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ON THE DISJOINT (0, n)-CELLS PROPERTY FOR
HOMOGENEOUS ANR’S

BY

PAWE L K R U P S K I (WROC LAW)

A metric space (X, %) satisfies the disjoint (0, n)-cells property provided
for each point x ∈ X, any map f of the n-cell Bn into X and for each ε > 0
there exist a point y ∈ X and a map g : Bn → X such that %(x, y) < ε,
%̂(f, g) < ε and y 6∈ g(Bn). It is proved that each homogeneous locally
compact ANR of dimension > 2 has the disjoint (0, 2)-cells property. If
dim X = n > 0, X has the disjoint (0, n−1)-cells property and X is a locally
compact LCn−1-space then local homologies satisfy Hk(X, X − x) = 0 for
k < n and Hn(X, X − x) 6= 0.

0. Introduction. All spaces in the paper are assumed to be metric sepa-
rable and all mappings are continuous. A space X is said to be homogeneous
if for each couple of points x, y ∈ X there exists a homeomorphism h : X →
X such that h(x) = y. Function spaces are endowed with the compact-open
topology. In particular, if Y is locally compact and % is a metric in X, then
the space XY is metrizable by the metric %̂ defined as follows: represent Y as
the union Y =

⋃∞
m=1 Cm, where Cm is compact and Cm ⊂ int Cm+1 for each

m; for f, g ∈ XY put %m(f, g) = min{1/m, sup{%(f(y), g(y)) : y ∈ Cm}}
and %̂(f, g) = sup{%m(f, g) : m = 1, 2, . . .}. We will say that maps f ∈ XY

approximate a given map g ∈ XY if %̂(f, g) can be made as small as we wish.
Two maps f, g ∈ XY are said to be ε-close if %(f(y), g(y)) < ε for each y ∈
Y . As usual, Bn = {x ∈ Rn : |x| ≤ 1}, Sn−1 = ∂Bn = {x ∈ Rn : |x| = 1},
I = [0, 1], B0 means a one-point space.

The disjoint (n, m)-cells property of a space X, denoted by D(n, m), is
defined as follows: for each ε > 0 and any two mappings f : Bn → X and
g : Bm → X there exist mappings f ′ : Bn → X and g′ : Bm → X such that
%̂(f, f ′) < ε, %̂(g, g′) < ε and f ′(Bn) ∩ g′(Bm) = ∅. Obviously D(n, m) ⇒
D(n′,m′) for n′ ≤ n, m′ ≤ m. The properties D(n, m) for n = m > 1
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are crucial in recognizing manifolds among ANR’s of (finite or infinite) di-
mensions >4 (see [5] as a general reference). The Bing–Borsuk conjecture [1]
says that every n-dimensional (n > 2) locally compact homogeneous ANR
is a manifold or at least a generalized manifold. So far, it is not even known
whether homogeneous ANR-spaces of dimension > 4 must contain a 2-cell
(the property D(2, 2) would imply that).

This paper is concerned with the properties D(0, n) which play a role in
recognizing generalized manifolds. The property D(0, 0) of a space X just
means that X is dense in itself. A space X satisfies D(0, 1) if and only if X
contains no free arcs, i.e. each arc is nowhere dense in X (note that each
map f : I → X can be approximated by a map g : I → X whose image is a
finite union of small arcs in f(I); thus g(I) is nowhere dense in X and D(0, 1)
follows). For a homogeneous locally compact ANR X we have X ∈ D(0, 1)
if and only if dim X > 1. Indeed, if dim X > 1, then by the homogeneity
arcs are nowhere dense in X; if dim X = 1, then X is a one-manifold [1,
Theorem 6.1], hence it contains free arcs. Nontrivial problems start with
n > 1. Therefore, henceforth, we always assume n > 1 when dealing with
D(0, n). The main result is that each homogeneous locally compact ANR
of dimension > 2 has D(0, 2). For such spaces X we also present an easy-
to-follow argument that D(0, n) implies Hk(X, X − {x}) = 0 for k ≤ n (all
homology groups are singular with integer coefficients). The latter result was
first established in [10] with a heavy use of algebraic topology. Actually, we
show a more natural stronger version for LCn-spaces and homotopy groups.
Moreover, if dim X = n and X ∈ D(0, n − 1), then Hn(X, X − {x}) 6= 0.
This generalizes a theorem announced by  Lysko [8].

