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1. Introduction. Let R and Q be relatively prime integers, and α and
β denote the zeros of x2 −

√
Rx + Q.

In 1930, D. H. Lehmer [4] extended the arithmetic theory of Lucas se-
quences by defining un = (αn − βn)/(α− β) and vn = αn + βn for n ≥ 0. If
R is a perfect square, {un} and {vn} are Lucas sequences and “associated”
Lucas sequences, respectively. If R is not a square, then u2n+1 and v2n are
integers, while u2n and v2n+1 are integral multiples of

√
R. If one defines

(1) Un = Un(
√

R,Q) =
{

(αn − βn)/(α− β) if n is odd,
(αn − βn)/(α2 − β2) if n is even,

and

(2) Vn = Vn(
√

R,Q) =
{

(αn + βn)/(α + β) if n is odd,
αn + βn if n is even,

then {Un} and {Vn} are seen to be the sequences {un} and {vn} with the
√

R
factor in u2n and v2n+1 suppressed, and are therefore integer sequences. The
sequences {Un} and {Vn} are known as Lehmer and “associated” Lehmer
sequences, respectively.

In this paper, we examine these sequences for the existence of perfect
square terms and terms which are twice a perfect square. Using congru-
ences, with extensive reliance upon the Jacobi symbol, we determine that
the square terms of those Lehmer sequences {Un(

√
R, Q)} for which R is

odd and Q ≡ 3 (mod 4), and for which Q ≡ R ≡ 5 (mod 8), may occur
only for n = 0, 1, 2, 3, 4 or 6. We obtain a similar result for the associated
Lehmer sequences {Vn(

√
R,Q)}, and corresponding results for the sequences

{2Un(
√

R,Q)} and {2Vn(
√

R,Q)}.
Interest in the factors of Un and Vn began with Lehmer [4] who described

the divisors of Un and Vn and gave their forms in terms of n. In 1983,
Rotkiewicz [7] used the Jacobi symbol to show that certain terms of the
Lehmer sequence {Un(

√
R,Q)} cannot be squares when certain conditions

on R and Q are satisfied. Each of Rotkiewicz’s results involves R ≡ 3
(mod 4), Q ≡ 0 (mod 4), or R ≡ 0 (mod 4), Q ≡ 1 (mod 4), and in either



86 W. L. MCDANIEL

case it is shown that the term Un is not a square if n is odd and not a square,
or n is an even integer, not a power of 2, whose greatest odd prime factor
does not divide ∆ = R− 4Q2.

The problem of determining the square terms when R is a perfect square,
i.e., in Lucas sequences and associated Lucas sequences, has been solved in
certain cases: When Q = ±1, and

√
R = P is odd or has certain even values

[1], [2], [3], and recently [6] for all Lucas sequences for which P and Q
are odd. The previously mentioned paper by Rotkiewicz contains a partial
solution for the Lucas sequence with P even and Q ≡ 1 (mod 4).

2. Preliminary results. From the definition of α and β, we have
Q = αβ, R = (α + β)2 and we define ∆ = R − 4Q = (α − β)2. It follows
readily from (1) that U0 = 0, U1 = 1, V0 = 2, V1 = 1, and these recurrence
relations hold for n ≥ 2:

Un+2 =
{

RUn+1 −QUn if n is odd,
Un+1 −QUn if n is even,(3)

Vn+2 =
{

Vn+1 −QVn if n is odd,
RVn+1 −QVn if n is even.(4)

The definitions of Un and Vn can be extended to n negative: (1) and (2)
immediately imply that U−n = −Un/Qn and V−n = Vn/Qn; we see easily
that if n 6= 0, gcd(Un, Q) = gcd(Vn, Q) = 1, so U−n and V−n are integers
only when Q = ±1. We shall require the following properties which hold for
all n and all integers R and Q, except as noted:

(5) If R and Q are odd and n ≥ 0, then Un is even iff 3 |n and Vn is even
iff 3 |n.

(6) U2n = UnVn and V2n =
{

RV 2
n − 2Qn if n is odd,

V 2
n − 2Qn if n is even.

