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THE PRODUCT OF A FUNCTION AND A BOEHMIAN

BY

DENNIS NEMZER (TURLOCK, CALIFORNIA)

Let A be the class of all real-analytic functions and β the class of all
Boehmians. We show that there is no continuous operation on β which is
ordinary multiplication when restricted to A.

1. Introduction and preliminaries. The study of generalized func-
tions has been a major area of research for more than forty years. Most
classes of generalized functions are constructed analytically ([2], [3], [11]),
that is, starting with a class of functions A (called test functions) and a
convergence structure on A, elements of the dual A′ (space of continuous
linear functionals on A) are called generalized functions.

The most well-known space of generalized functions is the space of dis-
tributions [11], denoted by D′(R). The construction of D′(R) is as follows.
Let D(R) be the set of all complex-valued infinitely smooth functions on R
having compact support. A sequence {ϕn} in D(R) is said to converge to 0
if (i) there exists a compact set K such that the support of ϕn is contained
in K for all n, and (ii) for k = 0, 1, 2, . . . the sequence {ϕ(k)

n } converges to 0
uniformly on R as n → ∞. Then D′(R) is the collection of all continuous
linear functionals on D(R).

Another approach to generalized functions is Mikusiński’s operational
calculus [5]. Mikusiński’s approach is algebraic. It involves the quotient field
of the ring of all continuous functions which vanish for x ≤ 0 under addition
and convolution. One problem which arises is that Mikusiński operators are
defined globally and their local properties are unknown. Another problem
is that the convergence structure, called type I convergence, on the space of
Mikusiński operators is not topological.

Recently, using an algebraic approach similar to the construction of
Mikusiński operators, a new class of generalized functions β, called Boehmi-
ans, was constructed by P. Mikusiński. This class of generalized functions
is very general. Indeed, by considering a special case, the space of distribu-
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tions can be viewed as a proper subspace of the space of Boehmians. More-
over, there are Boehmians, which are not functions, that satisfy Laplace’s
equation uxx + uyy = 0 [8]. The problems, stated above, with Mikusiński
operators no longer exist with Boehmians. That is, some local properties
of Boehmians are known. For example, a definition can be given for the
equality of two Boehmians on an open set. Also, the convergence structure
given to β is topological. Indeed, β with this convergence structure is a
complete metric topological vector space [6].

In this note, we will investigate the possibility of defining a pointwise
product of a function and a Boehmian which extends the notion of the
product of two functions.

The product of an element from a class of functions and an element from
a class of generalized functions is an important notion for applications. One
possible area of application is in the area of differential equations (see [4],
[12], and [13]).

For any continuous function g, let Mg be the mapping from C(R) into
C(R) given by

(1.1) Mg(f) = gf (i.e. ordinary multiplication) .

If g is infinitely differentiable, then Mg has a unique continuous extension
to the space of distributions [11]. If g is real-analytic, then Mg has a unique
continuous extension to the space of hyperfunctions [3]. That is, a con-
tinuous product can be defined between elements of the class of infinitely
differentiable functions (real-analytic functions) and the space of distribu-
tions (hyperfunctions).

If the function g in (1.1) is a polynomial, then Mg has a unique contin-
uous extension to the space of Boehmians. This gives rise to the natural
question: can a continuous product be defined between elements of the class
of real-analytic functions and the class of Boehmians? The purpose of this
note is to show that the answer to this question is no.

The collection of all continuous complex-valued functions on R will be
denoted by C(R). The support of a continuous function f , denoted by
supp f , is the complement of the largest open set on which f is zero.

The convolution of two continuous functions, where at least one has
compact support, is given by (f ∗ g)(x) =

∫
R f(x− t)g(t) dt.

A sequence of continuous nonnegative functions {δn} will be called a delta
sequence if (i)

∫
R δn(x) dx = 1 for n = 1, 2, . . . , and (ii) supp δn ⊂ (−εn, εn),

where εn → 0 as n→∞.
The following easily proved result will be needed. If f is a continuous

function and {δn} is a delta sequence, then f ∗δn → f uniformly on compact
sets as n→∞.
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2. Boehmians. In this section we construct the class of generalized
functions known as Boehmians. For other results concerning Boehmians see
[6]–[10].