The author thanks T. Januszkiewicz for several improvements.

1. Auxiliary results. The book [9] is a good reference for basic theory
of ANR’s. For convenience we recall here three facts about ANR’s and their
counterparts for LCn-spaces.

(1.1) Open subsets of an ANR (LCn-space) are again ANR’s (LCn-
spaces).

(1.2) If X is an ANR (LCn-space), ε > 0 and f is a map from a compact
space Y (with dim Y ≤ n, resp.) into X, then there is a δ > 0 such that if
another map g : Y → X is δ-close to f , then f and g are ε-homotopic.

(1.3) The small homotopy extension property , which means the homotopy
extension property where all homotopies involved are limited by an arbitrarily
fixed number ε > 0 (and come from spaces of dimension at most n in case
of LCn-spaces).

We are going to use the following Effros theorem.



DISJOINT (0,n)-CELLS PROPERTY 79

Proposition 1.4. If X is a homogeneous locally compact space with met-
ric %, a ∈ X and ε > 0, then there exists δ > 0 such that if %(x, a) < δ, then
there is a homeomorphism h : X → X satisfying h(a) = x and %̂(h, idX) < ε
(the number δ is called an Effros δ for ε and a).

R e m a r k. Effros’ theorem has usually been formulated for compact
spaces. However, its proof, as that in [3, p. 584], runs unchanged for locally
compact spaces X due to the fact that the group of all selfhomeomorphisms
of X is a Borel subset of XX [6].

Proposition 1.5. Suppose X is a homogeneous locally compact ANR
with metric %, U ⊂ X is an open neighborhood of a point x with compact
closure, 0 < ε < %(x,X − U) and K = X −Nε(X − U) where Nε(X − U)
denotes the open ε-ball around X − U . Then there exists a δ > 0 such that
if %(x, y) < δ, y ∈ U , then there is a mapping g : U → U which is ε-close to
the identity idU on U , g|K is a homeomorphism and g(y) = x.

P r o o f. Represent X as the union of compact subsets Cm such that
Cm⊂ int Cm+1 for m=1, 2, . . . There exists n such that U ⊂ Cn. Since U is
an ANR, there is a positive number η<min{ε, 1/n} such that if a mapping
f : K→U is η-close to idK , then f is ε-homotopic to idK in U . Consider an
Effros’ δ for η and x. Take y∈U with %(x, y)<δ. By Proposition 1.4 there
exists a homeomorphism h : X →X such that h(y) = x and %̂(h, idX) < η.
By the definition of %̂, h|K is η-close to idK . It follows from (1.3) that h|K
extends to a mapping g : U→U which is ε-close to idU .

Let us recall the notion of a Cantor manifold. A locally compact n-
dimensional space is called a Cantor manifold if no subset of dimension
less than n − 1 separates it. If the space is infinite-dimensional, then it
is called a Cantor manifold if no finite-dimensional subset separates it. A
locally compact locally connected space is a local Cantor manifold if each
connected open subset is a Cantor manifold of the same dimension.

The following theorem was stated in [7] (see also [6]).

Proposition 1.6. Any locally compact locally connected homogeneous
space is a local Cantor manifold.

On the other hand, one can recognize local Cantor manifolds by means
of local homology groups.

Proposition 1.7. Let X be a locally compact locally connected space and
n > 1. If Hk(X, X −{x}) = 0 for every x ∈ X and k < n, then dim X ≥ n.
In the case where dim X = n at each point , X is a local Cantor manifold.

