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MOST MONOTHETIC EXTENSIONS

ARE RANK-1

BY

A. I W A N I K AND J. S E R A F I N (WROC LAW)

Introduction. Let T be an ergodic automorphism of a standard prob-
ability space (X,B, µ) and G be a compact metrizable abelian group. For
any measurable mapping φ : X → G (a cocycle) we define an automorphism

Tφ(x, g) = (Tx, g + φ(x))

of X×G, called a G-extension of T . The investigation of ergodic properties
of such skew products goes back to Anzai [A] who studied the case of X =
G = T, the circle group, with T an irrational rotation.

In [R2], E. A. Robinson, Jr. proved that typically the G-extensions have
simple spectrum. More specifically, if T admits a “good cyclic approxima-
tion” then most (in the sense of category for the L1-distance in the space
of cocycles) G-extensions have simple spectrum. In Section 2 of the present
paper we show that if G is a monothetic group and T admits a cyclic ap-
proximation with speed o(1/n), a condition implied by the existence of a
“good cyclic approximation”, then most G-extensions are in fact rank-1.
(Recall that rank-1 implies simple spectrum by Baxter [Ba].) In particular,
if Tz = e2πiαz is an irrational rotation where α has unbounded partial quo-
tients then most Anzai extensions of T are rank-1. Note that the set of such
α’s is large in the sense of both measure and category.

It is well known that any discrete spectrum ergodic automorphism is
rank-1 (see [J]). To make sure that the discrete spectrum extensions are
not generic we prove in Section 3 that in fact a typical G-extension of any
ergodic T has no eigenfunctions other than those of T . In other words, a
generic cocycle is weakly mixing (Theorem 2). This extends an old result of
Jones and Parry [J-P] where the same is proved assuming T to be weakly
mixing. In particular, we may now conclude that a typical Anzai cocycle is
both weakly mixing and rank-1.

In Section 4 we focus on continuous Anzai cocycles φ : T → T of topo-
logical degree zero. Such cocycles play an important role in the theory of
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Anzai skew products (see e.g. [G-L-L]). Endowed with the uniform metric
they form a Polish space so Baire category considerations are still meaning-
ful. We prove that, as in the measurable case, a typical continuous Anzai
cocycle of topological degree zero is both rank-1 and weakly mixing.

1. Definitions and basic facts. Let (X,B, µ) be a nonatomic standard
probability space and let G be a compact metrizable abelian group endowed
with the Borel σ-algebra BG and normalized Haar measure ν. Denote by
dG an invariant metric on G. For any measurable functions φ, ψ : X → G
we define the L1-distance

d(φ, ψ) =
∫
X

dG(φ(x), ψ(x)) dµ(x) .

We identify functions that are equal µ-a.e., so it is clear that the set Φ =
Φ(X,G) of all (equivalence classes of) measurable functions φ : X → G
forms a Polish group with the complete invariant metric d and pointwise
operations. The elements of Φ will be referred to as cocycles.

Given any automorphism (i.e. an invertible measure preserving transfor-
mation) T of (X,B, µ) and a cocycle φ ∈ Φ we define a group extension Tφ
of T by letting

Tφ(x, g) = (Tx, g + φ(x)) .
The mapping Tφ is an automorphism of the product space (X × G,B ×
BG, µ× ν).

It should be noted that for a fixed T the set Φ of all cocycles can be
identified with the set of all extensions Tφ, φ ∈ Φ. By a standard veri-
fication the topology determined by the metric d coincides with the weak
topology inherited from the group of automorphisms on X × G. In other
words, d(φn, φ) → 0 iff UTφn

→ UTφ
in the weak, or equivalently, strong

operator topology on L2(X × G) (here USf = f ◦ S denotes the unitary
operator determined by an automorphism S).

Let n ≥ 1 and C
(n)
0 , . . . , C

(n)
kn−1 be disjoint measurable subsets of X.

Define ζn = {C(n)
0 , . . . , C

(n)
kn−1}. We write

ζn → εX

if for every A ∈ B and every δ > 0 there exists n0 ≥ 1 such that for every
n ≥ n0 we can find a union An of some of the sets C(n)

j (j = 0, . . . , kn − 1)
satisfying µ(A4An) < δ. By a Rokhlin tower we mean a family ζn as above
with TC

(n)
j−1 = C

(n)
j , j = 1, . . . , kn − 1. An automorphism T is said to be

rank-1 if there exists a sequence of Rokhlin towers ζn → εX . It is well known
that if T is rank-1 then the unitary operator UT has simple spectrum [Ba].

