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1. Introduction. Let R and @ be relatively prime integers, and « and
(3 denote the zeros of 2 — VRz + Q.

In 1930, D. H. Lehmer [4] extended the arithmetic theory of Lucas se-
quences by defining u,, = (o™ — ")/(a — ) and v, = o™ + " for n > 0. If
R is a perfect square, {u,} and {v,} are Lucas sequences and “associated”
Lucas sequences, respectively. If R is not a square, then us,+1 and vy, are
integers, while wug, and v,y are integral multiples of V/R. If one defines

(1) U, =U,(VR,Q) = { (@™ = p")/(a = ) if n is odd,

(a™ — ") /(a? — 3%) if n is even,

B _J(@"+8")/(a+B) ifnisodd,
(2) Vo =Va(VE. Q) = {a” + B if n is even,
then {U,,} and {V,,} are seen to be the sequences {u,, } and {v, } with the VR
factor in us, and va, 41 suppressed, and are therefore integer sequences. The
sequences {U,} and {V,,} are known as Lehmer and “associated” Lehmer
sequences, respectively.

In this paper, we examine these sequences for the existence of perfect
square terms and terms which are twice a perfect square. Using congru-
ences, with extensive reliance upon the Jacobi symbol, we determine that
the square terms of those Lehmer sequences {U,(vVR, Q)} for which R is
odd and @ = 3 (mod 4), and for which @ = R = 5 (mod 8), may occur
only for n =0, 1, 2, 3, 4 or 6. We obtain a similar result for the associated
Lehmer sequences {V;,(v'R, Q)}, and corresponding results for the sequences
{20,(VR,Q)} and {2V, (VE, Q)}.

Interest in the factors of U,, and V,, began with Lehmer [4] who described
the divisors of U, and V,, and gave their forms in terms of n. In 1983,
Rotkiewicz [7] used the Jacobi symbol to show that certain terms of the
Lehmer sequence {U, (VR,Q)} cannot be squares when certain conditions
on R and @ are satisfied. Each of Rotkiewicz’s results involves R = 3
(mod 4), @ =0 (mod 4), or R=0 (mod 4), @ =1 (mod 4), and in either
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case it is shown that the term U, is not a square if n is odd and not a square,
or m is an even integer, not a power of 2, whose greatest odd prime factor
does not divide A = R — 4Q?.

The problem of determining the square terms when R is a perfect square,
i.e., in Lucas sequences and associated Lucas sequences, has been solved in
certain cases: When ) = +1, and VR = P is odd or has certain even values
[1], [2], [3], and recently [6] for all Lucas sequences for which P and Q
are odd. The previously mentioned paper by Rotkiewicz contains a partial
solution for the Lucas sequence with P even and @ =1 (mod 4).

2. Preliminary results. From the definition of o and 3, we have
Q = aff, R = (a+ ()? and we define A = R —4Q = (o« — 3)2. It follows
readily from (1) that Uy =0, Uy = 1, Vo = 2, V1 = 1, and these recurrence
relations hold for n > 2:

(3) U | RU,+1 —QU,, ifnisodd,
nt2 = Unt1 — QU, if n is even,
Vs —QV, if n is odd,
(4) Vnie = { RV,11 — QV,, if n is even.
The definitions of U,, and V,, can be extended to n negative: (1) and (2)
immediately imply that U_,, = —U,, /Q™ and V_,, = V,,/Q"; we see easily
that if n # 0, ged(U,, Q) = ged(Vy, Q) = 1, so U_,, and V_,, are integers

only when ) = +1. We shall require the following properties which hold for
all n and all integers R and @, except as noted:

(5) If R and @ are odd and n > 0, then U, is even iff 3|n and V}, is even
iff 3| n.
RV2 —2Q" if nis odd,
V2 —2Q"  if nis even.
(7) Ue — Un,(RV2 — Q") = U, (AU2 + 3Q™) if n is odd,
T Un(V2 — Q™) = Un(RAUZ 4+ 3Q™)  if n is even.

