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A CLASS OF NONLOCAL PARABOLIC PROBLEMS
OCCURRING IN STATISTICAL MECHANICS

BY

PIOTR B I L E R AND TADEUSZ N A D Z I E J A (WROC LAW)

We consider parabolic equations with nonlocal coefficients obtained from
the Vlasov–Fokker–Planck equations with potentials. This class of equations
includes the classical Debye system from electrochemistry as well as an evo-
lution model of self-attracting clusters under friction and fluctuations. The
local in time existence of solutions to these equations (with no-flux boundary
conditions) and properties of stationary solutions are studied.

1. Introduction. Our aim in this paper is to prove the existence of
solutions of the initial-boundary value as well as the stationary problems
for a class of parabolic equations with nonlocal coefficients. The equations
under study read

(1) ut = ∆u +∇ · (uX(u))

where the drift term is determined by a vector field X = X(u) which may
depend on u in a nonlocal way, e.g. via a (linear weakly singular) integral
operator. These equations are supplemented with the no-flux conditions

(2) (∇u + uX(u)) · ν = 0

imposed at the boundary of a bounded open set Ω ⊂ Rn. Here ν denotes
the unit normal vector to ∂Ω. Moreover, the initial condition is

(3) u(x, 0) = u0(x) .

There are several physical motivations to study such diffusion equations
for the density functions u = u(x, t) ≥ 0. The physical models fall, roughly
speaking, into two classes. The first one deals with charge carriers (e.g.
electrons and holes in semiconductors, ions in electrolytes) interacting by
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Coulomb forces. The second one describes gravitational attraction of parti-
cles.

The density dependent vector field

(4) X = X(u) = X(u, x, t) = K(u) +∇V (x, t)

describes not only the interaction of particles with the field K(u) gener-
ated by them but also includes the external potential forces derived from a
potential V = V (x, t).

Note that (2) is the simplest physically relevant (no-flux) boundary con-
dition which guarantees the conservation of the integral

∫
Ω

u in time.
Besides equations of Fokker–Planck type with X = ∇V independent of u,

concrete examples such as the Van Roosbroeck equations from the theory of
semiconductors, the Debye system from electrochemistry, a parabolic-elliptic
system for gravitational interaction of particles, and evolution versions of
the so-called generalized Lane–Emden equations have been studied in [7],
[2, Sec. 1.6], [3] and [4], [5], [15], respectively. The characteristic feature
of these models, except for the last one, is an elliptic differential relation
connecting u and X(u) like u = ∓∆ϕ, X(u) = ∇ϕ(u) in Ω, with ϕ or
X(u) · ν prescribed on ∂Ω (the minus sign corresponds to the repulsion
case, and the plus sign to the attraction case). The equations (1.5)–(1.6) in
[15] are more general and usually cannot be reduced to a parabolic-elliptic
system of partial differential equations. Wolansky gives in [15] a physical
derivation of them from kinetic equations of Vlasov–Fokker–Planck type:

ft = −∇x · (vf) +∇v · (Xf) + β∇v · (vf +∇vf)

describing the evolution of densities f = f(x, v, t) (in the phase space
{(x, v) ∈ Ω ×Rn}) of particles subjected to a frictional, velocity dependent
force with a random fluctuation. Equations of this type go back to Jeans
(1915) for the gravitational attraction of particles in astrophysics, and to
Vlasov (1938) for the electrostatic interaction in plasma. Suppose the initial
distribution is Maxwellian in velocities: f(x, v, 0) = cu0(x) exp(−v2/2). It is
expected (see [15]) that in the adiabatic limit of large friction β →∞ the dis-
tribution function f(x, v, t) converges in probability to cu(x, t) exp(−v2/2)
with u = u(x, t) =

∫
Ω

f(x, v, t) dv satisfying (1). The natural reflection con-
dition for f(x, v, t) at x ∈ ∂Ω is then translated into the no-flux boundary
condition (2).

The time independent solutions of (1)–(2) can be obtained from the
equation

(5) ϕ = M
( ∫

Ω

exp(−(ϕ + V ))
)−1

J(exp(−(ϕ + V ))) ,

which is called the generalized Lane–Emden equation. Here ϕ(x)=J(u)(x) =
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∫
Ω

K(x, y)u(y) dy is the potential induced by u,
∫

Ω
u = M > 0 is the total

mass confined to Ω, and K(u) = ∇J(u) in the representation (4) of X(u).
The nonlinear integral equation (5) is equivalent to (1)–(2) when u =

u(x) does not depend on t. In particular, the no-flux condition (2) is encoded
in the proper normalization λ = M(

∫
Ω

exp(−(ϕ+V )))−1 in u = λ exp(−(ϕ+
V )), leading of course to (5) (for details see Section 3, (11), (12)).