To prove that certain group extensions are rank-1 we will apply the
method of the Katok–Stepin approximation theory [K-S]. A similar approach
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has been exploited by E. A. Robinson, Jr. in [R1] to prove certain genericity
results concerning spectral multiplicity and continuity of the spectrum of
cyclic group extensions and in [R2] to show that typically a group extension
has simple spectrum.

We say that T admits a cyclic approximation with speed f(n) if there ex-
ists a sequence of measurable partitions ξn = {C(n)

0 , . . . , C
(n)
qn−1} satisfying

ξn → εX and a sequence of automorphisms Tn satisfying TnC
(n)
i−1 = C

(n)
i

(i = 1, . . . , qn − 1) and TnC
(n)
qn−1 = C

(n)
0 such that

qn−1∑
i=0

µ(TC(n)
i 4TnC

(n)
i ) < f(qn) .

It should be remarked that the existence of a “good cyclic approxima-
tion” as assumed in [R2] implies a cyclic approximation with speed o(1/n).
On the other hand, there exists a “good cyclic approximation” of T when-
ever T admits a cyclic approximation with speed o(1/n2) (cf. [K-S], (2.4)).

The following lemma seems to be well known but the authors have not
been able to locate a reference.

Lemma 1. If T admits a cyclic approximation with speed o(1/n) then T
is rank-1.

P r o o f. Let ξn and Tn be as above with f(n) = o(1/n). We are going
to construct a sequence of Rokhlin towers ζn → εX for T . Clearly ξn is a
Rokhlin tower for Tn. We let

D =
qn−1⋃
i=0

T−(i+1)(TCi4TnCi)

and E0 = C0 \D (we omit the superscript n). Observe that

µ(D) ≤
qn−1∑
i=0

µ(TCi4TnCi) = o(1/qn) ,

so E0 approximates C0 within an error that is small relative to µ(C0). Now
we show that

T jE0 ⊂ Cj (j = 0, . . . , qn − 1) .

Indeed, the inclusion is obvious for j = 0. Suppose 0 ≤ j < qn − 1 and
T jE0 ⊂ Cj . Since E0 ∩D = ∅, we have

T j+1E0 ∩ T j+1D = ∅ ,

T being an automorphism. Note that

T j+1D ⊃ TCj4TnCj .
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On the other hand,

T j+1E0 = T (T jE0) ⊂ TCj .

Combining the last three formulas we get

T j+1E0 ⊂ TnCj = Cj+1

by the definition of the symmetric difference. By induction we have shown
T jE0 ⊂ Cj for j = 0, . . . , qn − 1. Consequently,

ζn = {E0, TE0, . . . , T
qn−1E0}

is a Rokhlin tower for T . In view of µ(D) = o(1/qn) we obtain µ(E0) =
1/qn − o(1/qn) and µ(

⋃qn−1
j=0 T jE0) → 1. Since ξn → εX by assumption, we

easily deduce ζn → εX as required.

Let G be a compact metrizable abelian group. The following “cyclicity”
property will play an important role in Section 2.

(C) There exists a sequence ζn = {G0, . . . , Grn−1} → εG of measurable
partitions of G and a sequence of elements gn ∈ G such that gn+Gi = Gi+1

(i = 0, . . . , rn − 2) and gn +Grn−1 = G0 for every n ≥ 1.

Clearly there exist groups that do not satisfy (C): the simplest example
is G = Z2 × Z2. Also it is easy to see that if G is infinite and the order of
its elements is uniformly bounded then G cannot satisfy (C). On the other
hand, the cyclic groups, the tori, and the counting machines do satisfy (C).
The idea of the proof of the following proposition was kindly suggested to
the authors by Michael Keane.

Proposition 1. Let G be a compact metrizable monothetic group. Then
G has property (C).