A pair of sequences (fn, δn) is called a quotient of sequences, and denoted
by fn/δn, if fn ∈ C(R) (n = 1, 2, . . .), {δn} is a delta sequence, and fn∗δm =
fm ∗ δn for all m and n. Two quotients of sequences fn/δn and gn/σn are
equivalent if fn ∗ σm = gm ∗ δn for all m and n. The equivalence classes
are called Boehmians. The space of all Boehmians will be denoted by β,
and a typical element of β will be written as F = fn/δn. By defining
a natural addition and scalar multiplication on β, i.e. fn/δn + gn/σn =
(fn ∗ σn + gn ∗ δn)/(δn ∗ σn) and α(fn/δn) = αfn/δn, where α is a complex
number, β becomes a vector space.

R e m a r k s. (1) It follows that if (f ∗ δn)/δn = (g ∗ δn)/δn, then f = g.
Thus, C(R) can be identified with a subspace of β by identifying f with
(f ∗ δn)/δn, where {δn} is any delta sequence.

(2) Let {δn} be an infinitely differentiable delta sequence (i.e. δn ∈
C∞(R) for all n). Then for each T ∈ D′(R) (the space of Schwartz dis-
tributions [11]), T ∗ δn converges weakly to T . So, as above, D′(R) can be
identified with a subspace of β. Thus, we may view D′(R) as a subspace
of β. Moreover, this inclusion is proper. That is, there are Boehmians which
are not distributions [6].

In a more general construction of Boehmians, P. Mikusiński [6] defines
a convergence, called ∆-convergence, and shows that β with ∆-convergence
is an F -space (a complete topological vector space in which the topology is
induced by an invariant metric).

Before we define ∆-convergence, we will define a related convergence,
called δ-convergence.

Let Fn, F ∈ β for n = 1, 2, . . . We say that the sequence {Fn} is
δ-convergent to F if there exists a delta sequence {δn} such that for each n
and j, Fn ∗ δj , F ∗ δj ∈ C(R), and for each j, Fn ∗ δj → F ∗ δj uniformly on
compact sets as n→∞. This will be denoted by δ-limFn = F .

Definition 2.1. A sequence {Fn} of Boehmians is said to be ∆-conver-
gent to F , denoted by ∆-limFn = F , if there exists a delta sequence {δn}
such that for each n, (Fn−F ) ∗ δn ∈ C(R) and (Fn−F ) ∗ δn → 0 uniformly
on compact sets as n→∞.

R e m a r k. A sequence of Boehmians {Fn} is ∆-convergent to F if and
only if each subsequence of {Fn} contains a subsequence which is δ-conver-
gent to F [6].

3. The main result. If the function g in (1.1) is a polynomial then
Mg has a unique continuous extension to β. This follows from observing
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that the product of a polynomial and a Boehmian can be defined using the
algebraic derivative introduced by J. Mikusiński [5]. The product of −x and
the Mikusiński operator f/g is given by

−x(f/g) = (Df ∗ g − f ∗Dg)/(g ∗ g) , where Df = −xf .
Then (−x)n(f/g) (n = 1, 2, . . .) is defined inductively. Using the same idea
we can define the product of a polynomial and a Boehmian. Moreover, it
is not difficult to show that multiplication by a polynomial is a continuous
operation on β. That is, if P (x) is a polynomial and ∆-limFn = F , then
∆-limP (x)Fn = P (x)F . Finally, the uniqueness follows from the fact that
C(R) is dense in β (see [6]).

Our goal is now to prove Theorem 3.6 which shows that multiplication
cannot be extended, as a continuous operation, to the class of real-analytic
functions. A function ϕ : R → C is said to be real-analytic if for each
x0 ∈ R, ϕ can be represented, in some neighborhood of x0, by its Taylor
series about x0.

