subset \mathbf{c} \times[\omega]^{\omega}$ and $Y \in[\omega]^{\omega}$ satisfy

$$
\forall(\alpha, X) \in \mathcal{F}(X \backslash Y \text { is finite }) \&|\mathcal{F}|<\mathbf{c}
$$

Then there exists $g \in{ }^{Y} \mathcal{X}$ such that

$$
\forall(\alpha, X) \in \mathcal{F}\left(c_{\alpha, X} \upharpoonright(X \cap Y) \not \subset g\right)
$$

Proof. For each $(\alpha, X) \in \mathcal{F}$, let $d_{\alpha, X}=c_{\alpha, X} \upharpoonright(X \cap Y)$. By (3.1),

$$
d_{\alpha, X} \notin A \mid(X \cap Y) \quad \text { for all }(\alpha, X) \in \mathcal{F} .
$$

Then, since $\left.\forall(\alpha, X) \in \mathcal{F}\left(\left\{f \in{ }^{Y} \mathcal{X} \mid d_{\alpha, X} \subset f\right\}\right) \cap A \mid Y=\emptyset\right)$, we have

$$
\left(\bigcup_{(\alpha, X) \in \mathcal{F}}\left\{f \in{ }^{Y} \mathcal{X} \mid d_{\alpha, X} \subset f\right\}\right) \cap A \mid Y=\emptyset
$$

Since $A \mid Y \neq \emptyset$, we can take $g \in A \mid Y$. This g is as required.

Recall that $X, Y \in[\omega]^{\omega}$ are almost disjoint if $X \cap Y$ is finite. A family $\mathcal{F} \subset[\omega]^{\omega}$ is said to be pairwise almost disjoint if any two distinct elements of \mathcal{F} are almost disjoint. A $M A D$-family is a maximal family (with the inclusion order) which is pairwise almost disjoint. Take a MAD-family $\mathcal{W} \subset$ $[\omega]^{\omega}$ such that $|\mathcal{W}|=\mathbf{c}$. Take an enumeration $\left\langle U_{\alpha} \mid \alpha<\mathbf{c}\right\rangle$ of $\bigcup_{X \in \mathcal{W}}[X]^{\omega}$.

To prove Theorem 3.6, let $\left\{A_{\alpha} \mid \alpha<\mathbf{c}\right\} \subset \mathcal{C} \mathcal{X}$. Take $\left\langle\tau_{\alpha, X}\right| \alpha<\mathbf{c} \&$ $\left.X \in[\omega]^{\omega}\right\rangle$ such that
$\tau_{\alpha, X} \in \operatorname{STR}_{\mathcal{X}}$ and $\left({ }^{\omega} \mathcal{X} *_{X} \tau_{\alpha, X}\right) \cap A_{\alpha}=\emptyset \quad$ for all $\alpha<\mathbf{c}, X \in[\omega]^{\omega}$.
Lemma 3.10. There exist sequences $\left\langle h_{\alpha} \mid \alpha<\mathbf{c}\right\rangle$ and $\left\langle e_{\alpha} \mid \alpha<\mathbf{c}\right\rangle$ which satisfy the following
(1) $h_{\alpha} \in{ }^{\omega} \mathcal{X} \backslash A_{\alpha}$ and $e_{\alpha} \in{ }^{U_{\alpha}} \mathcal{X}$.
(2) $e_{\alpha} \not \subset h_{\beta}$, for any $\alpha, \beta<\mathbf{c}$.

Proof. We shall show, by induction on $\alpha<\mathbf{c}$, that there exist $h_{\alpha} \in$ ${ }^{\omega} \mathcal{X} \backslash A_{\alpha}$ and $e_{\alpha} \in\left\{c_{\eta, U_{\alpha}} \mid \eta<\mathbf{c}\right\}$ which satisfy $e_{\xi} \not \subset h_{\alpha}$ and $e_{\alpha} \not \subset h_{\xi}$ for all $\xi \leq \alpha$.