P r o o f. The dual group Ĝ can be identified with a (discrete) count-
able subgroup of T, so it is the union of an increasing sequence of finitely
generated groups Hk. By the basic structure theorem for finitely generated
abelian groups, each Hk is a finite direct product of cyclic groups. Since
every finite subgroup of T is cyclic,

Hk = Zdk × Zmk

where dk ≥ 0, mk ≥ 1. Let G(k) = Tdk × Zmk
. By duality, Ĥk = G(k)

and G can be viewed as the projective limit of the compact groups G(k),
the natural topological homomorphism G(k+1) → G(k) being the dual of the
imbedding Hk → Hk+1. Since property (C) is easily seen to be preserved by
projective limits, it suffices to show that G(k) satisfies (C). To this end, for
each n ≥ 1 choose pairwise relatively prime natural numbers l(n)

1 , . . . , l
(n)
dk

,

all relatively prime to mk, such that min{l(n)
1 , . . . , l

(n)
dk
} → ∞ as n → ∞.
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Now let G0 = A1 × . . .×Adk
× {0} where

Aj = {e2πix : 0 ≤ x < 1/l(n)
j } .

It is easy to verify that (C) is satisfied by G(k) with gn = (e2πil
(n)
1 , . . . ,

e
2πil

(n)
dk , 1), rn = l

(n)
1 . . . l

(n)
dk
mk and Gj = jgn + G0 in the additive nota-

tion.

2. Most cocycles are rank-1. For two positive functions f(x) and
h(x) (x > 0) we write

fh(x) = f(xh(x)) .
Theorem 1. Let f(x) and h(x) be positive monotone functions con-

verging to 0 as x → ∞. Assume G has property (C). If T admits a cyclic
approximation with speed f(n) then the set of cocycles φ such that Tφ admits
a cyclic approximation with speed fh(n) is residual in Φ(X,G).

P r o o f. By assumption, for any n ≥ 1 there exists a cyclic approxima-
tion Tn of T such that

qn−1∑
i=0

µ(TnAi4TAi) = f0(qn) < f(qn)

where ξn = {A0, A1, . . . , Aqn−1} is a cyclic partition for Tn and ξn → εX .
Fix monotone positive functions f1, f2 converging to zero with f0(qn) <
f1(qn) and f1(qn) + f2(qn) < f(qn). Without loss of generality we may also
assume that the sequence rn in (C) satisfies rnh(qn) ≤ 1.

Denote by Φn the cocycles in Φ that are ξn-measurable. For φ ∈ Φn we
write

φ(k)(x) = φ(x) + φ(Tnx) + . . .+ φ(T k−1
n x) .

By altering the value of φ on a single cell of ξn we obtain φ̃ ∈ Φn such that
φ̃(qn) = gn. Denote by Φ̃n the set of all cocycles thus modified in Φn. Since
ξn → εX , the union

⋃
n≥N Φ̃n is dense in Φ for every N ≥ 1. For any φ̃ ∈ Φ̃n

we let
Tn,φ̃(x, g) = (Tnx, g + φ̃(x)) .

This formula defines a qnrn-periodic automorphism which cyclically per-
mutes the partition ηn = {C0, C1, . . . , Cqnrn−1} of X ×G into the measur-
able rectangles C0 = A0×G0 and Ck = Tn,φ̃Ck−1, k = 1, . . . , qnrn−1. Note
that Ck = Ai × (Gj + ak) for some i, j and ak ∈ G. Since ξn → εX and
ζn → εG, it is easy to see that ηn → εX×G.

Now we produce a dense Gδ-subset as in [R2], p. 165. Given θ > 0
consider the open neighbourhood

Nθ(φ) = {ψ ∈ Φ : d(φ, ψ) < θ}
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of φ in Φ. For any n ≥ 1 fix θn > 0 (to be determined later) and let

Ψ =
⋂
N≥1

⋃
n≥N

⋃
φ∈Φ̃n

Nθ2n(φ) .

By the Baire theorem Ψ is a dense Gδ-subset of Φ, hence residual. It remains
to prove that, with a right choice of the θn’s, the automorphism Tψ admits
a cyclic approximation with speed fh(n) for every ψ ∈ Ψ .

Let ψ ∈ Ψ . For infinitely many n’s there exists φ̃ ∈ Φ̃n such that
d(ψ, φ̃) < θ2n. We are going to estimate the error

S =
qnrn−1∑
i=0

(µ× ν)(TψCi4Tn,φ̃Ci)

of the cyclic approximation of Tψ by Tn,φ̃. In view of d(ψ, φ̃) < θ2n, there ex-

ists a measurable set Bn ⊂ X such that µ(Bn) < θn and dG(ψ(x), φ̃(x)) < θn
off Bn. We compare the action of Tψ with that of Tn,φ̃ on any Ck ∈ ηn. We
have

(µ× ν)(TψCk4Tn,φ̃Ck)

≤ 1
rn
µ(TAi4TnAi) +

∫
Ai

ν((Gj + ak + ψ(x))4 (Gj + ak + φ̃(x))) dµ(x)

=
1
rn
µ(TAi4TnAi) +

∫
Ai

ν((Gj + ψ(x))4 (Gj + φ̃(x))) dµ(x) .

