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1. Introduction. Let R denote the set of real numbers. Let M, be
the family of all straight lines in R? which are parallel to the y axis and of
all curves of the form y = p(z 4+ ) + 3, where p is a fixed function and «, 3
run over R. In [3] and [4], Faber, Griinbaum, Kuczma and Mycielski proved
that if there exists a continuous bijection of R? onto R? which induces a map
of the family of all straight lines onto M,,, then p must be a polynomial of
degree 2. Let N, consist of all planes parallel to the z-axis and all surfaces
of the form

Z:p(IE‘FOé,y‘i‘B)""Y,

where p : R?> — R, and a, 3, and ~ are real constants. In [3], the following
problem was raised: Characterize those functions p for which N, is contin-
uously isomorphic to the family of all planes in R3. In this paper, we solve
the problem posed in [3] through a functional equation and show that p is
a polynomial of degree 2.

The paper is organized as follows. In Section 2, we determine the general
solution of a functional equation which is instrumental in proving the main
result. In Section 3, we provide the answer to the question of Faber, Kuczma
and Mycielski.

2. A functional equation. For z,y € R?, let

2

denote the inner product between x and y, where x; and y; are the ith
components of z and vy, respectively. Let 7 denote the transpose of x
in R?. Let e; := (1,0) and ey := (0,1) be the basis elements of R%. For
f:RZ SR, let

(2.2) fle,y] = f(@) + fly) — f(z+y) — £(0)
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be the Cauchy difference of f. Furthermore, let

(2.3) Myt = (flex,yl, flez,y)) -

Then, for y € R2, clearly f{y} € R%. Now we determine the general solu-
tion of a functional equation which is instrumental in establishing our main
result.

THEOREM 1. The continuous map f : R?> — R satisfies the functional
equation

(FE) fle,yl = (@, f{y}) (2, y €R?)

if and only if

(SO) f(z) = A2 + 2Bz + «

where A = (a b), ( fl), and a,b,c,d, e, are arbitrary real constants.

Proof. Using (2 1)-(2.3), (FE) can be written as
(24)  flzr,22) + f(y1,92) — f(@1 + y1, 22 +y2) = f(0,0)
=z1[f(1,0) = £(0,0) + f(y1,y2) — f(1 + y1,92)]
+ 22[f(0,1) — £(0,0) + f(y1,92) — f(y1, 1+ y2)]
for all 21, 2,91, y2 € R. Defining g : R> — R by
(2.5) g(z1,22) := f(z1,22) — £(0,0)
we get from (2.4),
(2.6)  g(z1,22) + 9(y1,y2) — g(z1 + y1, 22 + ¥2)
=z1[9(y1,92) — 9(1 + y1,92) + 9(1,0)]
+ 22[9(y1,92) — 9(y1,1 +y2) + (0, 1)].
Letting x5 = yo = 0 in (2.6), we get

(2.7)  g(x1,0)+9(y1,0)—g(x1+y1,0) = z1[g9(y1,0) —g(14y1,0)+g(1,0)].
Defining

(2.8) p(z1) == g(21,0) (21 €R),
from (2.7), we obtain
(2.9) p(z1) +p(y1) — p(x1 +31) = 21[p(y1) + (1) — p(y1 +1)].

Interchanging x; and y; in (2.9) and using the resulting expression with
(2.9), we obtain

(2.10) z1[p(y1) + (1) = p(y1 + 1] = y1[p(z1) + p(1) — p(z1 + 1)]
for all x1,y; € R. Hence

(2.11) p(y1) +p(1) — p(yr + 1) = coyr,



MODELS OF GEOMETRIES 167

where ¢y is a real constant. Inserting (2.11) into (2.9), we get

(2.12) p(z1) + p(y1) — p(x1 +y1) = cozrys -
Define

(213) Bn) = plar) + geoa?
Then by (2.13), (2.12) reduces to

(2.14) o(x1) + ¢(y1) = o(z1 +y1)

for all z1,y; € R.

