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THREE METHODS FOR THE STUDY OF
SEMILINEAR EQUATIONS AT RESONANCE

BY

BOGDAN P R Z E R A D Z K I ( LÓDŹ)

Three methods for the study of the solvability of semilinear equations
with noninvertible linear parts are compared: the alternative method, the
continuation method of Mawhin and a new perturbation method [22]–[27].
Some extension of the last method and applications to differential equations
in Banach spaces are presented.

1. Introduction. Most of nonlinear differential, integral or, more
generally, functional equations have the form

(1.1) Lx = N(x)

(called semilinear) where L is a linear and N a nonlinear operator, in ap-
propriate function spaces. Usually, L is defined on a dense linear subspace
Y of a Banach space X, takes values in a Banach space Z and is a closed
operator, and N : X → Z is continuous. Moreover, if L has a trivial null
space kerL, then L is surjective; if kerL is nontrivial, it has a finite dimen-
sion equal to the codimension of the range space L(Y ) ⊂ Z (such operators
are called Fredholm of index 0). We do not study the case kerL = {0} —
it reduces to the fixed point problem for L−1N. The mapping N is usually
compact (or contractive or monotone or A-proper or . . .) and a suitable
topological degree theory works and gives a large number of results. The
case kerL 6= {0} is more complicated; we then say that equation (1.1) is at
resonance. In this survey, we are interested only in the existence of solutions
to equation (1.1) at resonance. It should be noticed, however, that there are
results concerning the number of solutions (see e.g. [2], [28]) or localization
of at least one solution in a given set (it is usually the cone of nonnegative
functions — see [25], [29]).

We present a few examples of resonance problems. The most typical are
boundary value problems for second order ordinary differential equations:

(1.2) x′′ + m2x = f(t, x, x′), x(0) = x(π) = 0 ,
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where m = 1, 2, . . . and f : [0, π]× R2 → R (see [7], [13], [21]) or

(1.3) x′ = f(t, x), x(0) = x(1) ,

where f : [0, 1]×Rn → Rn ([4] and references therein). Ordinary differential
equations can be replaced by partial differential ones ([17], [31], [15]):

(1.4) Px− λ0x = f(t, x), x|∂Ω = 0,

where P is a linear strongly elliptic differential operator of the second order
on Ω with smooth coefficients, λ0 is its first eigenvalue and f : R×cl Ω → R,
or (see [3], [6])

(1.5) utt −∆u = f(t, z, u), u|∂Ω = 0, u 2π-periodic in t,

where ∆ is the Laplace operator, f : [0, 2π]×cl Ω×R → R (here, dim ker L =
∞). Equations with retarded argument or integro-differential equations can
also be considered within this framework; usually the retardation or the
integral are included in the nonlinear term:

(1.6) x′ = f(t, x, xh), x(0) = x(1),

where xh(t) = x(h(t)), h is a measurable function with h(t) ≤ t (see [1]), or

(1.7) x′′ + x =
π∫

0

K(t, s)f(s, x(s)) ds, x(0) = x(π) = 0,

where K : [0, π]2 → R, f : [0, π] × R → R. We see that the nonlinear
operator N is a superposition operator or its composition with linear ones,
so we have two possible ways for the choice of suitable Banach spaces. If f is
continuous, then Z is the space of continuous functions with the sup-norm

‖z‖ = sup
t
|z(t)| ,

X = Z or X is the space of C1-functions if f also depends on the first deriva-
tive. Then the solutions of all problems are classical in the sense that the
derivatives exist everywhere. The second possibility: f is a Carathéodory
function, i.e. f(·, x) is measurable for all x, f(t, ·) is continuous for a.e. t,
and f satisfies some growth condition

|f(t, x)| ≤ a|x|% + b(t)

with a ≥ 0, % ∈ (0, 1] and b ∈ Lr. These assumptions ensure that

N(x)(t) = f(t, x(t))

maps X = Lp into Z = Lq with suitable p, q, r, % (see [10]). If f depends
on derivatives, these variables should behave similarly to x and the opera-
tor N maps an appropriate Sobolev space into Lq. The solutions obtained
are called strong , i.e. the differential equation is satisfied a.e. The above
examples of boundary value problems have a common feature: they have
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the form Bx = 0 where B is a linear operator. This enables us to restrict
the subspace Y and X by the condition Bx = 0. For example, if f is con-
tinuous in (1.2), then X = {x ∈ C1([0, π]) : x(0) = x(π) = 0}, Z = C([0, π])
and Y = {x ∈ X : x′′ ∈ C([0, π])}; if f is a Carathéodory function then
X = H1

0 , Y = X ∩H2 and Z = L2, where Hm is the Sobolev space of all
functions whose derivatives up to order m are square integrable and Hm

0

is the closure in Hm of the set of smooth functions with compact support
contained in (0, π).

One can also study the boundary conditions of the form Bx = Bn(x)
where Bn is a nonlinear continuous operator taking values in the same space
as B. Hence one can consider

(1.8) x′′ + m2x = f(t, x, x′), x(0) = r0, x(π) = rπ ,

instead of (1.2),

x′ = f(t, x), x(0)− x(1) =
1∫

0

x(s) ds ,

instead of (1.3), and so on. This is possible since we can use product spaces
for X, Y and Z. For instance, the boundary value problem (1.8) can be
treated as equation (1.1) with X = C1([0, π]), Y = C2([0, π]), Z = C([0, π])
× R2, and

Lx = (x′′, x(0), x(π)), N(x) = (f(·, x(·), x′(·)), r0, rπ) .

It is easy to introduce similar changes for all examples and both assumptions
on f (continuity or the Carathéodory conditions).