The equation (5) is studied in [15] in the one-dimensional case mainly.
The phenomenon of nonexistence of solutions for certain M > 0 in the
two- and three-dimensional case is called there the gravitational collapse.
There is a conjecture (6.2) in [15] that in the two-dimensional case for small
M > 0 there exists a unique solution of (5). The existence and regularity of
solutions to the evolution problem (1)–(3) have not been treated in [15].

In the papers [3], [4], [10], [11], [12] the questions of existence of so-
lutions of parabolic-elliptic systems (both local and global in time), their
uniqueness, regularity, and convergence to steady states as time tends to
infinity have been studied, together with the existence and multiplicity of
these steady solutions. Moreover, it has been shown that the nonexistence
of stationary solutions for large mass may lead to a finite time blow-up
phenomenon for the evolution problem (cf. [5]).

In this note, we develop some ideas (mainly from [3], [4], [10], [12]) to
prove the local in time existence and regularity of solutions to (1)–(3), and
the existence of the stationary solutions of (5) for small M > 0 in the n-
dimensional case. The uniqueness of solutions to (5) with sufficiently small
M > 0 is shown in the two-dimensional case. Nonexistence of solutions to
(5) is proved for the n-dimensional gravitational case in a ball, with M > 0
large enough. Thus, we give in particular an affirmative answer to Con-
jecture 6.2 in [15], a generalization (for all n ≥ 2 and certain potentials
V ) of the result in [15, Corollary 4.1], and we establish rigorously the ex-
istence of nonstationary solutions taken for granted in [15]. Of course, the
cases n = 2, n = 3 deserve more attention as they correspond to a direct
physical interpretation. In our framework we will not distinguish the type
of interaction (repulsion–attraction) described by X(u) (only average size
conditions will be imposed on X(u)), hence the global in time existence of
solutions—expected (and proved in certain cases in [3], [4], [11]) in the re-
pulsion case, and generally not expected in the attraction case (cf. [5])—will
not be considered here. We will touch neither on the questions of the ex-
istence of stationary solutions for all M > 0, nor on their multiplicity for
some M > 0, because of similar reasons.

We note that the boundary condition (2) causes some technical difficul-
ties (cf. e.g. [7] where only linear boundary conditions are treated), since
some maximum principle arguments may fail for solutions of (1)–(2). We
also remark that the stationary solutions (5) (in a particular case when the
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kernel K of J is symmetric: K(x, y) = K(y, x)) are studied in [15] using
heavily variational arguments involving the free energy functional

(6) E(u) =
∫
Ω

u log u +
1
2

∫
Ω

J(u)u +
∫
Ω

uV ,

while our approach is based on compactness properties of the right hand side
of (5). Modifications of (6) play the important role of Lyapunov functionals
controlling efficiently the size of solutions in the repulsion case (cf. [7], [3],
[4]). In the attraction case the contribution of the second term on the right
hand side of (6) is very negative, hence in general E(u) cannot control the
quantity u in a reasonable way.

We use largely the notation and results of papers [3], [4] relevant to the
study of the system (1)–(3). In particular, we use the standard notation
|u|p for the Lp(Ω) norms of functions, and ‖u‖s for the Hs(Ω) norms. The
constants independent of functions defined on Ω will be denoted generically
by C, even if they may vary from line to line. For various Sobolev imbeddings
interpolation inequalities we refer to [1], [6] and [8].

2. Evolution problem. This section is devoted to a proof of the local
existence of solutions for the problem (1)–(3) in the case when X(u) is a
sublinear vector field, i.e. the nonlinearity in the equation (1) is at most
quadratic. Our assumptions read:

(A) Ω is a bounded open subset of Rn with C1+ε boundary ∂Ω for some
ε > 0.

If n = 2, 3 the vector field X(u) and its derivative satisfy estimates of
the form

(B2) |X(u)|1 ≤ C(|u|2 + 1) and |DX(u)|2 ≤ C(|u|2 + 1)

with C independent of u ∈ L2(Ω), and more generally for n ≥ 2,

(Bp) |X(u)|1 ≤ C(|u|p + 1) and |DX(u)|p ≤ C(|u|p + 1)

with some n/2 < p ≤ n, and C independent of u ∈ Lp(Ω).
Alternatively, for n ≥ 2 and some n < p < ∞ we may assume

(Cp,∞) |X(u)|∞ ≤ C(|u|p + 1).