Since f is continuous, p is also continuous. Therefore, with (2.14), (2.13)
yields (see [1, p. 13])

1
(2-15) p(fﬁl) =ary — 50053%;

where a is an arbitrary constant.

Similarly, we let 1 = y; = 0 in (2.6) to get
(2.16)  g(0,22)+9(0,y2)—g(0, z24y2) = 22[9(0,y2)+9(0,1)—g(0, y2+1)] .
Defining

(2.17) q(x2) :== g(0,22) (v2 €R)
we obtain from (2.16)
(2.18) q(x2) + q(y2) — q(z2 + y2) = w2[q(y2) + q(1) — q(y2 + 1)]

for all z3,y2 € R. This equation is similar to (2.9) and hence, we obtain
1

(2.19) q(w2) = bxs — 3 do 3,
where b and dgy are constants in R.

Next, letting 1 = y2 = 0 in (2.6), we obtain
(2.20)  g(0,22) + g(y1,0) — g(y1,22) = 22[9(y1,0) — g(y1,1) + g(0,1)],
which is
(2.21) q(x2) +p(y1) — 9(y1,x2) = 22 [p(y1) — 9(y1,1) + (0, 1)].
Similarly, letting x5 = y; = 0 in (2.6), we get
(2.22)  g(21,0) + 9(0,y2) — g(x1,y2) = x1[9(0,y2) — g(1,y2) + g(1,0)],
which is
(2.23) p(x1) + q(y2) — 9(@1,92) = x1[q(y2) — 9(1, y2) + g(1,0)].
Comparing (2.21) and (2.23), we see that
g(@1,22) = (1 — @2) p(x1) + q(22) + 2 [g(21,1) — 9(0,1)]

1

(2.24) also = p(z1) + (1 — z1)q(22) + z1[g(1, 22) — g(
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Hence, we get

za[g(x1,1) = 9(0,1) = p(z1)] = 21[g(1, 22) — 9(1,0) — gq(2)].
Therefore
9(z1,1) = g(0,1) = p(z1) + o1,
where 0 is a constant, and by (2.24) and the above, we get
(2.25) g(z1,22) = (1 — 22) p(21) + q(22) + 22 [P(21) + 021]
= p(z1) + q(22) + dz122 .
By (2.5), (2.15) and (2.19), (2.25) yields

1 1
(2.26) f(z1,22) = azq — ic[)x% + by — §d0x§ +o0x120 + 0.

Now renaming the constants —%co, —%dg, and J as ¢, d and 2e, respectively,
we get the asserted solution (SO).
The converse is easy to verify. This completes the proof of the theorem.

Remark 1. Although, in Theorem 1, we have assumed f to be contin-
uous, the general solution of the functional equation (FE) can be obtained
without this assumption. In this case, the general solution of (FE) would
be f(x) = A(x) + xBxT + o, where A is a biadditive function. Further-
more, (FE) can easily be generalized to the case of n variables. We leave
the details to the reader.

3. The main result. Let P denote the family of all planes in R3. Here,
the following subsets of P and N, are of particular interest. Let

Vyp = U {{(a,y,2) € R®|a is some fixed constant}}
acR

be the set of all planes parallel to yz-plane and similarly, let

Vy = U{{(a:, b,z) € R¥|b is some fixed constant}}
beR

denote the set of all planes parallel to xz-plane.

An isomorphism from P onto N, is a bijection of R® which induces a
bijection from P onto N,. Similarly, an automorphism of P is a bijection of
R3 which induces a bijection from P onto P. The next result characterizes
the automorphisms of P and is known as the “Fundamental Theorem of
Projective Geometry” [2, p. 156].

LEMMA. Every bijection ¢ of R3 onto itself which induces a bijection of
P onto itself is affine linear, that is,

o(z,y, 2) = (a1 + b1y + c12 + u, asx + by + c2z + v, azx + b3y + dsz + w)
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where
ap b1 o
det a9 bg Co 75 0 s
az b3 c3

and a;, b, ¢; (i =1,2,3) are arbitrary constants.