Therefore

S ≤
rn−1∑
j=0

qn−1∑
i=0

(
1
rn
µ(TAi4TnAi) +

∫
Ai

ν((Gj + ψ(x))4 (Gj + φ̃(x))) dµ(x)
)

=
qn−1∑
i=0

µ(TAi4TnAi) + rn
∫
X

ν((G0 + ψ(x))4 (G0 + φ̃(x))) dµ(x)

= S1 + rn
∫
X

ν((G0 + ψ(x))4 (G0 + φ̃(x))) dµ(x) .

We let

S2 = rn
∫
Bn

ν((G0 + ψ(x))4 (G0 + φ̃(x))) dµ(x) ,

S3 = rn
∫

X\Bn

ν((G0 + ψ(x))4 (G0 + φ̃(x))) dµ(x) ,

so that S ≤ S1 + S2 + S3. By the beginning of the proof we have
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S1 ≤ f0(qn) < f1(qn). On the other hand,

S2 ≤ rnµ(Bn) < rnθn

and

S3 = rn
∫

X\Bn

ν((G0 + ψ(x)− φ̃(x))4G0) dµ(x)

≤ rn sup{ν((G0 + g)4G0) : dG(g, 0) < θn} .
By the continuity of translation in L1(G), it is possible to find the θn small
enough so that S2 + S3 < f2(qnrn). Therefore, by monotonicity,

S < f1(qn) + f2(qnrn) < f(qn) ≤ f(qnrnh(qn))
≤ f(qnrnh(qnrn)) = fh(qnrn) ,

which ends the proof of the theorem.

Under an additional assumption on the sequence f(n), Theorem 1 can
be restated in the following more symmetric version.

Corollary 1. Assume G satisfies (C ) and let f(n) be monotone and
converge to 0 with sup f(n)/f(2n) < ∞. If T admits a cyclic approxima-
tion with speed o(f(n)) then a generic G-extension Tφ also admits a cyclic
approximation with speed o(f(n)).

P r o o f. By the definition of the symbol o there exists a monotone se-
quence 1 ≤ a(n) → ∞ such that T admits a cyclic approximation with
speed f(n)/a(n)2. Since f(n)/f(2n) ≤M2 <∞, we can easily deduce that
f(n)/f(kn) ≤ Mk < ∞ for any k ≥ 1. Moreover, we may extend f(n)
to a monotone function f(x) on [1,∞) with sup f(x)/f(kx) < ∞ for every
k ≥ 1. Consequently, there exists a monotone function 1 ≤ k(x) → ∞ on
[1,∞) such that

f(x)/a(x) ≤ f(k(x)x) ,

where a(x) is a monotone extension of the sequence a(n). Let f̃(x) =
f(x)/a(x)2 and choose a monotone function h(x) → 0 such that xh(x) →∞
as well as h(x)k(xh(x)) ≥ 1. Since T admits a cyclic approximation with
speed f̃(n), in view of Theorem 1 a generic extension Tφ admits a cyclic
approximation with speed f̃h(n). By monotonicity,

f̃h(n) =
f(nh(n))
a(nh(n))2

≤ f(k(nh(n))nh(n))
a(nh(n))

≤ f(n)
a(nh(n))

= o(f(n)) .

The irrational numbers with unbounded partial quotients form a set
which is residual as well as of Lebesgue measure 1 in the unit interval. Ac-
cordingly, the next corollary tells us that most Anzai skew products are
rank-1.
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Corollary 2. Let Tz = e2πiαz be an irrational rotation of T where α
has unbounded partial quotients in its continued fraction expansion. The set
of cocycles φ ∈ Φ(T,T) such that Tφ is rank-1 is residual.

P r o o f. By assumption there exists a sequence of rational numbers
αn = pn/qn such that (pn, qn) = 1 and |α − αn| = o(1/q2n). It is now clear
that the rational rotation Tnz = e2πiαnz is a cyclic approximation of T with

S1 =
qn−1∑
j=0

µ(TnAj4TAj) = o(1/qn) ,

where the sets Aj = {e2πix : j/qn ≤ x < (j + 1)/qn} form a qn-cyclic par-
tition. Consequently, T admits a cyclic approximation with speed o(1/n).
By Corollary 1, a generic extension also admits a cyclic approximation with
speed o(1/n). Now apply Lemma 1.