We return to the first example (1.2)—it was most extensively studied—
and notice that, even for a bounded function f, a solution need not exist:

x′′ + m2x = f(t), x(0) = x(π) = 0 .

The problem is selfadjoint with one-dimensional kernel spanned by w(t) =
sinmt, so the solvability is equivalent to

(1.9)
π∫

0

w(t)f(t) dt = 0

and, for f = w, this fails. In fact, equation (1.2) with f(t, x) = g(x) +
f(t), g continuous and limx→±∞ g(x) = g±, has a solution if (1.9) holds
and g+g− < 0 (see below; this is a special case of the Landesman–Lazer
condition). One can generalize this by taking g± not necessarily finite, the
exact limits replaced by lim sup and lim inf and even (1.9) replaced by a
weaker condition (see [9]), but the growth of g cannot be too fast. If we
take g(x) = −(2m + 1)x, f(t) = sin(m + 1)t, then (1.9) will be satisfied but
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the corresponding problem

x′′ + (m + 1)2x = sin(m + 1)t, x(0) = x(π) = 0 ,

has no solution. It is easy to see that the upper bound on the growth of
g is the distance between the eigenvalue m2 which stands in (1.2) and the
nearest eigenvalue (m + 1)2 or (m − 1)2. This situation is typical and we
have a restriction on the constant

(1.10) γ = lim sup
‖x‖→∞

‖N(x)‖/‖x‖ .

It is worth noticing, in connection with the above considerations, that
one can generate many theorems by replacing equation (1.1) with Lx+Ax =
N(x) + Ax where A is a linear operator with the same (or larger) domain
as L and L + A is invertible, and by applying one of fixed point methods.
However, the author does not refer to these theorems as resonance results.

2. Alternative method. This method seems to be the most general
one for the study of equation (1.1). We have L : X ⊃ Y → Z, N : X →
Z and we do not assume anything about ker L and L(Y ). The unique
assumption is: X and Z admit decompositions

X = X0 ⊕X1, Z = Z0 ⊕ Z1

(topological direct sums) such that kerL ⊂ X0 and Z1 ⊂ L(Y ). Denote by
P : X → X (resp. Q : Z → Z) the projection onto X0 (resp. Z0) along X1

(resp. Z1). Suppose that there exists a linear operator H : Z1 → X1 such
that

H(I −Q)Lx = (I − P )x for x ∈ Y ,(2.1)
L(Hz) = z for z ∈ Z1,(2.2)
Q(Lx) = L(Px) for x ∈ Y.(2.3)

If Z1 = L(Y ), then kerL = X0 ∩ Y by (2.3), and conditions (2.1), (2.2)
mean that H is the inverse of L|X1 ∩ Y : X1 ∩ Y → Z1. However, this
simplification fails in some examples.

We shall show that, under (2.1)–(2.3), equation (1.1) is equivalent to the
system

x = Px + H(I −Q)N(x) ,(2.4)
Q(Lx−N(x)) = 0 .(2.5)

In fact, we get (2.4) (resp. (2.5)) by applying H(I − Q) (resp. Q) to (1.1)
and using (2.1). Conversely, applying L to (2.4) and using (2.2) and (2.3),
we obtain

Lx = Q(Lx) + (I −Q)N(x) ,

so (I −Q)(Lx−N(x)) = 0 and we have (1.1) by (2.5).
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Equation (2.4) is usually called auxiliary and equation (2.5) the bifurca-
tion equation. Generally, there are two possible ways to find a solution of
the system (2.4)–(2.5). If we know that the auxiliary equation has a unique
solution S(x̂) for any x̂ = Px ∈ X0:

S(x̂) = x̂ + H(I −Q)N(S(x̂)) ,

then the bifurcation equation will have the form

(2.6) Q(L−N)(S(x̂)) = 0 .

The unique solvability is obtained if H(I −Q)N is contractive or monotone
and the last equation is defined and takes values in X0, which is usually a
finite-dimensional space. Thus equation (2.6) can be studied with the use
of finite-dimensional methods, the Brouwer degree for example. We shall
show below a sample of such arguments.

The second approach to the system (2.4)–(2.5) lies in the study of the
map T : X×X0 → X×X0, T (x, x̂) = (x̂+H(I−Q)N(x), x̂+Q(L−N)(x)).
Its fixed points (or rather their first components) are exactly solutions of
the system examined. The typical method for finding such fixed points is
the Leray–Schauder degree theory and its generalizations. We refer to the
excellent survey by Cesari [4] where many examples of this and other types
are given.

Example. Consider the typical problem

(2.7) x′′ + x = f(t, x), x(0) = x(π) = 0 ,

where f : [0, π]× R → R is a Carathéodory function which is bounded:

(2.8) |f(t, x)| ≤ M, for t ∈ [0, π], x ∈ R ,

and satisfies the Lipschitz condition with respect to x:

(2.9) |f(t, x1)− f(t, x2)| ≤ M |x1 − x2|, for t ∈ [0, π], x1, x2 ∈ R .

Since the system of functions

wk(t) =
√

2/π sin kt, k = 1, 2, . . . ,

is orthonormal and complete in X = Z = L2(0, π), we can take the orthog-
onal projectors

Px = Qx =
m∑

k=1

(wk, x)wk

where (·, ·) stands for the L2-scalar product and m will be chosen later. The
null space of Lx = x′′ + x equals kerL = Lin{w1} ⊂ X0 = Lin{w1, . . . , wm}
and by the Hilbert–Schmidt theory, H should be defined by the formula

Hz =
∞∑

k=2

(k2 − 1)−1(wk, z)wk ;
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{wk} is a system of eigenfunction for x′′ and the corresponding sequence
of eigenvalues is {k2}. Conditions (2.1)–(2.3) are easily verified, hence we
can study the auxiliary equation. By (2.9), the right-hand side of (2.4) is a
contraction for sufficiently large m:

‖H(I −Q)(N(x)−N(y))‖2 =
∥∥∥ ∞∑

k=m+1

(k2 − 1)−1(N(x)−N(y), wk)wk

∥∥∥2

=
∞∑

k=m+1

(k2 − 1)−1|(N(x)−N(y), wk)|2

≤ M2
∞∑

k=m+1

(k2 − 1)−1‖x− y‖2 .

