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ON THE DISJOINT (0,n)-CELLS PROPERTY FOR
HOMOGENEOUS ANR’S

BY

PAWEL KRUPSKI (WROCLAW)

A metric space (X, p) satisfies the disjoint (0, n)-cells property provided
for each point x € X, any map f of the n-cell B” into X and for each € > 0
there exist a point y € X and a map ¢ : B™ — X such that o(x,y) < ¢,
o(f,9) < e and y & g(B™). It is proved that each homogeneous locally
compact ANR of dimension > 2 has the disjoint (0,2)-cells property. If
dim X = n > 0, X has the disjoint (0, n—1)-cells property and X is a locally
compact LC" -space then local homologies satisfy Hy(X,X — x) = 0 for
k<nand Hy(X,X —x) #0.

0. Introduction. All spaces in the paper are assumed to be metric sepa-
rable and all mappings are continuous. A space X is said to be homogeneous
if for each couple of points z,y € X there exists a homeomorphism h : X —
X such that h(x) = y. Function spaces are endowed with the compact-open
topology. In particular, if Y is locally compact and g is a metric in X, then
the space XY is metrizable by the metric p defined as follows: represent Y as
the union Y = Uzzl Cin, where C, is compact and C,,, C int C,, 41 for each
m; for f,g € XV put om(f,g) = min{l/m,sup{o(f(y),9(y)) : y € Cn}}
and o(f,g) = sup{om(f,g) : m = 1,2,...}. We will say that maps f € X¥
approzimate a given map g € XY if 9(f, g) can be made as small as we wish.
Two maps f,g € XY are said to be e-close if o(f(y),g(y)) < € for each y €
Y. Asusual, B = {x e R" : |[z| < 1}, "1 =9B" = {x e R" : |z| = 1},
I =10,1], B® means a one-point space.

The disjoint (n, m)-cells property of a space X, denoted by D(n,m), is
defined as follows: for each € > 0 and any two mappings f : B" — X and
g : B™ — X there exist mappings f’: B® — X and ¢’ : B™ — X such that
olf, ) <e, 0(g,9") <eand f/(B")Ng'(B™) = (. Obviously D(n,m) =
D(n',m’) for n’ < n, m" < m. The properties D(n,m) for n = m > 1
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are crucial in recognizing manifolds among ANR'’s of (finite or infinite) di-
mensions >4 (see [5] as a general reference). The Bing—Borsuk conjecture [1]
says that every n-dimensional (n > 2) locally compact homogeneous ANR
is a manifold or at least a generalized manifold. So far, it is not even known
whether homogeneous ANR-spaces of dimension >4 must contain a 2-cell
(the property D(2,2) would imply that).

This paper is concerned with the properties D(0,n) which play a role in
recognizing generalized manifolds. The property D(0,0) of a space X just
means that X is dense in itself. A space X satisfies D(0, 1) if and only if X
contains no free arcs, i.e. each arc is nowhere dense in X (note that each
map f: I — X can be approximated by a map g : I — X whose image is a
finite union of small arcs in f(I); thus ¢g(I) is nowhere dense in X and D(0, 1)
follows). For a homogeneous locally compact ANR X we have X € D(0,1)
if and only if dim X > 1. Indeed, if dim X > 1, then by the homogeneity
arcs are nowhere dense in X; if dim X = 1, then X is a one-manifold [1,
Theorem 6.1], hence it contains free arcs. Nontrivial problems start with
n > 1. Therefore, henceforth, we always assume n > 1 when dealing with
D(0,n). The main result is that each homogeneous locally compact ANR
of dimension > 2 has D(0,2). For such spaces X we also present an easy-
to-follow argument that D(0,n) implies Hy(X, X — {z}) =0 for k£ <n (all
homology groups are singular with integer coefficients). The latter result was
first established in [10] with a heavy use of algebraic topology. Actually, we
show a more natural stronger version for LC™-spaces and homotopy groups.
Moreover, if dim X = n and X € D(0,n — 1), then H,(X,X — {z}) # 0.
This generalizes a theorem announced by Lysko [8].

The author thanks T. Januszkiewicz for several improvements.

1. Auxiliary results. The book [9] is a good reference for basic theory
of ANR’s. For convenience we recall here three facts about ANR’s and their
counterparts for LC™-spaces.

(1.1) Open subsets of an ANR (LC™-space) are again ANR’s (LC™-
spaces).

(1.2) If X is an ANR (LC™-space), € > 0 and f is a map from a compact
space Y (with dimY < n, resp.) into X, then there is a § > 0 such that if
another map g : Y — X is §-close to f, then f and g are e-homotopic.