(7) U3n =
{

Un(RV 2
n −Qn) = Un(∆U2

n + 3Qn) if n is odd,
Un(V 2

n −Qn) = Un(R∆U2
n + 3Qn) if n is even.

(8) V3n =
{

Vn(RV 2
n − 3Qn) if n is odd,

Vn(V 2
n − 3Qn) if n is even.

(9) 2Um±n =

{RUmV±n + U±nVm if m is even and n is odd,
UmV±n + U±nVm if m and n have the same parity,
UmV±n + RU±nVm if m is odd and n is even.

(10) 2Vm±n =

{VmV±n + ∆UmU±n if m and n have opposite parity,
RVmV±n + ∆UmU±n if m and n are odd,
UmV±n + R∆UmU±n if m and n are even.

(11) If j = 2uk, u ≥ 1, k odd, k > 0, and m > 0, then

(a) U2j+m ≡ −QjUm (mod V2u),
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(b) U2j−m ≡ Qj−mUm (mod V2u) if j ≥ m,
(c) V2j+m ≡ −QjVm (mod V2u),
(d) V2j−m ≡ −Qj−mVm (mod V2u) if j ≥ m.

(12) If d = gcd(m,n), then gcd(Um, Un) = Ud.
(13) If d = gcd(m,n), then gcd(Vm, Vn) = Vd if m/d and n/d are odd,

and 1 or 2 otherwise.
(14) If d = gcd(m,n), then gcd(Um, Vn) = Vd if m/d is even, and 1 or 2

otherwise.

Properties (5) through (10) are proven precisely as for the Lucas se-
quences ((6) through (10) are immediately verifiable using (1) and (2)), and
(12) is well-known. Property (11) follows readily from (6), (9), (10), (13)
and (14). Properties (13) and (14) are proven in [5].

We list, for reference purposes, the first few values of Un and Vn: U0 = 0,
U1 = 1, U2 = 1, U3 = R−Q; V0 = 2, V1 = 1, V2 = R− 2Q, V3 = R− 3Q.

3. Some preliminary lemmas. For the remainder of the paper, it is
assumed that R and Q are relatively prime odd integers, R is positive and
not a square, and that ∆ = R− 4Q > 0. (The latter condition assures that
Un > 0 and Vn > 0 for n > 0.)

Lemma 1. Let m be an odd positive integer and u ≥ 1.

(a) If 3 |m, then V2um ≡ ±2 (mod 8).

(b) If 3 - m, then V2um ≡
{
−1 (mod 8) if u > 1,
R− 2Q (mod 8) if u = 1.

P r o o f. (a) If 3 |m, then by (5) and (6), V2m = RV 2
m − 2Qm ≡ −2Q or

4R− 2Q ≡ ±2 (mod 8), and the result is immediate by induction.
(b) If 3 - m, then V2m = RV 2

m − 2Qm ≡ R − 2Q (mod 8) is odd, so
V4m = V 2

2m − 2Q2m ≡ −1 (mod 8), and the result for V2um follows by
induction.

It is also readily shown by induction on u that

(15)

(16)

V2u ≡ −Q2u−1
(mod V3) if u > 1, and

V2u ≡ −Q2u−1
(mod U3) if u ≥ 1.

Lemma 2. Let t > 0, m ≥ 0, and 12t−m > 0. Then

(i) V12t+m ≡ Vm (mod 8) and V12t−m ≡ QmVm (mod 8), and
(ii) U12t+m ≡ Um (mod 8) and U12t−m ≡ −QmUm (mod 8).

P r o o f. (i) By repeatedly using (4), we obtain

V6+m = a0V1+m + a1Vm ,
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where a0 = (R − Q)(R − 3Q) if m is odd, a0 = R(R − Q)(R − 3Q) if m
is even, and a1 = −Q(R2 − 3QR + Q2). For all odd R and Q, a0 ≡ 0
(mod 8), so V6+m ≡ a1Vm (mod 8), and it readily follows by induction that
V6r+m ≡ ar

1Vm (mod 8), for r ≥ 1. Upon letting r = 2t, we have the first
congruence of (i), since a1 is odd, and the second congruence of (i) is readily
established using V−n = Vn/Qn.