On the other hand, the functions H(I −Q)N(x) are bounded:

(2.10) |H(I −Q)N(x)(t)| ≤
∞∑

k=m+1

(k2 − 1)−1(2π)−1M ,

and the last constant tends to 0 as m →∞. Hence, for any x̂ =
∑m

k=1 akwk,
there exists a unique Sx̂ such that

Sx̂ = x̂ + H(I −Q)N(Sx̂)

and we can pass to equation (2.6) which assumes the form
π∫

0

(Sx̂)′′wk +
π∫

0

(Sx̂)wk =
π∫

0

f(t, Sx̂(t))wk(t) dt, k = 1, . . . ,m ,

or, after integration by parts,

(1− k2)ak =
π∫

0

f(t, Sx̂(t))wk(t) dt, k = 1, . . . ,m ,

where ak = (wk, x̂). Let us introduce the mapping F : Rm → Rm, F =
(F1, . . . , Fm), where

Fk(a1, . . . , am) = (k2 − 1)ak

+
π∫

0

f
(
t,

m∑
k=1

akwk(t) + H(I −Q)N(Sx̂)(t)
)
wk(t) dt .

If k 6= 1, then the sign of Fk is determined by the sign of ak for |ak| ≥
(k2 − 1)−1M

√
2/π. Set rk = 2(k2 − 1)−1M

√
2/π for k ≥ 2. The situation

for k = 1 is different. Using (2.9), we can estimate∣∣∣ m∑
k=2

akwk(t) + H(I −Q)N(Sx̂)(t)
∣∣∣ ≤ C .
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On the other hand, a1w1(t) → ±∞ as a1 → ±∞ uniformly on any set
[δ, π − δ]. Hence if we assume that

(2.11) x f(t, x) ≥ 0

for sufficiently large |x|, or

(2.12) x f(t, x) ≤ 0

for large |x|, where strict inequalities hold on a set of a positive measure, then
we can find r1 > 0 such that F1 has opposite signs on both sides a1 = ±r1

of the cube U = (−r1, r1) × . . . × (−rm, rm). The same was proved above
for Fk, k ≥ 2, and ak = ±rk. Therefore the Brouwer degree [18] deg(F,U, 0)
is defined and F can be homotopically deformed to the antipodal map F̂ ,
F̂ (−a) = −F̂ (a). By the Borsuk Antipodensatz [18],

deg(F,U, 0) ≡ 1 (mod 2)

and the equation F (a) = 0 has a solution in U . But this is a solution of
the bifurcation equation. We have proved that problem (2.7) has a solution
provided that f satisfies (2.8), (2.9) and (2.11) or (2.12).

R e m a r k. Condition (2.12) is exactly as in the recent paper by Ian-
nacci and Nkashama [13], however, they omit the strong assumption of the
boundedness of f . Similarly, we can prove by the alternative method that
problem (2.7) has a solution if, instead of (2.12), we have

(2.13)
π∫

0

f+(t) sin t dt < 0 <
π∫

0

f−(t) sin t dt

where
f+(t) = lim sup

x→+∞
f(t, x), f−(t) = lim inf

x→−∞
f(t, x) .

This is exactly the Landesman–Lazer condition in the form of [7].

3. Coincidence degree. Let us go back to the alternative scheme
and suppose that X0 = ker L, Z1 = L(Y ) and both X0 and Z0 are linear
subspaces of the same finite dimension. Then there exists an isomorphism
(not unique) J : Z0 → X0. Conditions (2.1), (2.3) are trivially satisfied and,
by (2.2), H should be a right inverse of L. The bifurcation equation can be
rewritten as

(3.1) JQN(x) = 0 .

Obviously, the system of equations (2.4), (3.1) is equivalent to one equation

(3.2) x = Px + JQN(x) + H(I −Q)N(x) .

The nonlinear operator N is called L-compact if QN and H(I − Q)N are
compact operators. Usually, H is compact (maps bounded sets into compact
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ones) and N maps bounded sets into bounded ones, which implies the L-
compactness of N. The main theorem for L-compact mappings was proved
by J. Mawhin [19].
Theorem 1. Let Ω be an open bounded subset in X such that

(i) the equation Lx = λN(x) has no solution for λ ∈ (0, 1] and x ∈
Y ∩ ∂Ω,

(ii) the following Brouwer degree is defined and does not vanish:

deg(JQN |ker L,Ω ∩ ker L, 0) 6= 0 .

Then equation (1.1) has a solution in Ω.
P r o o f. Let h(x, λ) = (P + JQN)(x) + λH(I − Q)N(x) for λ ∈ [0, 1],

x ∈ cl Ω. Since N is L-compact, the homotopy h is compact. Moreover,
fixed points of h are exactly solutions of Lx = λN(x), so h does not admit
fixed points on ∂Ω (for λ > 0, this follows from (i); for λ = 0, it is a
consequence of the fact that the Brouwer degree is defined). Hence the
Leray–Schauder degree

degLS(I − h(·, λ), Ω, 0)

is independent of λ (comp. [18], [6]). But, for λ = 0, it reduces to the
Brouwer degree (ii). Therefore, degLS(I−h(·, 1), Ω, 0) 6= 0, hence h(·, 1) has
a fixed point in Ω which is a solution to (1.1).