(1.3) The small homotopy extension property, which means the homotopy
extension property where all homotopies involved are limited by an arbitrarily
fized number € > 0 (and come from spaces of dimension at most n in case

of LC™-spaces).

We are going to use the following Effros theorem.
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ProPOSITION 1.4. If X is a homogeneous locally compact space with met-
ric 9, a € X and € > 0, then there exists § > 0 such that if o(x,a) < ¢, then
there is a homeomorphism h : X — X satisfying h(a) = x and o(h,idx) < e
(the number ¢ is called an Effros ¢ for € and a).

Remark. Effros’ theorem has usually been formulated for compact
spaces. However, its proof, as that in [3, p. 584], runs unchanged for locally
compact spaces X due to the fact that the group of all selfhomeomorphisms
of X is a Borel subset of XX [6].

PROPOSITION 1.5. Suppose X is a homogeneous locally compact ANR
with metric o, U C X is an open neighborhood of a point x with compact
closure, 0 < e < go(z,X —U) and K = X — N.(X — U) where N.(X —U)
denotes the open e-ball around X — U. Then there exists a § > 0 such that
if o(xz,y) < 6,y € U, then there is a mapping g : U — U which is e-close to
the identity idy on U, g|K is a homeomorphism and g(y) = x.

Proof. Represent X as the union of compact subsets C,, such that
Cn, Cint Cpyyq for m=1,2, ... There exists n such that U C C,,. Since U is
an ANR, there is a positive number n<min{e,1/n} such that if a mapping
f+ K—U is n-close to idg, then f is e-homotopic to idx in U. Consider an
Effros’ 0 for n and z. Take y€U with o(x,y) <d. By Proposition 1.4 there
exists a homeomorphism h : X — X such that A(y) =z and g(h,idx) < 7.
By the definition of g, h|K is n-close to idg. It follows from (1.3) that h|K
extends to a mapping g : U — U which is e-close to idy. =

Let us recall the notion of a Cantor manifold. A locally compact n-
dimensional space is called a Cantor manifold if no subset of dimension
less than n — 1 separates it. If the space is infinite-dimensional, then it
is called a Cantor manifold if no finite-dimensional subset separates it. A
locally compact locally connected space is a local Cantor manifold if each
connected open subset is a Cantor manifold of the same dimension.

The following theorem was stated in [7] (see also [6]).

PROPOSITION 1.6. Any locally compact locally connected homogeneous
space is a local Cantor manifold.

On the other hand, one can recognize local Cantor manifolds by means
of local homology groups.

PROPOSITION 1.7. Let X be a locally compact locally connected space and
n>1. If H,(X,X —{z}) =0 for every x € X and k <n, then dim X > n.
In the case where dim X = n at each point, X is a local Cantor manifold.

Proof. Let U be an open connected subset of X. From [4, Lemma 2.1]
and the excision we have H,(U,U — A) = 0 for each closed subset A of X
whose dimension is less than n — 1. This means that U — A is connected.
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But if dim X < n, then X contains a basis of open sets with boundaries of
dimension less than n — 1. Therefore dim X > n. The second part of the
proposition now easily follows. m

Recall that a subset A of X is called locally k-coconnected (k-LCC) if for
each a € A any neighborhood U of a contains a neighborhood V' of a such
that each map of S* into V — A can be extended to a map of B**! into
U — A. The condition LCC™ means k-LCC for all k =0,1,...,n.

PROPOSITION 1.8 [7]. If X is a homogeneous locally compact space, then
X has the property D(0,n) if and only if the following condition D*(0,n)
holds: for each point x € X any mapping f : B™ — X can be approrimated
by mappings with images omitting x. If X is an LC™-space of dimension
greater than 1, then D*(0,n) is equivalent to a singleton {x} being LCC™~!
for each x € X.

Remark. Condition D*(0,n) follows from D(0,n) by Proposition 1.4.
The second part of the above proposition was formulated in [7] under su-
perfluous assumptions that X be a compact ANR and dim X > 2, but the
proof runs for an LC"-space X; the assumption dim X > 2 was used there
to derive D(0,1) from D(1,1) but, as we have seen in the previous section,
D(0,1) is a consequence of dim X > 1.

We add the following nice description of the property D(0,n).

PROPOSITION 1.9. If X is a homogeneous locally compact space, then X
has D(0,n) if and only if the set of all mappings of B™ into X with nowhere
dense images is dense in the mapping space X 5" .