Ve — Vo(RVZ —3Q™) if nis odd,

A VL(V2 —3Q")  ifnis even.

(6) Uy, =U,V,, and V,, = {

(8)

RU,WVin + UtV if mis even and n is odd,
(9) 2Uman = { U Vin + U1 Vi, if m and n have the same parity,
UnVin + RUL,V,, if m is odd and n is even.
Vi Vien + AU U4y, if m and n have opposite parity,
(10) 2Vppan = { RV,,Vi, + AU,,U+,, if m and n are odd,
UnwVin + RAU,, Uy, if m and n are even.

(11) Ifj =2k, u>1, kodd, k>0, and m > 0, then
(a) Ugjym = —QU,, (mod Vau),
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(b) Uzjp = Q7"™U,, (mod Vau) if j > m,
(¢) Vajpm = —Q’ Vi, (mod Vau),
(d) Vaj—m = —Q7""V,, (mod Vou) if j > m.

(12)  If d = ged(m, n), then ged(Uy,, U,) = U,.

(13)  If d = ged(m, n), then ged(V,,,V,,) = Vg if m/d and n/d are odd,
and 1 or 2 otherwise.

(14)  If d = ged(m, n), then ged(Uy,, V,,) = Vg if m/d is even, and 1 or 2
otherwise.

Properties (5) through (10) are proven precisely as for the Lucas se-
quences ((6) through (10) are immediately verifiable using (1) and (2)), and
(12) is well-known. Property (11) follows readily from (6), (9), (10), (13)
and (14). Properties (13) and (14) are proven in [5].

We list, for reference purposes, the first few values of U,, and V,,: Uy = 0,
Ur=1,U0:=1Us=R—-Q;Vo=2,Vi =11V, =R-2Q, V3 =R-30Q.

3. Some preliminary lemmas. For the remainder of the paper, it is
assumed that R and @ are relatively prime odd integers, R is positive and
not a square, and that A = R —4Q > 0. (The latter condition assures that
U, >0and V, >0 for n>0.)

LEMMA 1. Let m be an odd positive integer and u > 1.
(a) If 3| m, then Vau,, = £2 (mod 8).

—1 (mod 8) ifu>1,
R —2Q (mod 8) ifu=1.

Proof. (a) If 3| m, then by (5) and (6), Va,, = RV,2 —2Q™ = —2Q or
4R —2Q = £2 (mod 8), and the result is immediate by induction.

(b) If 3tm, then Va,, = RV2 —2Q™ = R — 2Q (mod 8) is odd, so

(b) If 34m, then Vaum = {

Vim = V&, —2Q°™ = —1 (mod 8), and the result for Vau,, follows by
induction.
It is also readily shown by induction on u that
(15) Vou= — Q¥ (mod V3) ifu>1, and
(16) Vou= — Q¥ (mod Us) ifu>1.

LEMMA 2. Let t >0, m >0, and 12t —m > 0. Then

(1) Viztrm = Vi (mod 8) and Vigi—, = @™V, (mod 8), and
(ii) Ur2t4m = Uy (mod 8) and Uyat—p, = —Q™U,, (mod 8).

Proof. (i) By repeatedly using (4), we obtain

Votm = agVigm +a1Viy
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where a9 = (R — Q)(R —3Q) if m is odd, ap = R(R — Q)(R —3Q) if m
is even, and a; = —Q(R? — 3QR + @Q?). For all odd R and Q, ap = 0
(mod 8), 80 Votm = a1V, (mod 8), and it readily follows by induction that
Ver+m = a]Vy, (mod 8), for » > 1. Upon letting r = 2¢, we have the first
congruence of (i), since a; is odd, and the second congruence of (i) is readily
established using V_,, = V,,/Q™.

(ii) The proof of (ii) is similar to that of (i).

LEMMA 3. If u > 1, the Jacobi symbol J = (V5| Vau) equals +1.