Observe that an immediate consequence of (Bp) is the condition

(Cp,q) |X(u)|q ≤ C(|u|p + 1) with 1/q = 1/p− 1/n ,

a counterpart of (Cp,∞) above for small p. (Cp,q) follows from the Sobolev
imbedding theorem combined with the Poincaré inequality (applicable since
the average value of X(u) is controlled by |u|p in (Bp)).
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For the uniqueness of solutions assume either

(∆C2) |X(u)−X(v)|6 ≤ C|u− v|2 for n ≤ 3 ,

or

(∆Cp) |X(u)−X(v)|∞ ≤ C|u− v|p for n ≥ 2, p > n .

We define a weak H1(Ω) solution of the problem (1)–(3) on Ω× (0, T ) to
be a function u ∈ L∞((0, T );L2(Ω)) ∩L2((0, T );H1(Ω)) satisfying for each
test function η ∈ H1(Ω × (0, T )) and for a.e. t ∈ (0, T ) the integral identity

(D)
∫
Ω

u(x, t)η(x, t) dx−
t∫

0

∫
Ω

uηt +
t∫

0

∫
Ω

(∇u + uX(u)) · ∇η

=
∫
Ω

u0(x)η(x, 0) dx .

This definition coincides with standard definitions of weak solutions of (lin-
ear) initial-boundary value problems in [13, Ch. III, Secs. 1, 4, 5] when
the no-flux condition (2) is to be satisfied, and the vector field X = X(u)
is determined by u itself (i.e. X is a self-consistent field in physical ter-
minology). Observe that this definition can be modified to that of weak
W 1,p(Ω) solutions of (1)–(3) (with p > n), when stronger conditions on u
are imposed: u ∈ L∞((0, T );Lp(Ω)) ∩ Lp((0, T ); W 1,p(Ω)), and a larger
set of test functions is admitted: η ∈ W 1,p′(Ω × (0, T )), 1/p + 1/p′ = 1,
similarly to the case of parabolic equations and systems in the framework
of [2].

It will be seen from the proof of Theorem 1 that ut ∈ L2((0, T );H−1(Ω)),
hence the energy (in)equality

(7)
1
2

∫
Ω

u2(x, t) dx +
t∫

0

∫
Ω

(∇u + uX(u)) · ∇u =
1
2

∫
Ω

u2
0(x) dx

holds for all t ∈ [0, T ]. Its proof begins with showing (7) for a.e. t ∈ (0, T ),
and then by the continuity of u ∈ C([0, T ];L2(Ω)) (cf. [13, Ch. III, Th. 5.1])
for all t ∈ [0, T ] (see [4, (9), (10)]). By abuse of language we will write (7)
in the differential form

(8)
1
2

d

dt
|u|22 + |∇u|22 = −

∫
Ω

uX(u) · ∇u

whose formal derivation consists in multiplying (1) by u and integrating by
parts. In the sequel certain integral inequalities following from (D) will be
written formally as differential inequalities, but we will understand them
properly, in integral form.
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Theorem 1. Assume (A) and either (B2) for (i), or (Cp,∞) for (ii), or
(Bp) for (iii), or (Bp) and (Cp,∞) for (iv).

(i) If n = 2, 3, p = 2 and u0 ∈ L2(Ω) then there exist T = T (|u0|2) > 0
and a weak solution u of (1)–(3) belonging to L∞((0, T );L2(Ω))∩L2((0, T );
H1(Ω)).

(ii) If n ≥ 2 and u0 ∈ Lp(Ω), p > n, then there is T = T (p, |u0|p) > 0
and a weak solution u such that u ∈ L∞((0, T );Lp(Ω)), moreover , up/2 ∈
L2((0, T );H1(Ω)).

If additionally either (∆C2) in (i), or (∆Cp) in (ii) is assumed , then
these solutions are unique.

(iii) If n ≥ 2, p > n/2 and u0 ∈ Lp(Ω), then the conclusion of (ii) holds
true with this p and some T = T (p, |u0|p) > 0.

(iv) If u0(x) ≥ 0 then u(x, t) ≥ 0 a.e.

The weak solutions in (i)–(iii) are regular in the sense that u ∈ L∞loc((0, T );
L∞(Ω)).

Before proving this theorem we give some examples that satisfy our set
of assumptions.