3. Weakly mixing cocycles. Let T be an ergodic automorphism
of (X,B, µ) and G be any compact metrizable abelian group. A cocycle
φ ∈ Φ(X,G) will be called weakly mixing if there exist no γ ∈ Ĝ \ {1},
λ ∈ γ(G), and ψ ∈ Φ(X, γ(G)) with

γ(φ(x)) = λψ(Tx)/ψ(x) a.e.

It is well known that φ is weakly mixing iff there are no eigenfunctions in
the orthocomplement of the Hilbert subspace L2(X) in L2(X ×G).

In [J-P], Jones and Parry proved among other things that if T is weakly
mixing then a generic cocycle φ in Φ(X,G) is also weakly mixing (in which
case Tφ is weakly mixing itself). Using some ideas of [J-P] we shall prove the
same without assuming T to be weakly mixing. In view of Corollary 2 this
will imply that a generic Anzai cocycle φ is weakly mixing with Tφ rank-1.

Theorem 2. Let T be ergodic. The set of weakly mixing cocycles φ ∈
Φ(X,G) is residual.

First we prove a lemma.

Lemma 2. Let a ∈ T \ {1}. There exists an array of numbers anj ∈
{1, a, a2, . . .} (n ≥ 1, j = 0, . . . , 2n− 1) such that

lim sup
1
2n

∣∣∣ 2n−1∑
j=0

anjλ
j
n

∣∣∣ < 1

for any sequence λn ∈ T.

P r o o f. Define an,2j = an,2j+1 = aj for j = 0, . . . , 2n− 1. We have
2n−1∑
j=0

anjλ
j
n = (1 + λn)

n−1∑
j=0

ajλ2j
n ,
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so the equality lim(2nk)−1|
∑2nk−1
j=0 ankjλ

j
nk
| = 1 for a subsequence nk would

readily imply lim |1 + λnk
|/2 = 1 whence λnk

→ 1. But then aλ2
nk
→ a 6= 1

and

1
2nk

∣∣∣ 2nk−1∑
j=0

ankjλ
j
nk

∣∣∣ =
|1 + λnk

|
2

·
|1− ankλ2nk

nk
|

nk|1− aλ2
nk
|
→ 0 ,

a contradiction. Consequently, the assertion follows.

P r o o f o f T h e o r e m 2. Let 1 ≤ rn →∞ and 0 < εn → 0. For fixed n
choose a Rokhlin tower {C0, . . . , C2nrn−1} for T such that µ(X \

⋃
Cj) < εn.

Now define a sequence φn in Φ(X,T) by letting φn(x)=anj if x∈Cjrn ∪ . . .
. . . ∪ C(j+1)rn−1 (j = 0, . . . , 2n− 1), and φn(x) = 1 if x ∈ X \

⋃
Cj .

Note that the set of x ∈ X such that φn(Tx) 6= φn(x) is contained in⋃2n
j=1 Cjrn−1 ∪ (X \

⋃
Cj) so its measure does not exceed

2n
1

2nrn
+ εn = 1/rn + εn .

Consequently, φn ◦ T/φn → 1 in Φ(X,T). We denote by ∆ the subgroup
in Φ(X,T) consisting of the unimodular eigenfunctions of T (∆ = T if T is
weakly mixing). For any hn ∈ ∆ with hn ◦ T = λnhn we have∣∣∣ ∫

X

φnhn dµ
∣∣∣ ≤ εn +

∣∣∣ ∫
∪Cj

φnhn dµ
∣∣∣ .

We shall prove that

lim sup
∣∣∣ ∫
X

φnhn dµ
∣∣∣ < 1 .