So, let $\alpha<\mathbf{c}$. Take $X \in \mathcal{W}$ such that $\forall \xi<\alpha\left(U_{\xi} \cap X\right.$ is finite $)$. Set $Y=\omega \backslash X$. Then by Lemma 3.9, there exists $g \in{ }^{Y} \mathcal{X}$ such that $e_{\xi} \upharpoonright\left(U_{\xi} \cap Y\right) \not \subset g$ for all $\xi<\alpha$. Set $h_{\alpha}=g *_{X} \tau_{\alpha, X}\left(\in{ }^{\omega} \mathcal{X} \backslash A_{\alpha}\right)$. Since $g \subset h_{\alpha}$, we have $e_{\xi} \not \subset h_{\alpha}$, for all $\xi<\alpha$. Take $e_{\alpha} \in\left\{c_{\eta, U_{\alpha}} \mid \eta<\mathbf{c}\right\}$ such that $e_{\alpha} \notin\left\{h_{\xi}\left|U_{\alpha}\right| \xi \leq \alpha\right\}$.

Let $\left\langle h_{\alpha} \mid \alpha<\mathbf{c}\right\rangle$ and $\left\langle e_{\alpha} \mid \alpha<\mathbf{c}\right\rangle$ be sequences which satisfy (1) and (2) of Lemma 3.10. Set $B=\left\{h_{\alpha} \mid \alpha<\mathbf{c}\right\}$. Since $\forall \alpha<\mathbf{c}\left(h_{\alpha} \notin A_{\alpha}\right)$, we have $B \not \subset A_{\alpha}$ for all $\alpha<\mathbf{c}$. To show $B \in \mathcal{P}_{\mathcal{X}}$, let $X \in[\omega]^{\omega}$. Take $Y \in \mathcal{W}$ such that $X \cap Y$ is infinite and $\alpha<\mathbf{c}$ such that $U_{\alpha}=X \cap Y$. Then, since $e_{\alpha} \notin B \mid U_{\alpha}$, it follows that $B \mid X \neq{ }^{X} \mathcal{X}$.

Proof of Theorem 3.7. In order to show Theorem 3.7, we need to modify the notion of covering systems in [10].

Definition. Let κ be a cardinal, $U \in[\omega]^{\omega}$, and $h: U \rightarrow \omega \backslash\{0\}$. A double indexed sequence $\left\langle f_{\alpha, X} \mid \alpha<\kappa \& X \in[U]^{\omega}\right\rangle$ is called a κ-covering system for h if it satisfies
(1) $f_{\alpha, X} \in \prod_{n \in X} h(n)$,
(2) $\forall g \in \prod_{n \in U} h(n) \exists \alpha<\kappa \forall X \in[U]^{\omega}\left(f_{\alpha, X} \not \subset g\right)$.

Lemma 3.11 (PFA)

(C) There does not exist an ω_{1}-covering system for h, for any $h: U \rightarrow$ $\omega \backslash\{0\}$ and $U \in[\omega]^{\omega}$.

Proof. Let $U \in[\omega]^{\omega}$ and $h: U \rightarrow \omega \backslash\{0\}$.

Suppose that a sequence $F=\left\langle f_{\alpha, X} \mid \alpha<\omega_{1} \& X \in[U]^{\omega}\right\rangle$ satisfies the condition (1) in the definition of covering systems. (We show that F does not satisfy (2).)

Define the forcing notion $P\left(=P_{F}\right)$ by

$$
P=\left\{p \mid \exists X \in[U]^{\omega}\left(p \in \prod_{n \in U \backslash X} h(n)\right)\right\}, \quad p \leq q \text { iff } p \supset q
$$

Since the partial ordering \leq_{n} (for $n<\omega$) on P defined by
$p \leq_{n} q$ iff $p \leq q$ and "the set of the first n elements of $U \backslash \operatorname{dom}(p)$ "

$$
=\text { "the set of the first } n \text { elements of } U \backslash \operatorname{dom}(q) \text { " }
$$

satisfies Axiom A of Baumgartner, P is proper. For each $\alpha<\omega_{1}$, set

$$
D_{\alpha}=\left\{p \in P \mid \exists X \in[U]^{\omega}\left(f_{\alpha, X} \subset p\right)\right\} .
$$