If either f is a periodic function of period 2π or supp f ⊂ (−π, π), the nth
Fourier coefficient f̂(n) of f is defined as f̂(n) = (2π)−1

∫ π

−π
f(x)e−inx dx,

for n = 0,±1,±2, . . . By a simple calculation we see that (f̂ ∗ δ)(n) =
2πf̂(n)δ̂(n) for all n.

Let P = {F ∈ β : F =
∑∞

n=−∞ ane
inx, for some sequence {an} of

complex numbers}. That is, F = ∆-limn

∑n
k=−n ake

ikx.

Definition 3.1. For F ∈ P such that F =
∑∞

n=−∞ ane
inx, the nth

Fourier coefficient of F , denoted by F̂ (n), is F̂ (n) = an.

A useful representation for elements of P is given in the following theo-
rem.

Theorem 3.2. The following three statements are equivalent.

(i) F ∈ P .
(ii) There exists a representation of the Boehmian F , say fn/δn, where,

for all n, fn is a periodic function of period 2π.
(iii) For every representation fn/δn of F , fn is periodic of period 2π for

all n.

P r o o f. (i)⇒(ii). Suppose F ∈ P . That is, F = ∆-limn

∑n
k=−n ake

ikx.
Because of the remark following Definition 2.1, we may assume that
δ-limFn = F , where Fn =

∑n
k=−n ake

ikx for n = 1, 2, . . . Thus, there exists
a delta sequence {δn} such that for eachm, Fn∗δm =

∑n
k=−n 2πak δ̂m(k)eikx

→ fm uniformly on compact sets as n → ∞ (for some fm ∈ C(R)). Since
for each m and n the continuous function Fn ∗ δm has period 2π, thus fm

has period 2π for all m. Moreover, δ-limFn = fm/δm. Hence F = fm/δm.
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The proof that (ii)⇒(iii) is straightforward and thus omitted.
(iii)⇒(i). Suppose that F = fn/δn, where fn has period 2π. We may

assume that, for each n, fn is twice continuously differentiable. If not,
let {σn} be a twice continuously differentiable delta sequence (i.e. σn ∈
C2(R) for all n), and let ψn = δn ∗ σn and gn = fn ∗ σn for all n. Then
F = gn/ψn and for each n, gn ∈ C2(R). Now, for n = 1, 2, . . . define
Fn =

∑n
k=−n ake

ikx, where an = f̂m(n)/(2πδ̂m(n)) for all n. The an’s are
well-defined. This follows from the facts that fn ∗ δm = fm ∗ δn for all m
and n, and (as can be easily shown) that for each n, δ̂m(n) → 1/(2π) as
m→∞.

Now, for each m and n,

Fn ∗ δm =
n∑

k=−n

2πak δ̂m(k)eikx =
n∑

k=−n

f̂m(k)eikx .

So, for each m, Fn ∗δm → fm uniformly on compact sets as n→∞ (see [1]).
That is, δ-limFn = F and hence ∆-limFn = F . Thus, the proof is complete.

Theorem 3.3. P is closed.

P r o o f. It suffices to show that P is closed with respect to δ-convergence.
For, by the remark following Definition 2.1, if∆-limFn = F then there exists
a subsequence {Fnk

} of {Fn} such that δ-limk Fnk
= F . Thus, suppose that

Fn ∈ P for n = 1, 2, . . . and δ-limFn = F . That is, there exists a delta
sequence {δn} such that for each n and j, Fn ∗ δj , F ∗ δj ∈ C(R) and for
each j, Fn ∗ δj → F ∗ δj uniformly on compact sets as n → ∞. Also,
because of Theorem 3.2, we may assume that for each n and j, Fn ∗ δj is
periodic of period 2π. Thus, F ∗ δj is periodic of period 2π for all j. Hence,
F = (F ∗ δn)/δn ∈ P . Therefore the theorem is established.

The proof of the next theorem is straightforward and hence is left to the
reader.