Proof. Since Vou is odd, ged(Vs, Vou) = 1 so (V5| Vau) is defined.
Let V53 = 2°N, e > 1 and N odd. Then J = (2¢|Vau)(N|Vau). Since
Vou = —1 (mod 8) for uw > 1, (2¢|Vau) = +1, for all e. Hence, J =
(—1)N=D/2(V4. | N). By (15), Vau = —Q2" " (mod N), so

J — (_1)(N71)/2(_Q2u_1 |N) _ (_1)(N71)/2(_1)(N71)/2 — +1 .
LEMMA 4. If u > 1, then (Us | Vau) equals +1.

Proof. By (5) and (14), gcd(Us, Vou) = 1, so (Us | Vau) is defined. We
let U3 =2°N, e > 1, N odd, and proceed as in Lemma 3, using (16), to find
that (Us | Vou) = +1.

LEMMA 5. If n is a positive integer, then

(i) 3| Uy if and only if 3|n and R = Q # 0 (mod 3), or 4|n and
R =2@Q (mod 3), and

(ii) 3|V, if and only if n is odd, 3|n and R = 0 (mod 3), or n = 2
(mod 4) and R =2Q (mod 3).

Proof. Assume n > 0is odd. We note first that if 3| Q, then 31U,, and
31V, since ged(U,, Q) = ged(V,,, Q) = 1. Assume 31Q. Then either R =0
(mod 3), R=Q (mod 3), or R =2 (mod 3).

(i) If R=0 (mod 3),

Un — RUn—l - QUn—Z = _QUn—Q = (_Q)QUn—AL
=...=(-Q) ™ V2U; £0 (mod 3).

If R=Q (mod 3), then 3 divides Us = R — @, and it follows from (12) that
3| U, iff 3|n. And, if R = 2@ (mod 3), then 3 divides Uy = U3V = R—2Q
and, since by (12), ged(Us, Uy,) = Uy, Uz or Uy, 3|U, iff 4 |n.

(ii) If R = 0 (mod 3), then V3 = Vi(RV? — 3Q) = 0 (mod 3) and
by (13), ged(Vs,V,,) is divisible by 3 iff n is an odd multiple of 3. If R = Q@
(mod 3), then 3|Us; however, by (14), gcd(Us, V,,) is 1 or 2 for all n, so
31V, If R=2Q (mod 3), then 3 divides V5 = R — 2@Q) and again, by (13),
ged(Va, V,,) is divisible by 3 iff n is an odd multiple of 2.
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4. Squares in {U,} and {V,,}. In this section, we use O for the words
“a square”.

LEMMA 6. Let n be a positive odd integer.
(i) If @ = 3 (mod 4), then U, = 0 if and only if n =1, or n = 3 and
R—Q =0, and U, =20 if and only if n =3 and R — Q) = 20.
(ii)) If @ =1 (mod 4), then V,, = 0 if and only if n = 1, or n = 3 and
R—-3Q =0, and V, = 20 if and only if n = 3 and R — 3Q = 20O.

Proof. (i) Assume @ = 3 (mod 4) and n > 0 is odd. We note that
Uiy =1 =0 # 20 and clearly, Us equals 0 or 20 iff R — @ = 0 or 20O.
Assumen >3 andlet n=2j+m, j =2k, u>1,kodd, k>0, and m =1
or 3. We define A = 1 or 2 and observe that if v > 1, then, using Lemma 1,
we have (\| Vau) = +1.

By (11a),

AUgjim = ~AQU,, (mod Vau).