P r o o f. Let U be an open connected subset of X. From [4, Lemma 2.1]
and the excision we have H1(U,U − A) = 0 for each closed subset A of X
whose dimension is less than n − 1. This means that U − A is connected.
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But if dim X < n, then X contains a basis of open sets with boundaries of
dimension less than n − 1. Therefore dim X ≥ n. The second part of the
proposition now easily follows.

Recall that a subset A of X is called locally k-coconnected (k-LCC) if for
each a ∈ A any neighborhood U of a contains a neighborhood V of a such
that each map of Sk into V − A can be extended to a map of Bk+1 into
U −A. The condition LCCn means k-LCC for all k = 0, 1, . . . , n.

Proposition 1.8 [7]. If X is a homogeneous locally compact space, then
X has the property D(0, n) if and only if the following condition D∗(0, n)
holds: for each point x ∈ X any mapping f : Bn → X can be approximated
by mappings with images omitting x. If X is an LCn-space of dimension
greater than 1, then D∗(0, n) is equivalent to a singleton {x} being LCC n−1

for each x ∈ X.

R e m a r k. Condition D∗(0, n) follows from D(0, n) by Proposition 1.4.
The second part of the above proposition was formulated in [7] under su-
perfluous assumptions that X be a compact ANR and dim X > 2, but the
proof runs for an LCn-space X; the assumption dim X > 2 was used there
to derive D(0, 1) from D(1, 1) but, as we have seen in the previous section,
D(0, 1) is a consequence of dim X > 1.

We add the following nice description of the property D(0, n).

Proposition 1.9. If X is a homogeneous locally compact space, then X
has D(0, n) if and only if the set of all mappings of Bn into X with nowhere
dense images is dense in the mapping space XBn

.

P r o o f. Suppose X satisfies D(0, n). Let {d1, d2, . . .} be a countable
dense subset of X and Dm = {d1, . . . , dm}. It easily follows from Proposition
1.8 that, given any finite subset A of X, each mapping of Bn into X can be
approximated by mappings omitting A. Hence the set Fm of all mappings
of Bn into X − Dm is open and dense in XBn

. Now, the set
⋂∞

m=1 Fm

consists of mappings with nowhere dense images and is dense in XBn

by
the Baire Category Theorem. The proof of the converse implication is left
to the reader.

2. Main results

Proposition 2.1. Assume a locally compact LCn-space X satisfies
D∗(0, n), n > 1. If U is an open nonempty subset of X , x ∈ X and
z ∈ U − {x}, then the inclusion-induced homomorphism i∗ between the
k-th homotopy groups πk(U − {x}, z) and πk(U, z) is an isomorphism for
0 < k < n and it is an epimorphism for k = n.
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P r o o f. Recall that D(0, n)⇒D(0, k) for k ≤ n. To show that i∗ is
one-to-one for 0 < k < n take two maps f and g of the cube Ik into U −{x}
which are joined by a homotopy H : Ik×I → U such that H(∂Ik×I) = {z}.
By D∗(0, n), H is approximated, arbitrarily closely, by a map H ′ : Ik× I →
U − {x}. If H ′ is close enough to H, then by (1.1)–(1.3) the map H|∂Ik+1

has an extension H : Ik × I → U − {x}. Hence f and g represent the
same element of πk(U − {x}, z). To prove that i∗ is onto for 0 < k ≤ n let
f : Ik → U be a map such that f(∂Ik) = {z}. Then f is approximated by
a map f ′ : Ik → U − {x} (property D∗(0, n)). Set K = Ik × {0} ∪ ∂Ik × I
and consider the map H : K → U defined by H(p, 0) = f(p) for p ∈ Ik and
H(∂Ik × I) = {z}. It follows from (1.1)–(1.3) that if f ′ is close enough to
f , then there is a small homotopy G : Ik × I → U , where G(p, 0) = f(p),
G(p, 1) = f ′(p), such that G|K is homotopic to H in U . Thus H extends to
a homotopy H : Ik×I → U which approximates G. Then the map g defined
by g(p) = H(p, 1) approximates f ′, so we can assume that g maps Ik into
U−{x}. Moreover, the homotopy H joins f and g and H(∂Ik×I) = {z}.