Examples. 1. Suppose that X(u) = ∇ϕ where ϕ = ϕ(u) satisfies the
Poisson equation ∓∆ϕ = u and either the Dirichlet condition ϕ = φ1, or the
Neumann condition ∂ϕ/∂ν = φ2 (with a proper normalization of φ2), or the
Robin condition ∂ϕ/∂ν + σϕ = φ3 at the boundary ∂Ω, and φ1, resp. φ2,
resp. σ, φ3 are bounded in time (in particular, φ1 = const is admissible).
Problems like these are studied in [3]–[5], [7].

In this case the validity of conditions (Bp), (Cp,q), (Cp,∞) results from the
properties of weak solutions of the Poisson equation (cf. [6, Vol. 1, Ch. 2]).
Namely, |D2ϕ|p ≤ C|∆ϕ|p ≤ C|u|p is the Calderón–Zygmund inequality,
|∇ϕ|1 ≤ C(|u|p + 1) follows from the boundary condition imposed, and
|∇ϕ|q ≤ C(|u|p + 1) with 1/q = 1/p − 1/n is a consequence of the Sobolev
theorem.

2. The same applies, of course, to ϕ(u) = E ∗ u, where E is the funda-
mental solution of the Laplacian: E = En(x) = −((n − 2)σn)−1|x|2−n for
n > 2, E2(x) = (2π)−1 log |x|. This corresponds to equations considered in
[15].

3. More generally, if ϕ(u) =
∫

Ω
K(x, y)u(y) dy, where the kernel K

satisfies the condition that D2K are sums of singular Calderón–Zygmund
kernels (cf. [6, Vol. 4]) and weakly singular kernels, then X(u) = ∇ϕ(u)
satisfies all the assumptions (Bp).

4. If the external potential V = V (·, t) is in C1(Ω) for each t and satisfies
supt |D2V (t)|p < ∞, then ∇V can be added to X(u) in each of the examples
listed above (with the same p).
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5. Equations with memory on [0, t] where X(u) =
∫ t

0
Y (τ, u(τ)) dτ , and

suitable conditions on Y (τ, u) are imposed, also fit into our framework.
6. The methods in this paper also extend to quasilinear parabolic sys-

tems with u = (u1, . . . , uN ), and X(u) as in Example 1 above, similar to
those considered in electrochemistry (cf. [2, Sec. 1.6] and [4]).

P r o o f o f T h e o r e m 1. (i) For fixed T > 0, let the space X =
L4((0, T ); L2(Ω)) be endowed with the norm

|||u||| =
( T∫

0

( ∫
Ω

|u(x, t)|2 dx
)2

dt
)1/4

.

Beginning with an element u ∈ X we consider the weak solution u of the
auxiliary linear problem

ut = ∆u +∇ · (uX(u)) in Ω × (0, T ) ,

(∇u + uX(u)) · ν = 0 on ∂Ω × (0, T ) ,

u(x, 0) = u0(x) ,

where X(u) = X(u(x, t)) is defined for a.e. t ∈ (0, T ), X(u) depends mea-
surably on t, and since (B2) implies the condition (Cp,q):

|X(u)|q ≤ C(|u|2 + 1) with q = 6 if n = 3, and q < ∞ if n = 2 ,

we have
T∫

0

( ∫
Ω

|X(u)|q dx
)4/q

dt ≤ C(|||u|||4 + 1) ,

so X(u) ∈ L4((0, T ); Lq(Ω)).
The second part of (B2) implies the existence of the trace X(u) · ν on

∂Ω × (0, T ), which satisfies X(u(t)) · ν ∈ H1/2(∂Ω) ⊂ L4(∂Ω) for a.e.
t ∈ (0, T ). Moreover, by a similar argument to that for X(u), X(u) · ν ∈
L4((0, T ); L4(∂Ω)).

Now, the solvability conditions for linear equations in [13, Ch. III, Secs. 4,
5] are satisfied for the above problem since X(u) ∈ Lr((0, T ); Lq(Ω)) with
1/r + n/(2q) ≤ 1/2 (here n ≤ 3, q = 6, r = 4), and X(u) · ν ∈ Lr′((0, T );
Lq′(∂Ω)) with 1/r′ + (n− 1)/(2q′) ≤ 1/2 (here n ≤ 3, q′ = 4, r′ = 4).