Indeed,∫
∪Cj

φnhn dµ =
2n−1∑
j=0

rn−1∑
k=0

∫
Cjrn+k

φnhn dµ =
2n−1∑
j=0

rn−1∑
k=0

anj
∫

Cjrn+k

hn dµ

=
2n−1∑
j=0

anj

rn−1∑
k=0

λjrn+k
n

∫
C0

hn dµ

=
2n−1∑
j=0

anj(λrn
n )j(1 + λn + . . .+ λrn−1

n )
∫
C0

hn dµ

which in view of ∣∣∣ ∫
C0

hn dµ
∣∣∣ ≤ µ(C0) ≤ 1/(2nrn)



72 A. IWANIK AND J. SERAFIN

implies ∣∣∣ ∫
∪Cj

φnhn dµ
∣∣∣ ≤ 1

2n

∣∣∣ 2n−1∑
j=0

anj(λrn
n )j

∣∣∣
so

lim sup
∣∣∣ ∫
X

φnhn dµ
∣∣∣ = lim sup

∣∣∣ ∫
∪Cj

φnhn dµ
∣∣∣ < 1

by Lemma 2.
The rest of the proof is similar to the argument in [J-P], pp. 141–142.

Denote by φ→ φ′ the canonical quotient homomorphism from Φ(X,T) onto
the quotient group Φ(X,T)/T and let % : Φ(X,T) → Φ(X,T) be given by
%(φ) = φ ◦ T/φ. The composed map %′ : Φ(X,T) → Φ(X,T)/T is a continu-
ous homomorphism. Since ker %′ = ∆, the mapping %′ defines a continuous
one-to-one homomorphism %′′([φ]) = %′(φ) = (φ ◦ T/φ)′ of Φ(X,T)/∆ into
Φ(X,T)/T, where [φ] denotes the coset of φ mod ∆.

In the first part of the proof we have shown that [φn] does not converge
to 1 in Φ(X,T)/∆, yet φn ◦ T/φn → 1 so %(φn) → 1 in Φ(X,T) and conse-
quently %′′([φn]) → 1 in Φ(X,T)/T. This implies that %′′ is not an open map.
By the open mapping theorem for topological groups (see [P], Thm. 7) the
set %′′(Φ(X,T)/∆) = %′(Φ(X,T)) is of the first category in Φ(X,T)/T. Since
the quotient homomorphism is open, this implies that the inverse image

{λφ ◦ T/φ : λ ∈ T, φ ∈ Φ(X,T)}

of %′(Φ(X,T)) ⊂ Φ(X,T)/T is of the first category in Φ(X,T).
Clearly the above argument is also valid for any finite subgroup F 6= {1}

of T in place of T (choose a ∈ F \ {1} in Lemma 2). In particular, we may
apply it to Φ(X, γ(G)), γ ∈ Ĝ \ {1}, so for a fixed γ the set

Φγ = {ψ ∈ Φ(X,G) : (∃λ ∈ γ(G))(∃φ ∈ Φ(X, γ(G))) γ ◦ ψ = λφ ◦ T/φ}

is of the first category. This follows from the fact that

Φγ = Π−1
γ {λφ ◦ T/φ : λ ∈ γ(G), φ ∈ Φ(X, γ(G))} ,

where Πγ : Φ(X,G) → Φ(X, γ(G)) is the continuous open homomorphism
given by Πγψ = γ ◦ψ. Since Ĝ is countable, we obtain the desired result.

4. Continuous Anzai cocycles of topological degree zero. In the
present section we consider an irrational rotation Tz = e2πiαz of the circle
group T. We let G = T (with multiplicative notation) and denote by Φ0 the
set of all continuous Anzai cocycles φ : T → T that have topological degree
zero. In other words, φ ∈ Φ0 iff there exists a continuous 1-periodic function
f : R → R such that

φ(e2πix) = e2πif(x), x ∈ R .
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Certain ergodic properties of the group extensions Tφ with φ ∈ Φ0 have
been studied in [G-L-L]. Below we prove two genericity results which can be
viewed as a counterpart of Theorems 1 and 2 above.

We endow Φ0 with the uniform metric d0, i.e.
d0(φ, ψ) = sup{|φ(z)− ψ(z)| : z ∈ T} .

It is clear that d0 is a complete metric so that Φ0 becomes a Polish space
and the category considerations are meaningful as in the case of Φ(T,T).
The idea of the proof of our next theorem is similar to that of Theorem 1.

Theorem 3. Let α be an irrational number with unbounded partial quo-
tients and let Tz = e2πiαz. The set of cocycles φ ∈ Φ0 such that the exten-
sion Tφ is rank-1 is residual in Φ0 endowed with the uniform metric.