Since $\forall \alpha<\omega_{1}\left(D_{\alpha}\right.$ is dense in $\left.P\right)$, by PFA, there exists a $\left\{D_{\alpha} \mid \alpha<\omega_{1}\right\}$ generic filter \mathcal{G} on P. Since \mathcal{G} is a filter, we can take $g \in \prod_{n \in U} h(n)$ such that $\bigcup \mathcal{G} \subset g$. Then $\forall \alpha<\omega_{1} \exists X \in[U]^{\omega}\left(f_{\alpha, X} \subset g\right)$.

By Lemma 3.11, it suffices to show that (C) implies $\operatorname{add}\left(\mathcal{C}_{2}\right)>\omega_{1}$. To show this, assume that (C) holds and let $\left\{A_{\alpha} \mid \alpha<\omega_{1}\right\} \subset \mathcal{C}_{2}$.

To show that $\bigcup_{\alpha<\omega_{1}} A_{\alpha} \in \mathcal{C}_{2}$, let $X \in[\omega]^{\omega}$. For each $\alpha<\omega_{1}$ and $Y \in[X]^{\omega}$, take $\tau_{\alpha, Y} \in \mathrm{STR}_{2}$ such that $\left({ }^{\omega} 2 *_{Y} \tau_{\alpha, Y}\right) \cap A_{\alpha}=\emptyset$. Set $f_{\alpha, Y}=$ $\left\langle\left.\tau_{\alpha, Y}\right|^{n} 2 \mid n \in Y\right\rangle$. Using (C), take $g=\left\langle g_{n} \mid n \in X\right\rangle$ such that $\forall \alpha<\omega_{1}$ $\exists Y \in[X]^{\omega}\left(f_{\alpha, Y} \subset g\right)$. Define $\tau \in \operatorname{STR}_{2}$ by

$$
\tau(s)= \begin{cases}g_{n}(s) & \text { if length }(s)=n \in X, \\ 0 & \text { otherwise }\end{cases}
$$

To show that $\left({ }^{\omega} 2 *_{X} \tau\right) \cap A_{\alpha}=\emptyset$ for all $\alpha<\omega_{1}$, let $\alpha<\omega_{1}$. Take $Y \in[X]^{\omega}$ such that $f_{\alpha, Y} \subset g$. Then $\tau_{\alpha, Y} \upharpoonright\left(\bigcup_{n \in Y}{ }^{n} 2\right) \subset \tau$. So, ${ }^{\omega} 2 *_{X} \tau \subset{ }^{\omega} 2 *_{Y} \tau=$ ${ }^{\omega} 2 *_{Y} \tau_{\alpha, Y}$. Since $\left({ }^{\omega} 2 *_{Y} \tau_{\alpha, Y}\right) \cap A_{\alpha}=\emptyset$, we conclude $\left({ }^{\omega} 2 *_{X} \tau\right) \cap A_{\alpha}=\emptyset$.

Proof of Theorem 3.8. Define $h: \omega \rightarrow \omega$ by

$$
h(0)=0, \quad h(n+1)=2^{n}(h(n)+1) .
$$

For each $n<\omega$, set

$$
A_{n}=\left\{u \mid u:^{h(n+1)} 2 \rightarrow 2\right\} .
$$

Set

$$
\mathcal{T}=\left\{\left\langle S_{n} \mid n<\omega\right\rangle \mid \forall n<\omega\left(S_{n} \subset A_{n} \&\left|S_{n}\right| \leq 2^{n}\right)\right\}
$$

Using Bartoszyński's Characterization Theorem [2], take $\mathcal{B} \subset \mathcal{T}$ such that

$$
|\mathcal{B}|=\operatorname{cof}(\mathbf{L}) \quad \text { and } \quad \forall g \in \prod_{n<\omega} A_{n} \exists S \in \mathcal{B} \forall n<\omega(g(n) \in S(n)) .
$$