The energy (in)equality for the linear problem just solved reads (cf. [13,
Ch. III, Sec. 2])

1
2

d

dt
|u|22 + |∇u|22 ≤

∣∣∣ ∫
Ω

u∇u ·X(u)
∣∣∣ ≤ |∇u|2|u|3|X(u)|6(9)

≤ C|∇u|2‖u‖1/2
1 |u|1/2

1 (|u|2 + 1)

≤ 1
2
‖u‖21 + C|u|22(|u|2 + 1)4 .
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As a consequence we obtain

|u(T )|22 +
T∫

0

|∇u(t)|22 dt ≤ |u0|22 exp
(
C

T∫
0

(|u(t)|2 + 1)4 dt
)

≤ |u0|22 exp(C(|||u|||4 + 1)) ,

and |||u||| ≤ T 1/4|u0|2 exp(C(|||u|||4 + 1)). Consequently, taking a suffi-
ciently small T > 0 and R > 0 large enough, the image of the ball BR =
{u ∈ X : |||u||| ≤ R} under the operator N (u) = u is contained in this
ball. It is standard to verify (cf. [3], [4]) that N : X → X is continuous,∫ T

0
‖ d

dtu(t)‖2−1 dt < ∞, and the closure of N (BR) is compact in X (by the
Aubin–Lions lemma, [14]). The inequality above is proved by applying to
(1) with X = X(u) test functions from H1(Ω) (independent of t).

The Schauder fixed point theorem assures thatN (u) = u for some u ∈ X ,
hence u solves (1)–(3) in the sense of the definition (D).

Concerning the uniqueness of weak solutions to (1)–(3) under the as-
sumption (∆C2), consider two such solutions, say u and v. The difference
w = u− v satisfies

wt = ∆w +∇ · (uX(u))−∇ · (vX(v))

so we obtain (analogously to (7))

1
2

d

dt
|w|22 + |∇w|22 ≤

∣∣∣ ∫
Ω

(uX(u) · ∇w − vX(v) · ∇w)
∣∣∣

≤
∫
Ω

|w∇w ·X(u)|+
∫
Ω

|v∇w · (X(u)−X(v))|

≤ |∇w|2(|w|3|X(u)|6 + |v|3|u− v|2)

≤ 1
4
|∇w|22 + C‖w‖1|w|2(|u|2 + 1)2 + C‖v‖1|v|2|w|22

≤ 1
2
|∇w|22 + α(t)|w|22 ,

where
∫ T

0
α(t) dt < ∞ from the properties of the solutions u, v. Conse-

quently, this leads to a Gronwall type inequality d
dt |w|

2
2 ≤ α(t)|w|22, so the

uniqueness of solutions follows since w(0) = 0.
(ii) The scheme of proof is completely analogous to that in (i) with (B2)

replaced by (Cp,∞), and (∆C2) by (∆Cp).
(iii) The proof follows by a standard approximation argument described

in full details (for a related but slightly different problem) in [4]. Let us only
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recall the crucial estimate ([4, (19)])

(10) |u(t)|pp +
t∫

0

|∇(|u|p/2(τ))|22 dτ

≤ exp
(
Cp2

t∫
0

|X(u(τ))|2/(1−n/q)
q dτ

)
|u0|pp

valid for p > n/2 and any q > n. This implies that for T > 0 sufficiently
small all the approximating solutions with initial data in Lp∗(Ω), p∗ > n,
which approach u0 in Lp(Ω) norm, p > n/2, exist on the whole interval
[0, T ], and they converge in Lp(Ω) to a weak solution of (1)–(3).

(iv) The positivity of u under the assumption u0(x) ≥ 0 follows as in [3].
The regularity of weak solutions in (i), (ii), or those constructed in (iii),

can be proved using the Moser iteration technique adapting with minor
modifications the proof of Theorem 2(iii) of [4]. Here the condition (Cp,∞)
is used in the derivation of a counterpart of (10).

3. Stationary solutions. The assumptions on the vector field X in
this section are weaker than those in Section 2, except for the structure of
X(u) = ∇ϕ(u) + ∇V , i.e. X is derived from the potential ϕ = ϕ(u)(x) =∫

Ω
K(x, y)u(y) dy generated by u and from the external potential V = V (x).
As has been remarked in the introduction, stationary solutions U , Φ =

ϕ(U) of (1)–(2) satisfy the integral equation (cf. (5))

(11) Φ = M
( ∫

Ω

exp(−(Φ + V ))
)−1

J(exp(−(Φ + V ))) .