Now, AU,, = 0 only if the Jacobi symbol (—AQ7U,, | Vau) is +1. However,
if u> 1, then (=AQ?U,, | Vau) = (A | Vau ) (=Uyy, | Vau) is clearly —1 if m = 1,
and, by Lemma 4, is —1 if m = 3. If u = 1, then n = 4k +m, k odd, implies
that n = —1or —3 (mod 8);let n =2i—¢,i=2"r, w>2,roddand t =1
or 3. By (11b),

AU, = AUsi_; = AQ" Uy or AQ* Uz (mod Vau) .
Since Q =3 (mod 4),
AQ UL Vaw) = (+1)(Q | Vaw) = (=1)(Vau | Q)
= - (VE —2Q" Q) =1,

and, using Lemma 4,
(AQ'3Us | Vaw) = (AQ"™? | Vau)(Us | Vaw) = —1.
This proves that AU, # 0 and therefore that U, # AO.

(ii) Assume = 1 (mod 4) and n is a positive odd integer. If n = 1,
then V,, =1 =0 # 20, and if n = 3, then V,, = R — 3Q could be O or 20.
Ifn>3letn=2j4+m,j=2,u>1,kodd, k>0,and m=1or 3. As
in (i), let A =1 or 2. By (11c),

MWajim = —AQ'V,, (mod Vau) .
We see from Lemma 1 that if u > 1, then Vou = —1 (mod 8); hence, in this
case, if m = 1, then J = (=AQ7V,, |Vou) = —1, and if m = 3, then, by
Lemma 3, J = —1. If u = 1, then n = 4k + m with k£ odd, son = —1 or —3
(mod 8);let n =2i —t,i=2"r, w>2,r odd and t =1 or 3. By (11d),

AV, = AVaiy = —AQ7 W, = = AQ7 'V or — AQ" 313 (mod Vauw).
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Since @ =1 (mod 4),

(=AQ TV [ Vau) = =(A | Vau)(Q | Vou) = —(Vau | Q) = —1,
and, using Lemma 3,

(FAQ" V3 | Vauw) = —(Q | Vou) (V3 | Vou) = (=1)(+1) = -1,
so \V,, # O, and therefore V,, # AO.

THEOREM 1. Let n > 0. If Q =1 (mod 4) and R=1, 5, or 7 (mod 8),
or @ =3 (mod4) and R =1 (mod 8), then V,, =0 iff n =1, orn =3
and R —3Q = 0.

Proof. If n is even, then V,, = o0 only if V;, = 0, 1,4 (mod 8), and
by Lemma 1 this is possible for  and R odd only if R —2Q =1 (mod 8).
Hence, for @ =1 (mod 4) and R=1,5,0r 7 (mod 8), or for @ =3 (mod 4)
and R=1,3,or 5 (mod 8), V,, # 0.

Assume n is odd. If @ = 1 (mod 4) and R = 1,5, or 7 (mod 8), the
theorem is true by Lemma 6.

Assume @ =3 (mod 4) and R =1 (mod 8). If n =1, then V,, = V; =
1 =0, and if n = 3, then V,, = V3 = R — 3Q is a square iff R — 3Q) is a
square. Let n=2j5 +m, j=2", u>1, k odd, k>0, and m=1 or 3. Then

Vajim = —QV, = —Q’Vy or — Q’V3 (mod Vau) .

By Lemma 1, Vou = —1 (mod 8) for v > 1 and V5 = R —2Q = 3 (mod 4).
Hence, (—Q7V; | Vou)=—1 if u>1 and by Lemma 3, (—Q’ V3| Vau) = —1 if
u>1. That is, V, #0ifn=2-2k+ 1 foru>1, m=1,or u>1, m=3.
It remains to show that V,, # a if n = 4k + 3, k odd. In this case,
n= -5, —1or 3 (mod 12). By Lemma 2,
Vigi_s = Q°Vs = Q(R* — 5RQ + 5Q%) = 5 (mod 8)
and
Vier—1 =QVi =3 or 7 (mod 8),
and it is clear that V,, # 0O in each case. If n = 3 (mod 12), we write
n =3, e > 1, h odd, 3th. By using (8) repeatedly, we have
e—1
Vaen = Vai - | [(BV, —3Q%7)
i=j
for 0 < j < e—1. Since Vi | Vaij, for j < 4, and ged(Vsip, Q) = 1, we
have ged(Vaiy, RV32ih —3Q%") =1 or 3. Therefore, gcd(Vaip, Hf:_jl (RV;,L -
3@3%)) is 1 or a power of 3. Hence, Vze,, = O only if V35, = 0 or 30 for
0 <j <e—1, and, in particular, V}, = 0 or 30. However, we have just
shown that, for h not divisible by 3, V}, = 0 only if h = 1, and, by Lemma 5,
Vh 7& 3o.
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Taking h = 1, we have V,, = V3 = O only if V3, = O or 3a, for
j=1,...,u—1. Now, since gcd(R, R2—3Q) =1 or 3, 0 = V3 = R(R*-3Q)
is possible only if R = 0 or 30. However, R is not a square, by assumption,
and R # 30 since R =1 (mod 8). It follows that V3. # o for e > 1, proving
that V,, = o if and only if n = 1.