A tree $T \subset{ }^{\omega>} 2$ is called a thin tree if it satisfies
$\forall n<\omega$ (T_{n} has at most one branch which ramifies).
Note that if T is a thin tree then $\left\{f \in{ }^{\omega} 2 \mid \forall n<\omega(f \mid n \in T)\right\} \in \mathcal{\mathcal { C } _ { 2 }}$. For each $S \in \mathcal{B}$, take a thin tree T_{S} such that
$(* *) \forall s \in T_{S} \cap^{h(n)+1} 2 \forall \varrho \in S(n) \exists t \in T_{S} \cap^{h(n+1)} 2\left(s \subset t \& t^{\wedge}\langle\varrho(t)\rangle \in T_{S}\right)$, and set

$$
A_{S}=\left\{d \in{ }^{\omega} 2 \mid \forall n<\omega\left(d \upharpoonright n \in T_{S}\right)\right\}
$$

Since $A_{S} \in \mathcal{C}_{2}$ for all $S \in \mathcal{B}$, we can complete the proof by showing that $\bigcup_{S \in \mathcal{B}} A_{S} \notin \mathcal{C}_{2}$. Let $X=\{h(n+1) \mid n<\omega\}$. We claim that, for any $\sigma \in$ STR_{2}, σ is not a winning strategy for player II in the game $\Gamma_{2}\left(\bigcup_{S \in \mathcal{B}} A_{S}, X\right)$. To show this, set $g=\left\langle\sigma\left\lceil\left({ }^{h(n+1)} 2\right)|n<\omega\rangle \in \mathcal{T}\right.\right.$. Take $S \in \mathcal{B}$ such that $\forall n<\omega(g(n) \in S(n))$. By induction on $n<\omega$, define $s_{n} \in T_{S} \cap^{h(n)} 2$ as follows. For $n=0$, take an arbitrary $s_{0} \in T_{S} \cap{ }^{h(0)} 2$. Assume that s_{n} was defined. Then, using $(* *)$, take $s_{n+1} \in T_{X} \cap{ }^{h(n+1)} 2$ such that $s_{n} \wedge\left\langle\sigma\left(s_{n}\right)\right\rangle \subset s_{n+1}$ and $s_{n+1} \wedge\left\langle\sigma\left(s_{n+1}\right)\right\rangle \in T_{S}$.

Set $f=\bigcup_{n<\omega} s_{n} \in A_{S}$. Since $\forall k \in X(\sigma(f \upharpoonright k)=f(k)), f \in \mathrm{STR}_{2} *_{X} \sigma$. Thus, $\left(\mathrm{STR}_{2} *_{X} \sigma\right) \cap A_{S} \neq \emptyset$. So, $\bigcup_{S \in \mathcal{B}} A_{S} \notin \mathcal{C}_{2}$.

REFERENCES

[1] M. Balcerzak and A. Rosłanowski, On Mycielski ideals, Proc. Amer. Math. Soc. 110 (1990), 243-250.
[2] T. Bartoszyński, Combinatorical aspects of measure and category, Fund. Math. 127 (1987), 225-239.
[3] J. Cichoń, A. Rosłanowski, J. Steprāns and B. Wȩglorz, Combinatorial properties of the ideal \mathcal{P}_{2}, preprint.
[4] T. Jech, Set Theory, Academic Press, 1978.
[5] K. Kunen, Set Theory, North-Holland, 1980.
[6] J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71-76.
[7] L. Newelski and A. Rosłanowski, The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc. 117 (1993), 823-831.
[8] A. Rosłanowski, On game ideals, Colloq. Math. 59 (1990), 159-168.
[9] —, On game ideals, Ph.D. thesis, Wrocław 1990.
[10] -, Mycielski ideals generated by uncountable systems, Colloq. Math., to appear.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSAKA PREFECTURE
MOZU-UMEMACHI
SAKAI, JAPAN