Indeed, ∇ · (∇U + UX) = 0 or ∇ · (exp(−(Φ + V ))∇(exp(Φ + V )U)) = 0
leads to

∫
Ω

exp(−(Φ + V ))|∇(exp(Φ + V )U)|2 = 0, and

(12) U = λ exp(−(Φ + V ))

with the normalizing constant λ = M(
∫

Ω
exp(−(Φ + V )))−1, M =

∫
Ω

U .
Applying to both sides of (12) the integral operator

J(U) =
∫
Ω

K(x, y)U(y) dy

we obtain (11).
Note that if the kernel K is symmetric: K(x, y) = K(y, x), the equation

(12) is an immediate consequence of the following identity for the functional
E of (6):

d

dt
E +
∫
Ω

u|∇(log u) + X|2 = 0
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valid for the weak solutions of (1)–(3) constructed in Theorem 1. To see
this we calculate formally

d

dt

(
1
2

∫
Ω

J(u)u
)

=
d

dt

(
1
2

∫ ∫
Ω×Ω

K(x, y)u(x)u(y) dx dy

)
=
∫
Ω

ϕ(u)ut

and d
dtE =

∫
Ω

(log u + ϕ + V )ut. This computation is made rigorous by
approximating u by u + δ (δ > 0), and passing to the limit δ → 0 (cf.
[3]). Then U satisfying (12) is a weak solution of the equation (1) (together
with the boundary condition (2)) independent of time. We indicate that
for symmetric positive definite kernels (generalizing the electrostatic case)
the uniqueness of stationary solutions for arbitrary M > 0 (a result of
F. Bavaud cited in [15]) follows from the convexity of the functional E
(see also Appendix). The gravitational case is more delicate, and uniqueness
of solutions is expected for small M > 0 only (see Theorem 2(iii) below).

Theorem 2. Let Ω be a bounded open subset of Rn, ` = |V |∞ < ∞.

(i) Suppose that for some r > 1,

k = sup
x∈Ω

( ∫
Ω

|K(x, y)|r dy
)1/r

< ∞ .

Then there exists M1 > 0 such that for each M ∈ (0,M1) the equation (11)
has a solution Φ ∈ L∞(Ω).

(ii) Suppose that |∇V |∞ < ∞, and for some r > 1 and β ∈ (0, 1] the
kernel K satisfies

sup
x∈Ω

∫
Ω

(|K(x, y)| |x− y|−β)r dy < ∞ ,

sup
x∈Ω

∫
Ω

(|∇xK(x, y)| |x− y|1−β)r dy < ∞ .

Then for each M ∈ (0,M2) with M2 > 0 small enough, there exists a
solution Φ ∈ Cβ(Ω) of (11) (i.e. Φ satisfies the Hölder condition of order β;
β = 1 corresponds to the Lipschitz condition: Φ ∈ Lip(Ω)).

(iii) If Ω ⊂ R2 is bounded , and the kernel K satisfies an estimate of the
form

|K(x, y)| ≤ k1(|log |x− y||+ 1)
for some k1 > 0, then there exists M3 > 0 such that for all M ∈ (0,M3)
stationary solutions of (11) are unique in L∞(Ω).

(iv) If Ω = B = B(0, R) is the ball of radius R in Rn, n ≥ 2, V ∈ C1(B),
and either

K = En is the fundamental solution of the Laplacian in Rn,
V and Φ are radial functions,
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or
K is the Green function of B and V is not necessarily radial,

then for sufficiently large M > 0 stationary solutions of (11) cannot exist in
L∞(Ω).

We remark that examples given after the formulation of Theorem 1 also
satisfy the assumptions of Theorem 2(i), (ii).

Examples. I. If |V |∞ < ∞ and |K(x, y)| ≤ C|x−y|−n+γ for some γ > 0,
then the assumptions of (i) are obviously satisfied with r ∈ (1, n/(n − γ)).
In classical situations (Examples 1–3 illustrating Theorem 1) we can take
e.g. γ ∈ (1, 2) or even γ = 2 for n ≥ 3.

II. If |∇V |∞ < ∞ and |∇xK(x, y)| ≤ C|x − y|−n−1+γ for some γ >
0, then the validity of the hypotheses of (ii) follows. Indeed, we obtain
|K(x, y)| ≤ C|x − y|−n+γ , so (ii) holds for β < γ, β ∈ (0, 1], and any
r ∈ (1, n/(n + β − γ)). Again we have γ ∈ (1, 2) in Examples 1–3.

III. The assumptions in (iii) are satisfied e.g. in the two-dimensional
gravitational case when either K = E2 or K is any of the kernels corre-
sponding to the boundary conditions in Example 1, X(U) = ∇Φ + ∇V ,
∆Φ = U . In fact, these kernels are bounded from above and have a singu-
larity (2π)−1 log |x − y| as x → y. Of course, part (i) of Theorem 2 can be
applied in (iii) with an arbitrary r < ∞.

P r o o f o f T h e o r e m 2. (i) For Ψ = −(Φ+V ), (11) assumes the form

(13) Ψ = −M
( ∫

Ω

expΨ
)−1

J(expΨ)− V =: T (Ψ) .