R e m a r k. That the fundamental groups π1(U−{x}, z) and π1(U, z) are
isomorphic follows also from [5, Proposition 3, p. 144].

Proposition 2.2. If i∗ : πk(U − {x}) → πk(U) is a monomorphism for
each x ∈ X and each U from a basis U of open connected subsets of an
LCn-space X (0 < k < n), then {x} is k-LCC.

P r o o f. Write Ux = {U ∈ U : x ∈ U}. Suppose W is an open neigh-
borhood of x. Choose U2 ⊂ U1 ⊂ U0 ⊂ W such that Ui ∈ Ux and any
map from an at most n-dimensional space into Ui+1 is homotopic in Ui to a
constant map, i = 0, 1. Fix a point s of the sphere Sk and consider a map
f : (Sk, s) → (U2 − {x}, f(s)).

This map is homotopic in U1 to a constant map g. Since U1 is arcwise
connected, we can assume that g(Sk) = f(s). Suppose H : Sk × I → U1

is a homotopy such that H(p, 0) = f(p), H(p, 1) = f(s). Put K = Sk ×
{0, 1} ∪ {s} × I and define G : K → U2 by G(p, 0) = f(p) for p ∈ Sk

and G(z) = f(s) elsewhere. Then G and H|K are homotopic in U0. So G
extends to a mapping G : Sk × I → U0. This means that f represents the
identity element in the group πk(U0, f(s)), hence in πk(U0 − {x}, f(s)) as
well. It follows that f admits an extension f̄ : Bk+1 → U0 − {x}.

The next theorem is a consequence of Propositions 2.1, 2.2 and 1.8.

Theorem 2.3. If X is a homogeneous locally compact LCn-space of di-
mension greater than 1, then X satisfies D(0, n), n > 1, if and only if for
each basis (equivalently , there exists a basis) U of open connected subsets
of X and for any x ∈ X and U ∈ U the inclusion i : U − {x} ⊂ U is an
n-equivalence (in the sense of [11]).
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From the Whitehead theorem [11], excision and exactness properties and
from Proposition 1.7 we get the following corollary.

Corollary 2.4. Suppose X is a homogeneous locally compact LCn-space
satisfying D(0, n), n > 1. Then Hk(X, X − {x}) = 0 for each x ∈ X and
k ≤ n. Moreover , dim X > n.

Theorem 2.3, Corollary 2.4 and Proposition 1.7 imply

Theorem 2.5. Let X be an n-dimensional homogeneous locally compact
LCn−1-space satisfying D(0, n− 1), n > 2. Then

(a) πk(U,U −{x}) = 0 for k < n and for each open connected nonempty
U ⊂ X, but , in case that X ∈ ANR, for all sufficiently small open connected
neighborhoods V of x we have πn(V, V − {x}) 6= 0;

(b) Hk(X, X − {x}) = 0 for k < n and Hn(X, X − {x}) 6= 0.

Theorem 2.6. If X is a homogeneous locally compact ANR of dimension
> 2, then X satisfies D(0, 2).

P r o o f. We will prove that {p} ∈ LCC1 for arbitrary p ∈ X (Proposi-
tion 1.8). To this end let U be an open subset of X containing p and V be
an open neighborhood of p which is contractible in U . We can assume that
U is connected and its closure is compact.