The Brouwer degree (ii) is called the coincidence degree of N with respect
to L. We refer to [11] for more information about this theory. Notice also
that this theorem is closely related to Fučik’s theorem [10] where only Hilbert
spaces are considered.

We present one application of the theorem (comp. [20]). Consider the
periodic boundary value problem

(3.3) x′ = f(t, x), x(0) = x(T ) ,

where f : R×Rn → Rn is a continuous function, T -periodic with respect to
t. Here, X = Z = CT (R, Rn), the space of continuous T -periodic functions,
Y = C1

T (R, Rn), Lx = x′, N(x)(t) = f(t, x(t)), ker L is the space of constant
functions which is naturally isomorphic to Rn, and L(Y ) is the subspace of
continuous functions for which the integral over [0, T ] vanishes. Obviously,
ker L⊕ L(Y ) = X = Z and we can take P = Q given by

Px =
T∫

0

x(t) dt (constant function).

Moreover, J = I, and H : Z ⊃ L(Y ) → L(Y ) ⊂ X is defined by

Hz(t) =
t∫

0

z(s) ds .
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All introductory assumptions are satisfied and we can pass to (i) and (ii).
It is easy to see that (i) is guaranteed by

(3.4) fi(t, x) 6= 0 for |xi| = Mi, i = 1, . . . , n ,

where Mi are constants and fi denotes the ith coordinate of f . The choice
of Ω is simple:

x ∈ Ω ⊂ CT (R, Rn) ⇔ |xi(t)| < Mi, i = 1, . . . , n, t ∈ R ,

and the proof of (i) is obvious.
The mapping JQN |ker L is given by the formula

F (a) =
T∫

0

f(t, a) dt, a ∈ Rn ,

and Ω ∩ ker L is the cube (−M1,M1)× . . .× (−Mn,Mn). Thus we have to
strengthen condition (3.4):

(3.5) fi(t, x1, . . . , xi−1,−Mi, . . . , xn)fi(t, x1, . . . , xi−1,Mi, . . . , xn) < 0

for any (x1, . . . , xn) ∈ Rn such that |xi| ≤ Mi for all i = 1, . . . , n. This
implies that Fi takes opposite signs on both sides ai = ±Mi of the cube. The
arguments as in the example from Section 2 show that deg(F, ker L ∩Ω, 0)
is odd and, therefore, does not vanish.

R e m a r k. One can study the same problem in another way:
d

dt
‖x‖2 = 2(x′, x) = 2(f(t, x), x) .

If (f(t, a), a) 6= 0 for ‖a‖ = R, then Ω = B(0, R) satisfies (i). Moreover, the
Krasnosel’skĭı condition

(F (a), a) ≤ 0 for ‖a‖ = R

implies (ii) (comp. [18]). Thus the following condition is sufficient for the
solvability of (3.3):

(f(t, a), a) < 0 for ‖a‖ = R, t ∈ [0, T ] .

4. The perturbation method. The third method for the study of
resonance problems is based on the observation that a linear noninvertible
operator L after an arbitrarily small perturbation, L+λI for instance, be-
comes invertible. One can solve perturbed equations and find conditions that
ensure the existence of a convergent sequence of solutions. Its limit is the
solution to (1.1) we look for. This rather natural observation was first made
by P. Hess in his elegant proof of the Landesman–Lazer theorem [12]. The
abstract result was given by de Figueiredo [5] and, then, more specific meth-
ods attracted the attention of mathematicians. Recently, the present author
has applied this approach to resonance problems independently of the above
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mentioned papers. The use of inverse operators of perturbed linear maps
enables us to pass to unbounded nonlinearities and even to nonlinearities
with linear growth. The method is developed in a series of papers [22]–[27]
where also applications to boundary value problems are given.

Let L(λ) be a continuous family of linear operators Y → Z for λ from
a nbhd of λ0 ∈ R. We assume that Y and Z are Banach spaces such that
all L(λ) are bounded and the continuity of L(·) is meant to be the norm
continuity. Let L(λ) be invertible for λ 6= λ0, and L(λ0) be a Fredholm linear
operator (of index zero). Let the inclusion map J : Y → X be compact.
Denote by w1, . . . , wn a basis of ker L and suppose that the limits

lim
λ→λ0

‖L(λ)wj‖−1L(λ)wj , j = 1, . . . , n ,

exist, spanning a topological complement of L(λ0)(Y ) (these limits always
exist for L(λ) = L(λ0) + (λ − λ0)I). Under this assumption, the inverse
operators G(λ) = L(λ)−1 have the form

G(λ) = G0(λ) +
n∑

j=1

cj(λ)〈uj(λ), ·〉wj

where G0(λ) : Z → Y , cj(λ) ∈ R, uj(λ) ∈ Z∗, while G0 and uj have
continuous extensions to λ0 and

lim
λ→λ0

|cj(λ)| = ∞, j = 1, . . . , n ,

(comp. [26]). Moreover, G0(λ) takes values in a fixed space which is a
topological complement of kerL. Notice that

L(λ0)(Y ) =
n⋂

j=1

ker uj(λ0) .

The examined equation

(4.1) L(λ0)y = N(Jy)

is equivalent to the system

x = JG0(λ0)N(x) +
∑

djJwj ,(4.2)

〈uj(λ0), N(x)〉 = 0, j = 1, . . . , n ,(4.3)

where x = Jy and the first summand in (4.2) is an element of a topological
complement X̃ of X = Lin{Jw1, . . . , Jwn}. Fix λ1 close to λ0.