The nonlinear integral operator T is well defined for Ψ ∈ L∞(Ω). It is easy
to see that for |Ψ |∞ ≤ R, R > 0, the estimate

|T (Ψ)|∞ ≤ MeR|Ω|−1k|Ω|1/r′eR + `

holds, where |Ω| = volume of Ω, 1/r + 1/r′ = 1. Taking R > ` and M > 0
small enough (e.g. R = `+1/2, M ∈ (0,M1) with M1 = |Ω|1/r(2k)−1e−2`−1)
we obtain |T (Ψ)|∞ ≤ R.

Moreover, the operator J with kernel K is compact from L∞(Ω) into
L∞(Ω) (see [9, Ch. XI, Sec. 3, Ths. 1, 3]). This, together with the conti-
nuity of T , allows us to apply the Schauder fixed point theorem, and find a
function Ψ = T (Ψ) solving our problem.

(ii) We can again apply the Schauder fixed point theorem to the nonlinear
operator T in (13). In this situation the linear operator J with kernel K
is compact from L∞(Ω) into Cα(Ω) for every α ∈ (0, β) (cf. [9, Ch. XI,
Sec. 3, Th. 4]). We skip the details of this standard reasoning. Note that
further regularity of solutions Φ can be obtained under suitable assumptions
on the derivatives of V and smoothness of the kernel K off the diagonal
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{(x, x) : x ∈ Ω}. Let us also remark that regularity properties of Φ near the
boundary ∂Ω can be derived from the boundary behavior of the kernel K.

Our final remark concerns the equation (12) for the stationary density
U . The existence of solutions to (12) can also be proved with the use of
the Schauder theorem. The advantage of the approach with (12) instead
of (11) lies in a simpler way to prove regularity of solutions (Φ is a priori
more smooth than U). But establishing compactness properties of the right
hand side of (12) requires additional assumptions on either translations or
derivatives of K, i.e. on its average smoothness.

(iii) Concerning the uniqueness of solutions to (11) we begin with a
general computation in the framework of (i). Consider two solutions Φ1, Φ2,
and the corresponding Ψ1, Ψ2 with R = max(|Ψ1|∞, |Ψ2|∞). Since

µ1µ2(Ψ1 − Ψ2) = M(µ1J(expΨ2)− µ2J(expΨ1)) ,

where µi =
∫

Ω
expΨi ∈ [e−R|Ω|, eR|Ω|], i = 1, 2, we can write

µ1µ2e
−R|expΨ1 − expΨ2|∞ ≤ µ1µ2|Ψ1 − Ψ2|∞

≤ Mµ1|J(expΨ2 − expΨ1)|∞ + M |µ1 − µ2||J(expΨ1)|∞

≤ Mµ1k|Ω|1/r′ |expΨ1 − expΨ2|∞

+ M |Ω| |expΨ1 − expΨ2|∞k|Ω|1/r′eR

≤ 2Mk|Ω|1+1/r′eR|expΨ1 − expΨ2|∞ .

Then the inequality

|Ω|1/re−4R|expΨ1 − expΨ2|∞ ≤ 2Mk|expΨ1 − expΨ2|∞

shows that Ψ1 = Ψ2 in L∞(Ω) if we have an a priori bound on |Ψ |∞ and
M > 0 is sufficiently small. So, under the assumptions (iii) we should prove
a uniform bound valid for all the solutions of (11) when M ∈ (0,M3), for
suitably small M3 > 0.

Observe that an analogous computation shows that T is a contraction
in the ball {|Ψ | ≤ R} ⊂ L∞(Ω) for sufficiently small M > 0 provided
supx∈Ω

∫
Ω
|K(x, y)| dy < ∞, but the reasoning in (i) has implied the exis-

tence for a larger range of M ’s.
First, let us estimate µ =

∫
Ω

exp(−(Φ + V )) from below. Evidently, the
Cauchy–Schwarz inequality gives

|Ω|2 ≤ µ
∫
Ω

exp(Φ + V ) ≤ µe`
∫
Ω

exp |Φ| ,

so µ−1 ≤ C(Ω,V )
∫

Ω
exp |Φ|.
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Now we recall the Jensen inequality:

(14) exp
(
|f |−1

1

∫
Ω

fg
)
≤ |f |−1

1

∫
Ω

f exp g ,

which we shall use with f = Mµ−1 exp(−(Φ + V )) ≥ 0 (so J(f) = Φ from
(11), |f |1 = M) and

g = g(x− y) = εk1(|log |x− y||+ 1) ≤ εk1(log(|x− y|−1) + 2 log d + 1) ,

where ε ∈ (0, 2/k1), d = max(1, 2 diam(Ω)).
Integrating (14) over Ω we obtain∫

Ω

exp(εM−1|Φ|) ≤
∫
Ω

exp
(
|f |−1

1

∫
Ω

fg
)