(ii) The proof of (ii) is similar to that of (i).

Lemma 3. If u > 1, the Jacobi symbol J = (V3 |V2u) equals +1.

P r o o f. Since V2u is odd, gcd(V3, V2u) = 1 so (V3 |V2u) is defined.
Let V3 = 2eN , e ≥ 1 and N odd. Then J = (2e |V2u)(N |V2u). Since
V2u ≡ −1 (mod 8) for u > 1, (2e |V2u) = +1, for all e. Hence, J =
(−1)(N−1)/2(V2u |N). By (15), V2u ≡ −Q2u−1

(mod N), so

J = (−1)(N−1)/2(−Q2u−1
|N) = (−1)(N−1)/2(−1)(N−1)/2 = +1 .

Lemma 4. If u > 1, then (U3 |V2u) equals +1.

P r o o f. By (5) and (14), gcd(U3, V2u) = 1, so (U3 |V2u) is defined. We
let U3 = 2eN , e ≥ 1, N odd, and proceed as in Lemma 3, using (16), to find
that (U3 |V2u) = +1.

Lemma 5. If n is a positive integer , then

(i) 3 |Un if and only if 3 |n and R ≡ Q 6≡ 0 (mod 3), or 4 |n and
R ≡ 2Q (mod 3), and

(ii) 3 |Vn if and only if n is odd , 3 |n and R ≡ 0 (mod 3), or n ≡ 2
(mod 4) and R ≡ 2Q (mod 3).

P r o o f. Assume n > 0 is odd. We note first that if 3 |Q, then 3 - Un and
3 - Vn, since gcd(Un, Q) = gcd(Vn, Q) = 1. Assume 3 - Q. Then either R ≡ 0
(mod 3), R ≡ Q (mod 3), or R ≡ 2Q (mod 3).

(i) If R ≡ 0 (mod 3),

Un = RUn−1 −QUn−2 ≡ −QUn−2 ≡ (−Q)2Un−4

≡ . . . ≡ (−Q)(n−1)/2U1 6≡ 0 (mod 3) .

If R ≡ Q (mod 3), then 3 divides U3 = R−Q, and it follows from (12) that
3 |Un iff 3 |n. And, if R ≡ 2Q (mod 3), then 3 divides U4 = U2V2 = R−2Q
and, since by (12), gcd(U4, Un) = U1, U2 or U4, 3 |Un iff 4 |n.

(ii) If R ≡ 0 (mod 3), then V3 = V1(RV 2
1 − 3Q) ≡ 0 (mod 3) and

by (13), gcd(V3, Vn) is divisible by 3 iff n is an odd multiple of 3. If R ≡ Q
(mod 3), then 3 |U3; however, by (14), gcd(U3, Vn) is 1 or 2 for all n, so
3 - Vn. If R ≡ 2Q (mod 3), then 3 divides V2 = R− 2Q and again, by (13),
gcd(V2, Vn) is divisible by 3 iff n is an odd multiple of 2.
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4. Squares in {Un} and {Vn}. In this section, we use for the words
“a square”.

Lemma 6. Let n be a positive odd integer.

(i) If Q ≡ 3 (mod 4), then Un = if and only if n = 1, or n = 3 and
R−Q = , and Un = 2 if and only if n = 3 and R−Q = 2 .

(ii) If Q ≡ 1 (mod 4), then Vn = if and only if n = 1, or n = 3 and
R− 3Q = , and Vn = 2 if and only if n = 3 and R− 3Q = 2 .

P r o o f. (i) Assume Q ≡ 3 (mod 4) and n > 0 is odd. We note that
U1 = 1 = 6= 2 and clearly, U3 equals or 2 iff R − Q = or 2 .
Assume n > 3 and let n = 2j +m, j = 2uk, u ≥ 1, k odd, k > 0, and m = 1
or 3. We define λ = 1 or 2 and observe that if u > 1, then, using Lemma 1,
we have (λ |V2u) = +1.

By (11a),
λU2j+m ≡ −λQjUm (mod V2u) .