P r o o f. By assumption we have |α−αn| = δn = o(1/q2n) for some αn =
pn/qn, (pn, qn) = 1, qn →∞. Fix a sequence of integers rn →∞ such that

δn = o

(
1

rnq2n

)
and let 0 < ηn < 1/qn, ηn = o(1/(rnq2n)). For every n ≥ 1 we denote by
Φ0,n the cocycles φ ∈ Φ0 that are constant on the arcs Aj = {e2πix : j/qn ≤
x < (j + 1)/qn − ηn}, j = 0, . . . , qn − 1, taking value zj = e2πiyj (depending
on φ) on Aj and

φ(e2πix) = e2πi(yj+1+(yj+1−yj)(x−(j+1)/qn)/ηn)

if (j+1)/qn−ηn ≤ x < (j+1)/qn (j = 0, . . . , qn−1), where we let yqn = y0.
In other words,

φ(e2πix) = e2πif(x) ,

where f(x) is constant with values yj on the intervals [j/qn, (j+1)/qn−ηn)
and linear between them.

It is clear that the set
⋃
n≥N Φ0,n is dense in Φ0 for every N ≥ 1. For

any φ ∈ Φ0,n and z = e2πix we have

φ(qn)(z) = φ(z)φ(e2πiαnz) . . . φ(e2πi(qn−1)αnz)

= e2πi(f(x)+f(x+αn)+...+f(x+(qn−1)αn)) .

Since (pn, qn) = 1 and qnαn = pn, the sum in the last exponent is a periodic
function with period 1/qn. On the other hand, each term is constant on
[0, 1/qn − ηn) and linear on [1/qn − ηn, 1/qn) so the same must be true for
the sum. As the functions are continuous, the sum must be constant with
value y0 + . . .+ yqn−1. In other words,

φ(qn)(z) = z0 . . . zqn−1 .

Consequently, by multiplying φ(z) by an appropriate constant e2πix0 , 0 ≤
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x0 < 1/qn, we will obtain

φ∗ = e2πix0φ ∈ Φ0,n

with
φ∗(qn)(z) = z0 . . . zqn−1 · e2πiqnx0 = e2πi/rn .

Denote by Φ∗0,n the set of all φ ∈ Φ0,n with φ(qn)(z) = e2πi/rn . Since 0 ≤
x0 < 1/qn, it is clear that the set

⋃
n≥N Φ

∗
0,n is still dense in Φ0. Now around

each φ ∈ Φ∗0,n take the open ball of radius %n = o(1/(r2nqn)) in (Φ0, d0).
Denote by UN the union of all such balls for all n ≥ N . The intersection

Ψ0 =
⋂
N≥1

UN

is a dense Gδ-set in Φ0, hence residual.
To end the proof it suffices to show that for any ψ ∈ Ψ0 the extension

Tψ admits a cyclic approximation with speed o(1/n). To this end we choose
φ∗n ∈ Φ∗0,n with d0(ψ, φ∗n) < %n (this can be done for infinitely many n’s)
and denote by φ̃n the step cocycle such that

φ̃n(e2πix) = φ∗n(e
2πij/qn)

on [j/qn, (j+1)/qn), j = 0, . . . , qn−1. Now we have φ̃(qn)
n = φ

∗(qn)
n = e2πi/rn

so that T̃n(z, w) = (e2πiαnz, wφ̃n(z)) is a cyclic automorphism of period qnrn
which permutes cyclically the rectangles Cjn (j = 0, . . . , qnrn − 1), where

C0
n = {(e2πix, e2πiy) : 0 ≤ x < 1/qn, 0 ≤ y < 1/rn}

and Cjn = T̃nC
j−1
n (j = 1, . . . , qnrn−1). To evaluate the error of the approx-

imation of Tψ by T̃n we compare the sets TψCjn, T
∗
nC

j
n, and T̃nC

j
n, where

T ∗n(z, w) = (e2πiαnz, wφ∗n(z)). Note that
qnrn−1∑
j=0

(µ× µ)(T ∗nC
j
n4 T̃nC

j
n) ≤ qnηn = o

(
1

rnqn

)
as here the only errors occur outside the intervals [j/qn, (j+1)/qn−ηn). Also,

qnrn−1∑
j=0

(µ× µ)(T ∗nC
j
n4TψC

j
n) ≤ qnηn + 2δnqn + 2%nrn = o

(
1

rnqn

)
where the three parts of the error are caused by φ∗n 6= const on [j/qn,
(j + 1)/qn), α 6= αn, and d0(ψ, φ∗n) 6= 0, respectively. Since clearly ξn =
{C0

n, . . . , C
qnrn−1
n } → εT×T, by the last two inequalities we obtain

qnrn−1∑
j=0

(µ× µ)(T̃nCjn4TψC
j
n) = o

(
1

rnqn

)
,

which ends the proof of the theorem.
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Our final theorem shows that the rank-1 extensions obtained in Theo-
rem 3 are generically not of discrete spectrum.