Proof. Suppose X satisfies D(0,n). Let {dy,ds,...} be a countable
dense subset of X and D,,, = {dy,...,d,;,}. It easily follows from Proposition
1.8 that, given any finite subset A of X, each mapping of B™ into X can be
approximated by mappings omitting A. Hence the set F,, of all mappings
of B™ into X — D,, is open and dense in XB". Now, the set ﬂ;’:zl Fm
consists of mappings with nowhere dense images and is dense in XZ" by
the Baire Category Theorem. The proof of the converse implication is left
to the reader. m

2. Main results

PROPOSITION 2.1. Assume a locally compact LC™-space X satisfies
D*(0,n), n > 1. If U is an open nonempty subset of X, z € X and
z € U — {x}, then the inclusion-induced homomorphism i, between the
k-th homotopy groups mi(U — {x},z) and m(U, z) is an isomorphism for
0 < k <n and it is an epimorphism for k = n.
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Proof. Recall that D(0,n)=D(0,k) for & < n. To show that i, is
one-to-one for 0 < k < n take two maps f and g of the cube I* into U — {z}
which are joined by a homotopy H : I* x I — U such that H(9I* x I) = {z}.
By D*(0,n), H is approximated, arbitrarily closely, by a map H' : I* x I —
U — {x}. If H' is close enough to H, then by (1.1)—(1.3) the map H|oI**!
has an extension H : I*¥ x I — U — {x}. Hence f and g represent the
same element of 7, (U — {z}, z). To prove that i, is onto for 0 < k < n let
f: I* — U be a map such that f(0I*) = {z}. Then f is approximated by
amap f': I¥ — U — {z} (property D*(0,n)). Set K = I* x {0}uaI* x I
and consider the map H : K — U defined by H(p,0) = f(p) for p € I* and
H(0I* x I) = {z}. Tt follows from (1.1)—(1.3) that if f’ is close enough to
f, then there is a small homotopy G : I* x I — U, where G(p,0) = f(p),
G(p,1) = f'(p), such that G|K is homotopic to H in U. Thus H extends to
a homotopy H : I* x I — U which approximates G. Then the map g defined
by g(p) = H(p,1) approximates f’, so we can assume that g maps I* into
U —{x}. Moreover, the homotopy H joins f and g and H(0I¥ xI) = {z}. =

Remark. That the fundamental groups 71 (U —{x}, z) and m1 (U, 2) are
isomorphic follows also from [5, Proposition 3, p. 144].

PROPOSITION 2.2. If i, : mi(U — {z}) — m(U) is a monomorphism for
each x € X and each U from a basis U of open connected subsets of an
LC"-space X (0 < k < n), then {z} is k-LCC.

Proof. Write U, = {U € U : x € U}. Suppose W is an open neigh-
borhood of x. Choose Uy C U; C Uy C W such that U; € U, and any
map from an at most n-dimensional space into U, is homotopic in U; to a
constant map, i = 0,1. Fix a point s of the sphere S* and consider a map
I (Skv S) - (U2 - {ZL‘}, f(S))

This map is homotopic in U; to a constant map g. Since U; is arcwise
connected, we can assume that g(S*) = f(s). Suppose H : S¥ x I — U,
is a homotopy such that H(p,0) = f(p), H(p,1) = f(s). Put K = S¥ x
{0,1} U {s} x I and define G : K — U, by G(p,0) = f(p) for p € S*
and G(z) = f(s) elsewhere. Then G and H|K are homotopic in Uy. So G
extends to a mapping G : S* x I — Uy. This means that f represents the
identity element in the group 7 (Up, f(s)), hence in 7 (Uy — {z}, f(s)) as
well. It follows that f admits an extension f : B! — Uy — {z}. =

The next theorem is a consequence of Propositions 2.1, 2.2 and 1.8.

THEOREM 2.3. If X is a homogeneous locally compact LC™-space of di-
mension greater than 1, then X satisfies D(0,n), n > 1, if and only if for
each basis (equivalently, there exists a basis) U of open connected subsets
of X and for any x € X and U € U the inclusion i : U — {x} C U is an
n-equivalence (in the sense of [11]).
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From the Whitehead theorem [11], excision and exactness properties and
from Proposition 1.7 we get the following corollary.

COROLLARY 2.4. Suppose X is a homogeneous locally compact LC™-space
satisfying D(0,n), n > 1. Then Hi(X,X — {z}) = 0 for each x € X and
k <n. Moreover, dim X > n.