Theorem 3.4. Suppose that Fn ∈ P for n = 1, 2, . . . If ∆-limFn = F ,
then limn F̂n(k) = F̂ (k) for each k.

Before proving the main result, the following lemma is needed.

Lemma 3.5. Let {nk} be a subsequence of positive integers such that∑∞
k=1 1/nk < ∞. If {an} is any sequence of complex numbers such that

an = 0 for n 6= nk (k = 1, 2, . . .), then there is a Boehmian F ∈ P such that
F̂ (n) = an for all n.

P r o o f. For k = 1, 2, . . . let ϕk(x) = nk/(2π) for |x| ≤ π/nk and zero
otherwise. For k = 1, 2, . . . let δk =

∏∞
j=k ϕj (convolution product). Since∑∞

k=1 1/nk <∞, {δk} is a delta sequence (see [6]). Now, for each k and n,
ϕ̂k(n) = αk,n sin(nπ/nk) (αk,n constant) and hence δ̂m(nk) = δ̂m(−nk)
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= 0 for all k ≥ m. Let {σn} be any delta sequence such that for each n,
σ̂n(k) = O(k−2) as |k| → ∞. Let {ψn} be the delta sequence defined
by ψn = δn ∗ σn for n = 1, 2, . . . Now, define fn(x) =

∑n
j=−n aje

ijx for
n = 1, 2, . . . Then for each k and n,

(fn ∗ ψk)(x) = 2π
n∑

j=−n

ajψ̂k(j)eijx .

Since for each k, ajψ̂k(j) = O(j−2) as |j| → ∞, for each k the sequence of
continuous functions {fn ∗ ψk}∞n=1 converges uniformly as n → ∞. Hence,
∆-lim fn = ∆-limn fn ∗ ψk/ψk = F ∈ P . By Theorem 3.4, for each m,
F̂ (m) = limn f̂n(m) = am and hence the lemma is established.

For a stronger version of Lemma 3.5 see Theorem 3.1 in [9].

Theorem 3.6. Let A be the class of all real-analytic functions and T :
A×A → A be ordinary multiplication. If T̃ : A×β → β is a mapping such
that T̃ and T agree on A × A, then T̃ is not sequentially continuous in its
second variable.

P r o o f. Suppose that T̃ : A× β → β is any mapping such that T̃ |A×A
is ordinary multiplication. Assume that T̃ is sequentially continuous in its
second variable. Let ϕ ∈ A ∩ P such that ϕ̂(n) 6= 0 for infinitely many
n ≥ 1. It is always possible to find such a ϕ since ϕ ∈ A ∩ P if and only if
ϕ̂(n) = O(e−ε|n|) as n→∞ for some ε > 0 (see [1]).

Now, let {nk} be a subsequence of positive integers such that
∑∞

k=1 1/nk

<∞ and ϕ̂(nk) 6= 0 for all k. Let {an} be the sequence of complex numbers
defined by a−nk

= (ϕ̂(nk))−1 and zero otherwise. By Lemma 3.5 there exists
a Boehmian F ∈ P such that F̂ (n) = an for all n. Since ∆-limFn = F ,
where Fn =

∑n
k=−n ake

ikx, we obtain ∆-limϕFn = ϕF . Using Theorem 3.4
we see that ϕ̂F (m) = limn

∑n
k=−n akϕ̂(m − k) for all m. In particular,

ϕ̂F (0) = limn

∑n
k=−n akϕ̂(−k). But, because of the way the sequence {an}

is defined, the above limit does not exist. Hence, T̃ cannot be sequentially
continuous in its second variable and the proof is complete.

From the above proof we obtain a stronger result. That is, multiplication
cannot be continuously extended to any class of functions which contains
a periodic function with infinitely many nonzero Fourier coefficients. In
particular, multiplication cannot be continuously extended to the class of
real-analytic functions of slow growth. (A function ϕ is said to be of slow
growth if ϕ(x) = O((1 + |x|)m) as |x| → ∞ for some integer m.)
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