≤
∫
Ω

|f |−1
1

( ∫
Ω

f(y)(d2e)εk1 |x− y|−εk1 dy
)

dx

= C
∫
Ω

|f |−1
1 f(y)

( ∫
Ω

|x− y|−εk1 dx
)

dy

≤ C
∫
Ω

|f |−1
1 f(y)

( ∫
B(0,d)

|x|−εk1 dx
)

dy

= C 2π(2− εk1)−1d2−εk1 = C(Ω,V, ε) < ∞ .

Choosing M∗ = ε we have εM−1 = s > 1 for each M ∈ (0,M∗), hence the
above inequality gives |exp |Φ||ss =

∫
Ω

(εM−1|Φ|) ≤ C < ∞.
Finally, this better integrability of exp(−Φ) leads to (1/s + 1/s′ = 1)

|Φ|∞ ≤ Mµ−1|J(exp(−(Φ + V )))|∞

≤ C(Ω,V )|exp |Φ||1
(

sup
x∈Ω

∫
Ω

|K(x, y)|s
′
dy

)1/s′

|exp |Φ||s

≤ C(Ω,V, k1, ε, s) < ∞ .

The a priori estimate for Φ in L∞(Ω), hence for |Ψ |∞ ≤ |Φ|∞ + ` (guaran-
teeing the uniqueness), is proved.

Note that the above proof is essentially that of the Moser–Trudinger
inequality (e.g. [8, Secs. 7.8, 7.9]) in two dimensions.

(iv) In this situation the equation (11) implies

(15) ∆Φ = Mµ−1 exp(−(Φ + V )) , µ =
∫
Ω

exp(−(Φ + V )) .

For a radially symmetric potential Φ = const on ∂B = {|x| = R}. The
equation (15) is invariant under translations in Φ, hence we may assume



144 P. BILER AND T. NADZIEJA

Φ|∂B = 0. Applying the Pokhozhaev identity (cf. [10] or [12], where nonex-
istence of solutions has also been proved in some particular cases) we obtain

(16) R
∫

∂B

(
∂Φ

∂ν

)2

= Mµ−1
∫
B

e−V ((e−Φ − 1)(−2∇V · x + 2n) + (n− 2)Φe−Φ).

Since Φ ≤ 0, the right hand side of (16) can be estimated by a linear function
of M : CM with C = C(n, V ). Due to

∫
∂B

∂Φ/∂ν = M , we have

M2 ≤ CRn−2
∫

∂B

(
∂Φ

∂ν

)2

R ,

which implies that (16) cannot be satisfied for sufficiently large M : M ∈
(M4,∞).

Similarly, if K is the Green function and V ∈ C1(B) (not necessarily
radial), then the above arguments prove that solutions to (15) cannot exist
for large M .

An inspection of the proofs in (iii), (iv) shows that if K = E2 then
M∗ = 4π (for any V ∈ L∞(Ω)) and M4 = 8π (when V = 0) do work.

Appendix. For completeness of exposition we present a concise proof of
the uniqueness of solutions to (11) for arbitrary M > 0 when the symmetric
kernel K is positive definite.

Let Φi, i = 1, 2, be two solutions of (11), and Ψi = −Φi − V , νi =
log(

∫
Ω

expΨi), i = 1, 2. We multiply the difference of the equations (13),
i.e. (11) written for Ψi,

Ψ2 − Ψ1 = MJ(exp(Ψ1 − ν1)− exp(Ψ2 − ν2))

by w = exp(Ψ1 − ν1)− exp(Ψ2 − ν2) and integrate over Ω:∫
Ω

(Ψ2 − Ψ1)(exp(Ψ1 − ν1)− exp(Ψ2 − ν2))

= M
∫ ∫

Ω×Ω

K(x, y)w(x)w(y) dx dy ≥ 0 .

Since
∫

Ω
w(x) dx = 0 we also have∫

Ω

((Ψ2 − ν2)− (Ψ1 − ν1))(exp(Ψ1 − ν1)− exp(Ψ2 − ν2)) ≥ 0 .

From the monotonicity of the exponential function Ψ 7→ expΨ , the integrand
is not positive for all x ∈ Ω, so w ≡ 0, and consequently Ψ1 = Ψ2.
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