Theorem 2. Suppose there exist open bounded subsets Ũ of X̃ and U of
Rn such that

(∗) there is no solution (x̃, (d1, . . . , dn)) to the system

x̃ = (λ− λ1)(λ0 − λ1)−1JG0(λ)N(x) ,
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dj = cj(λ)〈uj(λ), N(x)〉, j = 1, . . . , n ,

on the boundary of Ũ × U where x = x̃ +
∑

djJwj.

If we denote g = (g1, . . . , gn) : cl U → Rn by the formula

gj(d1, . . . , dn) = dj − cj(λ1)
〈
uj(λ1), N

( ∑
diJwi

)〉
and if

deg(g, U, 0) 6= 0 ,

then equation (4.1) has a solution y such that Jy = x̃ +
∑

djJwj and x̃ ∈
cl Ũ , (d1, . . . , dn) ∈ cl U .

P r o o f. Define an open bounded set V ⊂ X by V = {x̃ +
∑

djJwj :
x̃ ∈ Ũ , (d1, . . . , dn) ∈ U}. Then condition (∗) means that the homotopy

H(x, λ) =
λ− λ1

λ0 − λ1
JG0(λ)N(x) +

n∑
j=1

cj(λ)〈uj(λ), N(x)〉Jwj ,

for x ∈ X and λ ∈ (λ0, λ1], is fixed point free on the boundary ∂V . It
follows that the Leray–Schauder degree

degLS(I −H(·, λ), V, 0)

is defined and independent of λ ∈ (λ0, λ1]. On the other hand, H(·, λ1) has
a finite-dimensional range and, therefore,

degLS(I −H(·, λ1), V, 0) = deg(g, U, 0) 6= 0 .

Thus, for any λ > λ0, there exists a solution to the equation x = H(x, λ)
in V .

Take λk → λ0 and xk = x̃k +
∑

j dk
j Jwj = H(xk, λk) such that x̃k ∈ Ũ ,

(dk
1 , . . . , dk

n) ∈ U . Since J is compact and (xk) is bounded, we can choose
subsequences (still denoted by (λk) and (xk) for simplicity) such that

λk − λ1

λ0 − λ1
JG0(λk)N(xk) → x0 ,

cj(λk)〈uj(λk), N(xk)〉 → dj , j = 1, . . . , n .

Hence xk → x0 +
∑

djJwj =: x. Obviously, x satisfies (4.2)–(4.3).

This theorem is closely related to Theorem 1. Since λ1 is near λ0, the real
coefficients cj(λ1) are arbitrarily large, so the degree of g equals (up to sign)
the degree of the map (cj(λ1)−1gj)j≤n, and the latter equals deg(h, U, 0)
with

hj(d1, . . . , dn) =
〈
uj(λ0), N

( ∑
diJwi

)〉
.

The last mapping is exactly JQN |ker L from Theorem 1 but here it is de-
scribed better for applications. It should also be noticed that (4.2) is the



120 B. PRZERADZKI

auxiliary equation and (4.3) the bifurcation equation from the alternative
method.

Theorem 2 produces results concerning nonlinearities with restricted
growth. If N is sublinear:

lim
‖x‖→∞

‖N(x)‖/‖x‖ = 0 ,

then the condition guaranteeing the solvability of equation (4.1) has the
form: for any (xν) ⊂ X with ‖xν‖ → ∞ and ‖xν‖−1xν →

∑
djJwj , there

exists j0 ∈ {1, . . . , n} such that

lim sup
ν→∞

dj0〈uj0(λ0), N(xν)〉 < 0 .

We refer to it as L-L. The same is true if we reverse the inequality and
replace lim sup by lim inf. The proof via Theorem 2 can be found in [24],
and the direct one in [23]. The case of nonlinearities with linear growth is
more difficult. If

γ = lim sup
‖x‖→∞

‖N(x)‖/‖x‖ ∈ (0,∞) ,

then we have a natural restriction on γ:

γ‖JG0(λ0)‖ < 1 ,

and the L-L condition has to be replaced by a stronger one, L-L1: there
exist R > 0 and σ > γ‖JG0(λ0)‖(1 − γ‖JG0(λ0)‖)−1 such that, for any
j = 1, . . . , n and |dj | > R,

sup
{

dj

〈
uj(λ0), N

(
x̃ +

∑
diJwi

)〉
:

|di| ≤ |dj |, x̃ ∈ X̃, ‖x̃‖ ≤ σ
∥∥∥∑

diJwi

∥∥∥}
< 0 .

We can replace the last inequality by inf > 0, but for all j simultaneously.
Here, the proof can be carried out only via homotopy arguments, as in Theo-
rem 2 of [24]. That paper also contains a result on superlinear nonlinearities
(N is called superlinear if ‖N(x)‖ ≤ a + b‖x‖% with % > 1).

The abstract theorems have numerous applications to boundary value
problems. The first application found was the existence result for partial
differential equations, obtained via the alternative method by Landesman
and Lazer [17]. We present a slight generalization of it but refer to [23]
where the full discussion is given.

Consider the Dirichlet boundary value problem

(4.4) Pu− λ0u = f(x, u), u ∈ Hm
0 (Ω) ,

where P is a selfadjoint strongly elliptic operator of order 2m on an open
bounded domain Ω ⊂ Rk with Lipschitzian boundary, λ0 is an eigenvalue
for P , i.e. Pu − λ0u = 0 has nontrivial solutions belonging to Hm

0 (Ω),
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f : Ω × R → R is a Carathéodory function (measurable with respect to x
and continuous with respect to u) with a sublinearly restricted growth:

(4.5) lim
|u|→∞

esssup
x

|f(x, u)|/|u| = 0 .