THEOREM 2. Let n > 0 and Q = 3 (mod 4), or @ = 5 (mod 8) and
R =5 (mod 8). Then U,, = o iff

(i)n=0,1,2,0rn=3and R—Q =0, orn=4 and R—2Q =0, or

(i) n=6, R—Q =20 and R — 3Q = 20 (this implies Q = 3 (mod 4),
R=Q (mod 8)).

Proof. That U, = o if (i) holds is obvious. Suppose n > 4.

Case 1: n odd and n > 5. Assume that U, = 0. If @ = 3 (mod 4),
then U, # DO by Lemma 6. Assume that Q = R = 5 (mod 8) and let
n = 2j +m, where j and m are defined as in the proof of Theorem 1. Then

Usjim = —Q'Up = —Q'Uy or — QU3 (mod Vau),

and exactly as in the proof of Theorem 1 (and using Lemma 4), we have
U, # O except possibly if n = 4k + 3, k odd.

If n =4k + 3, k odd, then n = —5,—1 or 3 (mod 12), and by Lemma 2,

Urzr—5 = —Q°Us = —Q(R? = 3RQ + Q%) =5 (mod 8)
and
Uigi—1 = —QU; =3 (mod 8);
it is clear that U,, # O in each case. If n = 12t 4 3, we write n = 3°h, e > 1,
h odd, 3th. By using (7) repeatedly, we have
e—1
Usen = Usip - [ [(AUS, +3Q% ™),
i=j

for 0 < j < e—1. By an argument essentially identical to that in Theorem 1,
we see that Usep, = 0 only if Usj;, = 0 or 30 for 0 < j < e—1, and, in
particular, U, = O or 30. We just showed above that for A not divisible
by 3, Uy = 0 only if h = 1, and U = 30 is not possible by Lemma 5.

Taking h = 1, we have U, = Use = 0O only if U3; = D or 30 for
g = 1,2,...,e — 1. We have noted that Us may be a square and have
shown above that Uy = Us4y1 # 0. If 30 = Uy = Uz(AUZ + 3Q3),
then AUZ + 3Q% = o or 30. However, since U3 = R — Q = 0 (mod 8),
AUZ +3Q3=0+3-5= —1 (mod 8) implies that AUZ + 3Q3 # o or 30O,
Hence, U, = Use = 0 only if e = 1, i.e., only if n = 3.
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Case 2: neven. Assumen >4 and U, =0, and let n =2"m, u > 1, m
odd. By repeated application of (6), we have

U27Lm = UQjm‘/Qjm‘/Qj+1m e V2u71m7 fOI‘ 0 § ] S u—1.

Now, by (13) and (14), ged(Usim, Vaim) = 1 or 2, and ged(Vaip,, Vain,) = 1
or 2 for i # j. Hence, gcd(Usjpm, Vaim - -- Vau—1,,) is equal to 1 or a power
of 2, and ged(Vaipm, Usin Vas+im - - - Vau—1,,) = 1 or a power of 2. It follows
that Usj,, = 0 or 20 and Vs;,, = 0 or 20 for 0 < j < u — 1. In particular,
Un=0or20and V,,=0 or 20. If @ =3 (mod 4), then, by Lemma 6 and
Case 1 above, U,, =0 or 20 only if m=1 or m=3, and if Q = 1 (mod 4)
then, by Theorem 1 and Lemma 6, V,, =0 or 20 only if m=1 or m=3.