Now adopting a technique similar to the proof of the Theorem in [4], we
proceed to prove our main result.

THEOREM 2. Let p : R?> — R. There exists a continuous isomorphism 0
from P onto N, if and only if p(x,y) = d12? + doy? + 2dszy + dyz + dsy +dg
with dydy — d3 # 0. Here, d; (i =1,...,6) are real constants.

Proof. Let # : R> — R? be a continuous bijection which induces an
isomorphism from P onto N,. Then, for any affine linear automorphism o
of P, which by the previous lemma has the form

a(z,y,z) = (a1x+ b1y + c12 + u, asx + boy + c2z + v, azx + b3y + c3z + w)

with
ap by
det a9 bg Co 7é 0 s
a3 bz c3

the composition x = f o« is still a continuous isomorphism from P onto N,,.

Note that V, and V, are maximal sets of parallel planes belonging to
both P and N,. Since k is an isomorphism, the images of V, and V, are
maximal sets of parallel planes/surfaces in NV,,. Thus, we can choose a such
that x maps V, onto V, and V, onto V,. Hence, x is of the form

(3.1) k(@,y,2) = (f(2), 9(y), h(z,y,2)),
and by choosing « appropriately, we may assume that f(0) = 0 and ¢g(0) = 0.

Now consider the two-parameter group of automorphisms of P and N,
whose elements are defined by

Tot(z,y,2) = (x+s,y+1,2).
Since k maps P to N, we see by the previous lemma that

(3.2) Té’t =K loTsi0k

is affine linear, and hence, by (3.1), of the form

70o(2,,2) = (@(s)z+u(s), b(t)y+v(t), a(s,Dz+b(s, y+c(s, O)z+w(s, 1)) .
For s # 0, 7, does not fix any of the planes in V,, hence the equation
a(s)x +u(s) = x cannot have a solution. This yields a(s) = 1. Similarly for

t # 0, b(t)y + v(t) = y cannot have a solution and thus b(¢) = 1. Thus, Tat
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has the form

(3:3) 74y, 2)
= (z+u(s), y+v(t), a(s, t)x + b(s,t)y + c(s,t)z + w(s,t)) .

Using ko 7., = Ts+ 0 K, We obtain
k)

(3-4) fle+u(s)) = f(x)+s and g(y+ov(t)) =g(y) +1.
Letting = 0 and y = 0 in (3.4), we see that
(3.5) u(s) = f~Ms) and w(t) = g~}()

since f(0) = ¢g(0) = 0. Thus u and v are continuous. Furthermore, since
the 7, form a group, we have

(3.6) T(;,r © T;,t = Té+s,r+t .
Thus, from (3.6), we have
(3.7) u(g+s) =u(q) +u(s) and ov(r+t)=v(r)+o(t).

Since u and v are continuous, the Cauchy equations in (3.7) yield
(3.8) u(s) =&s and o(t) =nt,

where £ and 7 are nonzero arbitrary constants. Again, we can refine our
choice of « (the affine linear transformation) to obtain & = n = 1. Thus,
from (3.5), we get f(z) =z and ¢g(y) = y; and from (3.1),

(3.9) r(x,y, 2) = (2, y, h(z,y,2)) .-

Now we note that, for m € R, o,,(z,y,2) = (x,y,z + m) is the only
one-parameter group of automorphisms of P and N,, which fixes V, and V,,
respectively and has no fixed points for m # 0. Thus, the mapping
(3.10) Om — 0 =Kk oo ok
is an automorphism of this group. This implies that

(3.11) ol (z,y,2) = (z, y, 2+ 1(m))

!/

1., it follows

for some continuous function [ : R — R. Since o},,, = 0,, 00
that

(3.12) I(m)=_m for some ¢ #0.
Since o/, = k! 0 7, 0 K, we have

(3.13) Koo, =0mokK

and hence

(3.14) Wz, y,z +1U(m)) = h(z,y,z) +m.
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Letting z = 0 and m = z/(, we obtain from (3.14) and (3.12),
(3.15) h.y2) = by, 0)+ 7
and by again refining our choice of the affine linear transformation o we
may assume that ¢ = 1.