Suppose first that f : S1 → V − {p} has one-dimensional image and let
F0 : B2 → U be an extension of f . Take a point q ∈ U − F0(B2) and an
arc A in U − f(S1) joining p and q. Such an arc exists because X is a local
Cantor manifold (Proposition 1.6). Define M = {x ∈ A : there exists a
mapping F : B2 → U − {x} such that F |S1 = f}. We are going to show
that M is closed. Suppose x ∈ cl M . Let 0 < ε < 1

2%(x,X − U) and ε
satisfy the condition that if a map f ′ : S1 → U − {x} is ε-close to f , then
f ′ is homotopic to f in the ANR U − {x}. Take a point y ∈ M such that
%(x, y) < δ where δ is a number as in Proposition 1.5. Let F : B2 → U−{y}
be an extension of f . If g is a map guaranteed by Proposition 1.5, then gF
maps B2 into U − {x} and gF |S1 = gf is homotopic to f in U − {x}. It
follows from the homotopy extension property for U − {x} that f has an
extension F1 : B2 → U − {x}. That means that x ∈ M . The set M is
evidently nonempty and open in A, hence M = A. We have shown that
p ∈ M which means that the condition LCC1 is satisfied by mappings with
one-dimensional images.

In the general case any mapping f : S1 → V −{p} can be approximated
by mappings f ′ : S1 → V − {p} with one-dimensional images (f ′(S1) can
be viewed as a finite union of small arcs in f(S1); details of this standard
procedure are left to the reader). If f ′ is sufficiently close to f , then the



DISJOINT (0,n)-CELLS PROPERTY 83

two mappings are homotopic in U − {p}. Since f ′ extends to a mapping
F : B2 → U − {p}, so does f by the homotopy extension property for
U − {p}.

The three-dimensional case calls special attention.

Corollary 2.7. Let X be a homogeneous locally compact ANR. If dim X
> 2, then Hk(X, X − {x}) = 0 for any x ∈ X and k < 3. If dim X = 3,
then H3(X, X − {x}) 6= 0.

The author does not know whether a homogeneous locally compact ANR
of dimension greater than n > 2 must satisfy D(0, n).

3. Final remarks. Let us recall property ∆ of Borsuk [2]: a space
X has property ∆(n) if for every point x ∈ X every neighborhood U of x
contains a neighborhood V of x such that each compact nonempty set A ⊂ V
of dimension at most n− 1 is contractible in a subset of U of dimension at
most dim A+1; property ∆ means ∆(n) for every n. If X is a locally compact
ANR satisfying ∆(n) and K is a compact space of dimension at most n, then
the set of mappings f : K → X with dim f(K) ≤ dim K is dense in XK (see
the proof of [2, (2.1), p. 164]). It follows that ∆(n) implies D(0, n) for locally
compact ANR’s of dimension greater than n at each point. Thus Theorem
2.5 generalizes the following result announced in [8] (unfortunately, its proof
has never been published): if X is an n-dimensional compact homogeneous
ANR which satisfies condition ∆, then Hk(X, X − {x}) = 0 for k < n and
Hn(X, X − {x}) 6= 0.

Each local Cantor manifold X of dimension at least three has D(1, 1) (see
the proof of [4, Proposition 2.2]). If X is, additionally, an LC1-space, then
X × R has D(1, 2) and X × R2 has D(2, 2) [4]. When X × R has D(2, 2)
is, however, a deeper question. One of central problems on generalized
manifolds is to learn whether their products with the real line R are genuine
manifolds. It is thus important to be able to detect D(2, 2) for such products
of dimension at least five. It follows from a characterization of D(1, 2) in
[4] that each ANR X of dimension at least four which is a local Cantor
manifold satisfying ∆(2) has D(1, 2), hence the product X ×R has D(2, 2).
Propositions 1.6 and 1.7 show possible applications of this remark.

Observation 3.1. Let X be a locally compact ANR of dimension at least
four satisfying ∆(2). If X is either homogeneous or a generalized manifold ,
then X has D(1, 2) and X × R has D(2, 2).

The above observation improves [10, Corollary 5.5] and restates (a cor-
rect part of) [10, Theorem 4.6].
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