Theorem 4. Let α be any irrational number and Tz = e2πiαz. The set
of weakly mixing cocycles in Φ0 is a dense Gδ-subset of Φ0 endowed with
the uniform metric.

P r o o f. We apply a theorem of D. Rudolph ([Ru], Thm. 12). Denote
by A the uniformly closed algebra of all continuous functions f : [0, 1] → R
satisfying f(0) = f(1). It is clear that if g ∈ L1[0, 1] and |g| < M <∞ then
there exists a sequence fn in A such that |fn| < M and ‖fn − g‖1 → 0.
Therefore, by Rudolph’s theorem, for every g ∈ L1[0, 1] there exist f ∈ A
and a measurable function h : [0, 1] → R such that

g(x)− f(x) = h(Tx)− h(x) a.e.

(here we identify T with the mapping Tx = x + α (mod 1) of the unit
interval).

Now if ψ ∈ Φ(T,T) is any measurable cocycle then clearly

ψ(e2πix) = e2πig(x)

for some g ∈ L1[0, 1]. By the above there exist φ0(e2πix) = e2πif(x) in Φ0

and φ(e2πix) = e2πih(x) in Φ(T,T) such that ψ = φ0(φ ◦ T/φ). Since ψ and
φ0 are cohomologous, the extensions they generate are isomorphic. In par-
ticular, there exists a cocycle φ0 ∈ Φ0 which is cohomologous to the cocycle
ψ(z) = z, hence weakly mixing (see [A]).

In the rest of the proof we use some ideas of Baggett [B]. First note that
if ψ(e2πix) = e2πip(x) where p(x) is a real-valued trigonometric polynomial
then there exists a cocycle φ ∈ Φ0 such that ψ = φ ◦ T/φ (see [B], Thm. 1).
Now it follows by the Weierstrass theorem that the cocycles of the form
ψ = φ ◦ T/φ are dense in Φ0. Since Φ0 is a topological group, the weakly
mixing cocycles of the form φ0(φ ◦ T/φ) are dense, too. To end the proof it
suffices to show that the cocycles φ that are not weakly mixing, i.e., those
φ ∈ Φ0 such that φm = cψ ◦ T/ψ for some m 6= 0, c ∈ T, and ψ ∈ Φ(T,T),
form an Fσ-subset of Φ0. Define

Φmj,k = {φ ∈ Φ0 : (∃c ∈ T)(∃ψ ∈ Φ(T,T)) φm = cψ ◦ T/ψ, |ψ̂(j)| ≥ 1/k}

where ψ̂(j) denotes the jth Fourier coefficient of the function ψ : T → C.
We prove that Φmj,k is closed in Φ0. Assume φn → φ in Φ0 with φn ∈ Φmj,k,
φmn = cnψn◦T/ψn. By the weak compactness of the unit ball in L2(T) there
exist a cocycle ψ ∈ Φ(T,T) and a subsequence n′ (we write n for simplicity)
such that ψn → ψ weakly in L2(T). This clearly implies that φmn ψn → φmψ
weakly. By choosing a further subsequence if necessary we may assume
cn → c in T so that φmn ψn = cnψn◦T → cψ◦T weakly, whence φmψ = cψ◦T .
Besides, |ψ̂(j)| ≥ 1/k > 0, so ψ 6= 0. Since |ψ| = |φmψ| = |cψ ◦ T | = |ψ ◦ T |,
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the function |ψ| is constant by ergodicity. By multiplying ψ by the constant
1/|ψ| ≥ 1 we may assume without loss of generality that ψ ∈ Φ(T,T) so
φ ∈ Φmj,k in view of the equality φm = cψ ◦ T/ψ. It is now clear that the set⋃
j≥1

⋃
k≥1

⋃
m6=0 Φ

m
j,k of all cocycles φ ∈ Φ0 which are not weakly mixing

is an Fσ-subset of Φ0.
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Reçu par la Rédaction le 18.2.1993

Added in proof. By a recent result of the first author (Cyclic approximation of
irrational rotations, Proc. Amer. Math. Soc., to appear), Corollary 2 is valid for all
irrational numbers α.