By (3.9), k maps the xy-plane to the set {(z,y, h(z,y,0))|z,y € R} and
this belongs to N,,. It follows that there exist constants ¢;, ¢z and cg such
that

(3.16) h(z,y,0) =p(z +co,y + 1) + c2 = Y(x,y) .

Thus (3.15) and (3.16) with ¢ =1 yield

(3.17) h(z,y,z) =¢(z,y) + 2z,

and hence from (3.9), we obtain

(3.18) K(@,y,2) = (2,9, 2 + ¥(2,9)) -

Substituting (3.18) into (3.2), we obtain, on the one hand,

(3.19) Toi(zy,2) = (@ + s,y +t 2+ ¥(z,y) —v(@+sy+1)),

and from (3.3),

(3.20) Tz, y,2) = (@ + s, y+t, a(s, t)z + b(s, t)y + c(s, )z + w(s,t)).
Setting these two equal yields for the z-component:

(3.21) z+Y(z,y) —v(x+s,y+1t) =a(s, t)xr+b(s,t)y+ c(s,t)z +w(s,t)
and it immediately follows that ¢(s,¢) = 1. Thus

(3.22) Y(z,y) — Yz + s,y +t) =a(s,t)z+ b(s,t)y + w(s,t).
Now we let x =y = 0:
(3.23) ¥(0,0) — (s, t) = w(s,t).

Also, letting z = 1,y = 0 in (3.22), we see that
(3.24) ¥(1,0) — (1 + s,t) = als, t) + 1(0,0) — (s, t).
Thus (3.24) yields
(3.25) a(s,t) =19(1,0) — (1 +s,t) —(0,0) + (s, 1) .
Similarly, letting z = 0 and y = 1 in (3.22), we get
(3.26) b(s,t) =(0,1) — (s, 1+1t) —(0,0) + (s, 1).
Hence, from (3.22), (3.25) and (3.26), we obtain
(327)  b(@,y) — (o +s,y+1) — ¥(0,0) + (s, 1)
= 2[(1,0) = (L +5,8) = 1(0,0) + 9(s, 1)]
+ylp(0,1) = (s, 14 1) = 9(0,0) + (s, )]
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for all x,y,s,t € R. By Theorem 1, the solution to (3.27) is

(3.28) Y(x,y) = d12° + doy® + 2d37y + 047 + S5y + 06 ,
where dy, ds, ds, d4, 05, 06 are real constants. From (3.22), we know that
(3.29) v(x+s,y+t)=9(z,y) —axr —by —w.

That is, if ¢(z,y) is given by (3.28), then there exist a = a(s,t), b = b(s, 1)
and w = w(s,t) such that (3.29) is true. Thus, any element in N, is the
image under k of a plane belonging to P. Conversely, z = —ax — by — w
is the equation of an arbitrary nonvertical plane in P and its image under
x belongs to N, if there exist s = s(a,b) and ¢t = t(a,b) such that (3.29)
is true. Substituting (3.28) into (3.29), we see that 1 satisfies (3.29) if and
only if

(3.30) @Z; gi@ (f:> - (:Z>

and

(3.31) (s ©) (3; Zg) (j) + (84 65) (j) —w.

In order to have a unique solution for s and ¢ (uniqueness is needed so that
K is one-to-one from P onto N,,), it follows that

di ds
det < ds d2> #0,
which is dids — d3 # 0. Hence by (3.16), there exists a continuous isomor-

phism 6 from P onto N, if and only if p(z, y) = d12? + doy? + 2d3xy + dsz +
dsy + dg with didy — d3 # 0. Here, d; (i = 1,...,6) are real constants.

Remark 2. Our Theorem 2 has a natural generalization to R”. In this
case, the function p : R"~! — R is of the form p(z) = az” +2Bx” +a, where
a is an arbitrary constant in R”~!, B is an n — 1 by n — 1 real symmetric
matrix with nonzero determinant, and « is a real constant. Again we leave
the details to the reader.
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