Since f need not be continuous, we should look for strong solutions of the
problem. Put X = Z = L2(Ω) and Y = H2m(Ω) ∩Hm

0 (Ω) where Hm(Ω)
is the Sobolev space of all functions whose distributional derivatives up to
order m are in L2(Ω) and Hm

0 (Ω) is the closure in this space of the set of all
smooth functions with supports contained in Ω. The condition u ∈ Hm

0 (Ω)
corresponds to the null Dirichlet data Dαu|∂Ω = 0 for |α| < m.

Let L(λ) = P − λI and N(u)(x) = f(x, u(x)). By the Hilbert–Schmidt
theory,

G(λ) =
∞∑

j=n+1

(λj − λ)−1(wj , ·)wj +
n∑

j=1

(λj − λ)−1(wj , ·)wj

where {λj : j = 1, 2, . . .} is the sequence of all eigenvalues of P , {wj :
j = 1, 2, . . .} is the sequence of the corresponding eigenfunctions which form
an orthonormal basis in L2(Ω), (·, ·) is the L2-scalar product. We choose
λ1 = . . . = λn 6= λj for j > n and denote this eigenvalue by λ0. The
first summand (denote it by G0(λ)) has a continuous extension to λ = λ0.
Moreover,

cj(λ) = (λ0 − λ)−1, 〈uj(λ), z〉 = (wj , z) ,

in our notation.The inclusion map J : H2m∩Hm
0 → L2 is obviously compact.

By (4.5), N is sublinear and we can use the L-L condition. It now has the
form: for any (uν) ⊂ L2 such that ‖uν‖ → ∞ and ‖uν‖−1uν →

∑
djwj ,

there exists j0 such that

lim sup
ν→∞

dj0

∫
Ω

wj0(x)f(x, uν(x)) dx < 0

or lim inf . . . > 0. If we add all inequalities, we shall get a stronger assump-
tion but having some advantages. Suppose that the limits

(4.6) lim
u→±∞

f(x, u) = f±(x)

exist. Then the following condition is sufficient for the solvability of (4.4):
for any d ∈ Rn such that ‖d‖ = 1, the numbers∫

A+

f+(x)
∑

djwj(x) dx +
∫

A−

f−(x)
∑

djwj(x) dx ,∫
A+

f−(x)
∑

djwj(x) dx +
∫

A−

f+(x)
∑

djwj(x) dx
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have opposite signs, where A+ = {x :
∑

djwj(x) > 0} and A− = {x :∑
djwj(x) < 0} (cf. [31]). The one-dimensional resonance (n = 1) was

studied by Landesman and Lazer [17]: the sufficient condition is then simpler
since we can take only d1 = +1 (for d1 = −1, we get reversed signs).

The limits in (4.6) can be replaced by lim sup and lim inf and the non-
linearity f can also depend also on derivatives (comp. [23]). Moreover, the
method can be applied to all equations with selfadjoint operators having
inverses compact in L2. This enables us to study periodic problems via the
perturbation method [25].

If the nonlinearity f in problem (4.4) has a linear growth:

lim sup
|u|→∞

esssup
x

|f(x, u)|/|u| = γ ∈ (0,∞) ,

we have no integral conditions of the above type that ensure the existence
of solutions to (4.4). We have only found the following sufficient condition
if n = 1 [23]:

(4.7) ǎ ≤ f(x, u)− b(x)
u

≤ â for x ∈ Ω, |u| > M ,

where ǎ, â, M are positive constants, b ∈ L2(Ω) and

γ(min
j 6=0

|λ0 − λj |)−1 <
ǎ√

ǎ2 + (â− ǎ)2
.

Notice that condition (4.7) is satisfied by jumping nonlinearities:

f(x, u) = âu+ − ǎu− + g(x, u)

with g sublinear.
Our method is useful not only for selfadjoint problems considered in

Hilbert spaces: L2 or Sobolev spaces. The boundary value problems for
ordinary differential equations admit Green operators which are described
sufficiently well. This enables us to divide this operator into two parts: G0

and the other summand, and to consider the problem in different spaces.
Sometimes, a perturbation of L(λ0) is not expressed by the identity operator:
see [22] and [23] where the problems of the form

m∑
j=0

aj(λ)x(j) = f(t, x) ,

m−1∑
j=0

(bijx
(j)(0) + cijx

(j)(1)) = 0, i = 1, . . . ,m ,

are studied. The functions aj are analytic in a nbhd of λ0 and the corre-
sponding linear homogeneous problem has nontrivial solutions.
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The perturbation method can be applied to differential equations in Ba-
nach spaces. The following problem was studied in [27]:

(4.8) x′ = A(t)x + f(t, x), B1x(0) + B2x(1) = 0 ,

where A : [0, 1] → L(E), f : [0, 1] × E → E were continuous functions, E
a Banach space, f(t, ·) compact, f(·, x) uniformly continuous with respect
to x on bounded subsets, and B1, B2 ∈ L(E) the space of linear bounded
operators on E. Suppose that the operator B1 + B2U(1), where U(t), t ∈
[0, 1], is the resolvent for x′ = A(t)x, is a Fredholm operator of index zero
in E, B1 + eλB2U(1) is invertible for small |λ| and the limits

hj = lim
λ→0

(B1 + eλB2U(1))xj

‖(B1 + eλB2U(1))xj‖

exist for j = 1, . . . , n, where x1, . . . , xn form a basis of ker(B1 + B2U(1)).
Let f be sublinear. If we denote by vj , j = 1, . . . , n, the linear continuous
functional on E defined by

〈vj , hi〉 = δij , vj |(B1 + B2U(1))(E) = 0 ,

then the L-L condition will have the form: for any (xν) ⊂ C([0, 1], E) with
‖xν‖ → ∞ and ‖xν‖−1xν →

∑
djU(·)xj , there exists j0 such that

lim inf
ν→∞

dj0

〈
vj0 , B2U(1)

1∫
0

U−1(s)f(s, xν(s)) ds
〉

> 0

(or lim sup . . . < 0). The boundary condition can also involve nonlinear
operators and both nonlinearities can have a linear growth. The suitable
assumptions are much complicated (see [27]).