Now, λUn = only if the Jacobi symbol (−λQjUm |V2u) is +1. However,
if u > 1, then (−λQjUm |V2u) = (λ |V2u)(−Um |V2u) is clearly −1 if m = 1,
and, by Lemma 4, is −1 if m = 3. If u = 1, then n = 4k +m, k odd, implies
that n ≡ −1 or −3 (mod 8); let n = 2i− t, i = 2wr, w ≥ 2, r odd and t = 1
or 3. By (11b),

λUn = λU2i−t ≡ λQi−1U1 or λQi−3U3 (mod V2w) .

Since Q ≡ 3 (mod 4),

(λQi−1U1 |V2w) = (+1)(Q |V2w) = (−1)(V2w |Q)

= − (V 2
2w−1 − 2Q2w−1

|Q) = −1 ,

and, using Lemma 4,

(λQi−3U3 |V2w) = (λQi−3 |V2w)(U3 |V2w) = −1 .

This proves that λUn 6= and therefore that Un 6= λ .
(ii) Assume Q ≡ 1 (mod 4) and n is a positive odd integer. If n = 1,

then Vn = 1 = 6= 2 , and if n = 3, then Vn = R − 3Q could be or 2 .
If n > 3, let n = 2j + m, j = 2uk, u ≥ 1, k odd, k > 0, and m = 1 or 3. As
in (i), let λ = 1 or 2. By (11c),

λV2j+m ≡ −λQjVm (mod V2u) .

We see from Lemma 1 that if u > 1, then V2u ≡ −1 (mod 8); hence, in this
case, if m = 1, then J = (−λQjVm |V2u) = −1, and if m = 3, then, by
Lemma 3, J = −1. If u = 1, then n = 4k + m with k odd, so n ≡ −1 or −3
(mod 8); let n = 2i− t, i = 2wr, w ≥ 2, r odd and t = 1 or 3. By (11d),

λVn = λV2i−t ≡ −λQi−tVt ≡ −λQi−1V1 or − λQi−3V3 (mod V2w) .
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Since Q ≡ 1 (mod 4),

(−λQi−1V1 |V2w) = −(λ |V2w)(Q |V2w) = −(V2w |Q) = −1 ,

and, using Lemma 3,

(−λQi−3V3 |V2w) = −(Q |V2w)(V3 |V2w) = (−1)(+1) = −1 ,

so λVn 6= , and therefore Vn 6= λ .

Theorem 1. Let n ≥ 0. If Q ≡ 1 (mod 4) and R ≡ 1, 5, or 7 (mod 8),
or Q ≡ 3 (mod 4) and R ≡ 1 (mod 8), then Vn = iff n = 1, or n = 3
and R− 3Q = .

P r o o f. If n is even, then Vn = only if Vn ≡ 0, 1, 4 (mod 8), and
by Lemma 1 this is possible for Q and R odd only if R − 2Q ≡ 1 (mod 8).
Hence, for Q ≡ 1 (mod 4) and R ≡ 1, 5, or 7 (mod 8), or for Q ≡ 3 (mod 4)
and R ≡ 1, 3, or 5 (mod 8), Vn 6= .

Assume n is odd. If Q ≡ 1 (mod 4) and R ≡ 1, 5, or 7 (mod 8), the
theorem is true by Lemma 6.

Assume Q ≡ 3 (mod 4) and R ≡ 1 (mod 8). If n = 1, then Vn = V1 =
1 = , and if n = 3, then Vn = V3 = R − 3Q is a square iff R − 3Q is a
square. Let n=2j + m, j =2uk, u≥1, k odd, k>0, and m=1 or 3. Then

V2j+m ≡ −QjVm ≡ −QjV1 or −QjV3 (mod V2u) .

By Lemma 1, V2u ≡ −1 (mod 8) for u > 1 and V2 = R − 2Q ≡ 3 (mod 4).
Hence, (−QjV1 |V2u)=−1 if u≥ 1 and by Lemma 3, (−QjV3 |V2u)=−1 if
u>1. That is, Vn 6= if n=2 · 2uk + 1 for u ≥ 1, m=1, or u>1, m=3.