We assume now that Q@ =3 (mod 4) or @ = R=5 (mod 8). If m =1,
Usjm = Uss is odd, so Uy # 20. If j = 1, then Uy; = U = 1 = 0O, and,
if j = 2, then Uy = R — 2Q could be a square if R =3 (mod 4). If j = 3,
then Uy; = Us = U4V} is not a square since ged(Uyg, V) = 1 and Vy # O by
Lemma 1. Hence, if m = 1, then U,, = 0O if and only if n = 2 or n = 4 and
R—-2Q =no.

If m = 3, we show first that Us4 # 0O or 20, implying that v < 2. Now,
by (7), Uay = Ug(RAUZ + 3Q%). Since ged(Us, Q) = 1, ged(Us, RAUZ +
3Q%) = 1 or 3. If Uy = 0O or 20, then since by (5), Us is odd, we have
Us = 0 or 30; however, Ug # 0O, as seen above, and 30 = Ug = U, V; implies
that V4 = 0 or 30, which is impossible by Lemma 1.

It follows that n = 2% -3, withu=1or 2. If u =1, then U,, =Us = O
iff U3 = R—Q =20 and V3 = R—3Q = 20. This is possible for Q = R=3
or 7 (mod 8). Conversely, if R — @ = 20 and R — 3Q = 20, then Ug = O.
If w= 2, then U, = U;s = UgVg = O is possible only if Uy = 20 and
Ve = 20 (Us = 0, Vs = O is not possible since V5 = £2 (mod 8)). This
implies that Us = 0, V3 = 20, Vo = 30 and Vi# — 3Q% = 60. Hence, there
exist integers x, y and z such that Us = R — Q = 22, V3 = R — 3Q = 2y
and Vo = R — 2Q = 32%. Since Q and R are odd, z is even, z is odd, and
(3Us —V3)/2 = R = 322 /2 — y? implies y is odd. We see now, however, that
Q = Vy— V3 =322 —2y?> = 1 (mod 8), contrary to our assumption that
Q=3,50r 7 (mod 8). Thus, n =2"-3 only if u = 1.

THEOREM 3. Let n > 0. If Q =1 (mod 4) and R =1 or 7 (mod 8),
then V,, =20 iff n =0, orn =3 and R — 3Q = 20O.

Proof. We note that V) =2 =20 and V3 = R — 3Q. Assume n # 0,3
and that V;, = 20. Since V,, is even, 3|n, by (5). Let n = 3°h, e > 1 and
31h. By Lemma 6, we may assume h is even. We have, from (8),

e—1
Vaen = Vi - [J (Vi = 3Q%™).
i=0



SQUARE LEHMER NUMBERS 93

It follows that V3e;, = 20 only if V}, = 0 or 30; however, V}, = O is impossible
for h even by Theorem 1 and 30 = V;, = R — 2Q (mod 8), by Lemma 1,
and this is not possible for @ =1 (mod 4) and R=1 or 7 (mod 8).

THEOREM 4. Let n > 0 and Q =3 (mod 4). Then U,, =20 iff
(i) n=0,
(ii) n=3 and R—Q =20, or
(ili) n =6, and R — Q = 0 or 20 and R — 3Q = 20 or O, respectively.

We omit the proof, since the argument is similar to those of the preceding
theorems.

We remark, in closing, that it appears likely that a different approach
may be required to prove the theorems of this paper for additional values
of @ and R. The difficulty in obtaining the result for the remaining values
is related, primarily, to the failure of Lemma 1 to hold for those additional
values, and this lemma played a key role in our proofs.
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