5. The case of the infinite-dimensional kernel. The perturba-
tion method admits generalizations in many directions. Below, we present
one of them and its applications to boundary value problems for infinite-
dimensional ordinary differential equations. If one examines the boundary
value problems such as

x′ = f(t, x), x(0) = x(1) ,

x′′ + m2x = f(t, x), x(0) = x(π) = 0 ,

where x ∈ E, an infinite-dimensional Banach space, then the spaces of
solutions of the homogeneous linear problems are isomorphic to E, so we
cannot apply the above theory. Although the corresponding linear operator
is not Fredholm, its behaviour is similar to the finite-dimensional case.

Let X, Y , Z be Banach spaces, J : Y → X an injective bounded linear
operator, and L(λ) : Y → Z, λ ∈ R, a continuous family of bounded linear
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operators which are invertible except L(λ0). Assume that

ker L(λ0) = J−1(E1)⊕ . . .⊕ J−1(En) ,

where E1, . . . , En are reflexive subspaces of X. Moreover, let

JL(λ)−1 =: G(λ) = G0(λ) +
n∑

j=1

cj(λ)uj(λ) ,

where G0(λ) : Z → X and uj(λ) : Z → Ej , j = 1, . . . , n, are bounded
linear operators having continuous extensions to λ = λ0, and |cj(λ)| → ∞
as λ → λ0. Assume that there exists a closed subspace X̃ ⊂ X such that
G0(λ)(Z) ⊂ X̃ and

X̃ ⊕ E1 ⊕ . . .⊕ En = X ,

L(λ0)(Y ) =
n⋂

j=1

ker uj(λ0) ,

L(λ0)G0(λ0)z = z for z ∈ L(λ0)(Y ) .

We look for a solution of (4.1) or, equivalently,

(5.1) x = G0(λ0)N(x) +
∑

j

dj , uj(λ0)N(x) = 0, j = 1, . . . , n ,

where dj ∈ Ej , j = 1, . . . , n, are arbitrary. We suppose that the nonlinear
operator N : X → Z is uniformly continuous on bounded sets and, for
some sequences of finite rank bounded linear projectors (Pj,k)k∈N in Ej ,
j = 1, . . . , n, such that Pj,kdj → dj as k → ∞, the following condition is
satisfied:

(W) for each bounded set K ⊂ X and ε > 0, there exists k0 such that∥∥∥N
(
x̃ +

∑
j

Pj,kdj

)
−N

(
x̃ +

∑
j

dj

)∥∥∥ ≤ ε

for k ≥ k0, x̃ ∈ X̃, dj ∈ Ej , j = 1, . . . , n, such that x̃ +
∑

dj ∈ K.

Moreover, suppose the operators G0(λ)N , λ 6= λ0, are compact.
We restrict ourselves to the sublinear case. For λ 6= λ0 the equations

x = G(λ)N(X) have solutions due to the Rothe Fixed Point Theorem. If
λm → λ0 and xm is such a solution for λ = λm, then we prove that a bounded
sequence (xm) contains a subsequence convergent to a solution of our equa-
tion and we find a condition which excludes the case of unbounded (xm).

Let (xm) be bounded and xm = x̃m +
∑

j dm
j where x̃m = G0(λm)N(xm)

and dm
j = cj(λm)uj(λm)N(xm), j = 1, . . . , n. All sequences (x̃m), (dm

j ),
j = 1, . . . , n, are bounded, thus, by the compactness of G0(λm)N and the
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reflexivity of Ej , we can assume

x̃m → x̃ ∈ X̃, dm
j ⇀ dj , j = 1, . . . , n ,

where ⇀ denotes weak convergence. Applying condition (W) and the uni-
form continuity of N, it is easy to show that

N
(
x̃m +

∑
j

dm
j

)
→ N

(
x̃ +

∑
j

dj

)
.

Hence x = x̃ +
∑

dj satisfies (5.1), by the boundedness of (dm
j )m and the

fact that |cj(λm)| → ∞.

Theorem 3. Under the above assumptions, if , for any sequence (xm) ⊂
X such that ‖xm‖ → ∞ and ‖xm‖−1xm →

∑
dj , there exists j0 and a

functional r : Ej0 × Ej0 → R weakly continuous and homogeneous in the
second variable such that r(dj0 , dj0) > 0 and

(5.2) lim sup
m→∞

αj0r(dj0 , uj0(λ0)N(xm)) < 0

where αj = sgn cj(λ) for λ close to λ0, then equation (4.1) has a solution.

P r o o f. We shall see that the sequence of fixed points (xm) cannot be
unbounded. If it is, we can assume that ‖xm‖ → ∞. Then

xm

‖xm‖
= G0(λm)

N(xm)
‖xm‖

+
∑

j

cj(λm)
‖xm‖

uj(λm)N(xm) .

The first summand tends to 0 since N is sublinear, hence the remaining
summands are bounded and contain weakly convergent subsequences

cj(λm)
‖xm‖

uj(λm)N(xm) ⇀ dj ∈ Ej , j = 1, . . . , n .