It remains to show that Vn 6= if n = 4k + 3, k odd. In this case,
n ≡ −5, −1 or 3 (mod 12). By Lemma 2,

V12t−5 ≡ Q5V5 ≡ Q(R2 − 5RQ + 5Q2) ≡ 5 (mod 8)

and
V12t−1 ≡ QV1 ≡ 3 or 7 (mod 8) ,

and it is clear that Vn 6= in each case. If n ≡ 3 (mod 12), we write
n = 3eh, e ≥ 1, h odd, 3 - h. By using (8) repeatedly, we have

V3eh = V3jh ·
e−1∏
i=j

(RV 2
3ih − 3Q3ih) ,

for 0 ≤ j ≤ e − 1. Since V3jh |V3ih for j ≤ i, and gcd(V3jh, Q) = 1, we
have gcd(V3jh, RV 2

3ih−3Q3ih) = 1 or 3. Therefore, gcd(V3jh,
∏e−1

i=j (RV 2
3ih−

3Q3ih)) is 1 or a power of 3. Hence, V3eh = only if V3jh = or 3 for
0 ≤ j ≤ e − 1, and, in particular, Vh = or 3 . However, we have just
shown that, for h not divisible by 3, Vh = only if h = 1, and, by Lemma 5,
Vh 6= 3 .
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Taking h = 1, we have Vn = V3e = only if V3j = or 3 , for
j = 1, . . . , u−1. Now, since gcd(R,R2−3Q) = 1 or 3, = V3 = R(R2−3Q)
is possible only if R = or 3 . However, R is not a square, by assumption,
and R 6= 3 since R ≡ 1 (mod 8). It follows that V3e 6= for e ≥ 1, proving
that Vn = if and only if n = 1.

Theorem 2. Let n ≥ 0 and Q ≡ 3 (mod 4), or Q ≡ 5 (mod 8) and
R ≡ 5 (mod 8). Then Un = iff

(i) n = 0, 1, 2, or n = 3 and R−Q = , or n = 4 and R− 2Q = , or
(ii) n = 6, R−Q = 2 and R− 3Q = 2 (this implies Q ≡ 3 (mod 4),

R ≡ Q (mod 8)).

P r o o f. That Un = if (i) holds is obvious. Suppose n > 4.

C a s e 1: n odd and n ≥ 5. Assume that Un = . If Q ≡ 3 (mod 4),
then Un 6= by Lemma 6. Assume that Q ≡ R ≡ 5 (mod 8) and let
n = 2j + m, where j and m are defined as in the proof of Theorem 1. Then

U2j+m ≡ −QjUm ≡ −QjU1 or −QjU3 (mod V2u) ,

and exactly as in the proof of Theorem 1 (and using Lemma 4), we have
Un 6= except possibly if n = 4k + 3, k odd.

If n = 4k + 3, k odd, then n ≡ −5,−1 or 3 (mod 12), and by Lemma 2,

U12t−5 ≡ −Q5U5 ≡ −Q(R2 − 3RQ + Q2) ≡ 5 (mod 8)

and

U12t−1 ≡ −QU1 ≡ 3 (mod 8) ;

it is clear that Un 6= in each case. If n = 12t+3, we write n = 3eh, e ≥ 1,
h odd, 3 - h. By using (7) repeatedly, we have

U3eh = U3jh ·
e−1∏
i=j

(∆U2
3ih + 3Q3ih) ,

for 0 ≤ j ≤ e−1. By an argument essentially identical to that in Theorem 1,
we see that U3eh = only if U3jh = or 3 for 0 ≤ j ≤ e − 1, and, in
particular, Uh = or 3 . We just showed above that for h not divisible
by 3, Uh = only if h = 1, and Uh = 3 is not possible by Lemma 5.