Theorem 2.3, Corollary 2.4 and Proposition 1.7 imply

THEOREM 2.5. Let X be an n-dimensional homogeneous locally compact
LC" '-space satisfying D(0,n — 1), n > 2. Then

(a) (U, U —{z}) = 0 for k < n and for each open connected nonempty
U C X, but, in case that X € ANR, for all sufficiently small open connected
neighborhoods V of x we have m,(V,V — {x}) # 0;

(b) Hp(X, X —{z}) =0 for k <n and H,(X, X — {x}) # 0.

THEOREM 2.6. If X is a homogeneous locally compact ANR of dimension
> 2, then X satisfies D(0,2).

Proof. We will prove that {p} € LCC" for arbitrary p € X (Proposi-
tion 1.8). To this end let U be an open subset of X containing p and V be
an open neighborhood of p which is contractible in U. We can assume that
U is connected and its closure is compact.

Suppose first that f : St — V — {p} has one-dimensional image and let
Fy : B2 — U be an extension of f. Take a point ¢ € U — Fy(B?) and an
arc A in U — f(S*) joining p and ¢. Such an arc exists because X is a local
Cantor manifold (Proposition 1.6). Define M = {z € A : there exists a
mapping F : B2 — U — {z} such that F|S! = f}. We are going to show
that M is closed. Suppose z € clM. Let 0 < € < %Q(CE,X —U) and ¢
satisfy the condition that if a map f’ : S — U — {x} is e-close to f, then
/" is homotopic to f in the ANR U — {z}. Take a point y € M such that
o(r,y) < § where 6 is a number as in Proposition 1.5. Let F : B2 — U —{y}
be an extension of f. If g is a map guaranteed by Proposition 1.5, then gF
maps B? into U — {z} and gF|S! = gf is homotopic to f in U — {z}. It
follows from the homotopy extension property for U — {z} that f has an
extension Iy : B> — U — {x}. That means that z € M. The set M is
evidently nonempty and open in A, hence M = A. We have shown that
p € M which means that the condition LCC! is satisfied by mappings with
one-dimensional images.

In the general case any mapping f : St — V — {p} can be approximated
by mappings f’ : S* — V — {p} with one-dimensional images (f’(S') can
be viewed as a finite union of small arcs in f(S'); details of this standard
procedure are left to the reader). If f’ is sufficiently close to f, then the
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two mappings are homotopic in U — {p}. Since f’ extends to a mapping
F : B> — U — {p}, so does f by the homotopy extension property for

U-{p} =
The three-dimensional case calls special attention.

COROLLARY 2.7. Let X be a homogeneous locally compact ANR. If dim X
> 2, then Hp(X, X —{z}) =0 foranyz € X and k < 3. Ifdim X = 3,
then H3(X, X — {z}) #0.

The author does not know whether a homogeneous locally compact ANR
of dimension greater than n > 2 must satisfy D(0,n).

3. Final remarks. Let us recall property A of Borsuk [2]: a space
X has property A(n) if for every point # € X every neighborhood U of x
contains a neighborhood V' of z such that each compact nonempty set A C V
of dimension at most n — 1 is contractible in a subset of U of dimension at
most dim A+1; property A means A(n) for every n. If X is a locally compact
ANR satisfying A(n) and K is a compact space of dimension at most n, then
the set of mappings f : K — X with dim f(K) < dim K is dense in X¥ (see
the proof of [2, (2.1), p. 164]). It follows that A(n) implies D(0,n) for locally
compact ANR’s of dimension greater than n at each point. Thus Theorem
2.5 generalizes the following result announced in [8] (unfortunately, its proof
has never been published): if X is an n-dimensional compact homogeneous
ANR which satisfies condition A, then Hy (X, X — {z}) =0 for £ < n and
H,(X,X —{z}) #0.

Each local Cantor manifold X of dimension at least three has D(1, 1) (see
the proof of [4, Proposition 2.2]). If X is, additionally, an LC!-space, then
X x R has D(1,2) and X x R? has D(2,2) [4]. When X x R has D(2,2)
is, however, a deeper question. One of central problems on generalized
manifolds is to learn whether their products with the real line R are genuine
manifolds. It is thus important to be able to detect D(2,2) for such products
of dimension at least five. It follows from a characterization of D(1,2) in
[4] that each ANR X of dimension at least four which is a local Cantor
manifold satisfying A(2) has D(1,2), hence the product X x R has D(2,2).
Propositions 1.6 and 1.7 show possible applications of this remark.

OBSERVATION 3.1. Let X be a locally compact ANR of dimension at least
four satisfying A(2). If X is either homogeneous or a generalized manifold,

then X has D(1,2) and X x R has D(2,2).

The above observation improves [10, Corollary 5.5] and restates (a cor-
rect part of) [10, Theorem 4.6].
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