For j = j0, this contradicts (5.2).

R e m a r k s. If the nonlinear part N is bounded, then the condition (5.2)
should be satisfied only for sequences xm = x̃m+

∑
dm

j such that ‖x̃m‖ ≤ M

where M > ‖G0(λ0)‖ sup ‖N(x)‖, ‖
∑

dm
j ‖ → ∞, ‖

∑
dm

j ‖−1dm
j → dj ∈ Ej ,

j = 1, . . . , n. When, moreover, the limits of N(xm) exist and depend only
on

∑
dj (denote them by N(d1, . . . , dn)) then the sufficient condition for the

solvability of (4.1) becomes simpler: for any (d1, . . . , dn) on the unit sphere,
there exists j such that

αjr(dj , uj(λ0)N(d1, . . . , dn)) < 0

where r : Ej ×Ej → R has the properties from Theorem 3. In the previous
section, we have Ej = R for any j, with r being the multiplication of real
numbers.
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Now, we shall show how this theorem works for two boundary value
problems mentioned at the beginning of this section. Consider

(5.3) x′ = f(t, x), x(0) = x(T ),

where f : [0, T ] × H → H is a continuous function, H is a Hilbert space,
f(0, ·) = f(T, ·) and the following condition is satisfied: for each bounded
set K ⊂ H and ε > 0, there exists k0 ∈ N such that

(5.4) ‖f(t, x)− f(t, Pkx)‖ ≤ ε

for k ≥ k0, x ∈ K and t ∈ [0, T ], where (Pk) is a fixed sequence of finite
rank orthogonal projectors in H strongly convergent to the identity map.

Put X = Z = C([0, T ],H), Y = {y ∈ C1([0, T ],H) : y(0) = y(T )}, let
J : Y → X be the inclusion map, L(λ)y = y′ − λy, λ0 = 0, and N(x)(t) =
f(t, x(t)). Obviously kerL(0) ∼= H, X̃ = {x ∈ X :

∫ T

0
x(t) dt = 0}. It is

easy to verify that N is uniformly continuous on bounded sets and satisfies
condition (W). Moreover, one can calculate the Green operator:

G0(λ)z(t) = eλt
t∫

0

e−λsz(s) ds +
eλ(t+T )

1− eλT

T∫
0

e−λsz(s) ds +
1

λT

T∫
0

z(s) ds ,

c1(λ) = −λ−1, u1(λ)z = T−1
T∫

0

z(s) ds ∈ H

where we identify the space of constant functions with H. The operators
G0(λ)N are compact by the General Ascoli–Arzelà Theorem. N will be
sublinear if we assume that

lim
‖x‖→∞

sup
t
‖f(t, x)‖/‖x‖ = 0 .

Take r to be the scalar product in H. Then problem (5.4) has a solution if,
for any sequence (xm) ⊂ X such that ‖xm‖ → ∞ and ‖xm‖−1xm → d ∈ H
uniformly, we have

lim sup
m→∞

T∫
0

(d, f(t, xm(t))) dt < 0

or

lim sup
m→∞

T∫
0

(xm(t), f(t, xm(t))) dt < 0 .

The dual assumptions are obvious.
We shall study the infinite-dimensional Dirichlet problem:

(5.5) x′′k + m2
kxk = fk(t, x), xk(0) = xk(π) = 0, k ∈ N ,
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where x = (xk) ∈ lp with p > 1 and (mk) ⊂ N. Assume that fk : [0, π]×lp →
R are continuous and, for all t and x,

∞∑
k=1

|fk(t, x)|p < ∞ .

Consider the projectors Pk(x1, . . . , xk, xk+1, . . .) = (x1, . . . , xk, 0, . . .), k∈N,
in lp. Suppose that, for any M > 0 and ε > 0, there exists k0 ∈ N such that

(5.6)
∞∑

n=1

|fn(t, x)− fn(t, Pkx)|p ≤ ε

for k ≥ k0, t ∈ [0, π] and ‖x‖ ≤ M . Put X = Z = C([0, π], lp), Y =
{y ∈ C2([0, π], lp) : y(0) = y(π) = 0}, J : Y → X the inclusion map,
L(λ)(yk) = (y′′k + m2

kyk + λyk), λ0 = 0 and N(x)(t) = (fk(t, x(t)))k. Then

ker L(0) = {(dk sinmk ·) : (dk) ∈ lp} ∼= lp.

It is easy to find the Green operator and its decomposition into a regular
part G0(λ) and an irregular term. In particular,

u1(0)z =
( π∫

0

zk(s) sinmks ds · sinmk ·
)

k∈N
.

Condition (5.6) guarantees that N is uniformly continuous on bounded sets
and satisfies condition (W), and the operators G0(λ)N are compact. As-
sume that f = (fk) is sublinear. The functional r : lp × lp → R which is
the multiplication of the jth coordinates of both vectors has the required
properties. Therefore, problem (5.5) has a solution if, for any sequence
(xm) ⊂ X such that ‖xm‖ → ∞ and ‖xm‖−1xm → (dk sinmk ·) uniformly
on [0, π], there exists j ∈ N such that

lim sup
m→∞

dj

π∫
0

sinmjsfj(s, xm(s)) ds < 0

or

lim sup
m→∞

π∫
0

xm,j(s)fj(s, xm(s)) ds < 0

(or the dual conditions lim inf . . . > 0). For p = 2, we can use a weaker
condition

lim sup
m→∞

π∫
0

(xm(s), f(s, xm(s))) ds < 0

where (·, ·) is the scalar product.
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BANACHA 22

90-238  LÓDŹ, POLAND
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