Taking h = 1, we have Un = U3e = only if U3j = or 3 for
j = 1, 2, . . . , e − 1. We have noted that U3 may be a square and have
shown above that U9 = U2·4+1 6= . If 3 = U9 = U3(∆U2

3 + 3Q3),
then ∆U2

3 + 3Q3 = or 3 . However, since U3 = R − Q ≡ 0 (mod 8),
∆U2

3 + 3Q3 ≡ 0 + 3 · 5 ≡ −1 (mod 8) implies that ∆U2
3 + 3Q3 6= or 3 .

Hence, Un = U3e = only if e = 1, i.e., only if n = 3.
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Case 2: n even. Assume n > 4 and Un = , and let n = 2um, u ≥ 1, m
odd. By repeated application of (6), we have

U2um = U2jmV2jmV2j+1m . . . V2u−1m, for 0 ≤ j ≤ u− 1 .

Now, by (13) and (14), gcd(U2jm, V2jm) = 1 or 2, and gcd(V2jm, V2im) = 1
or 2 for i 6= j. Hence, gcd(U2jm, V2jm . . . V2u−1m) is equal to 1 or a power
of 2, and gcd(V2jm, U2jmV2j+1m . . . V2u−1m) = 1 or a power of 2. It follows
that U2jm = or 2 and V2jm = or 2 for 0 ≤ j ≤ u− 1. In particular,
Um = or 2 and Vm = or 2 . If Q ≡ 3 (mod 4), then, by Lemma 6 and
Case 1 above, Um = or 2 only if m=1 or m=3, and if Q ≡ 1 (mod 4)
then, by Theorem 1 and Lemma 6, Vm = or 2 only if m=1 or m=3.

We assume now that Q ≡ 3 (mod 4) or Q ≡ R ≡ 5 (mod 8). If m = 1,
U2jm = U2j is odd, so U2j 6= 2 . If j = 1, then U2j = U2 = 1 = , and,
if j = 2, then U4 = R − 2Q could be a square if R ≡ 3 (mod 4). If j = 3,
then U2j = U8 = U4V4 is not a square since gcd(U4, V4) = 1 and V4 6= by
Lemma 1. Hence, if m = 1, then Un = if and only if n = 2 or n = 4 and
R− 2Q = .

If m = 3, we show first that U24 6= or 2 , implying that u ≤ 2. Now,
by (7), U24 = U8(R∆U2

8 + 3Q8). Since gcd(U8, Q) = 1, gcd(U8, R∆U2
8 +

3Q8) = 1 or 3. If U24 = or 2 , then since by (5), U8 is odd, we have
U8 = or 3 ; however, U8 6= , as seen above, and 3 = U8 = U4V4 implies
that V4 = or 3 , which is impossible by Lemma 1.

It follows that n = 2u · 3, with u = 1 or 2. If u = 1, then Un = U6 =
iff U3 = R−Q = 2 and V3 = R−3Q = 2 . This is possible for Q ≡ R ≡ 3
or 7 (mod 8). Conversely, if R −Q = 2 and R − 3Q = 2 , then U6 = .
If u = 2, then Un = U12 = U6V6 = is possible only if U6 = 2 and
V6 = 2 (U6 = , V6 = is not possible since V6 ≡ ±2 (mod 8)). This
implies that U3 = , V3 = 2 , V2 = 3 and V 2

2 − 3Q2 = 6 . Hence, there
exist integers x, y and z such that U3 = R − Q = x2, V3 = R − 3Q = 2y2

and V2 = R − 2Q = 3z2. Since Q and R are odd, x is even, z is odd, and
(3U3−V3)/2 = R = 3x2/2− y2 implies y is odd. We see now, however, that
Q = V2 − V3 = 3z2 − 2y2 ≡ 1 (mod 8), contrary to our assumption that
Q ≡ 3, 5 or 7 (mod 8). Thus, n = 2u · 3 only if u = 1.

Theorem 3. Let n ≥ 0. If Q ≡ 1 (mod 4) and R ≡ 1 or 7 (mod 8),
then Vn = 2 iff n = 0, or n = 3 and R− 3Q = 2 .

P r o o f. We note that V0 = 2 = 2 and V3 = R − 3Q. Assume n 6= 0, 3
and that Vn = 2 . Since Vn is even, 3 |n, by (5). Let n = 3eh, e ≥ 1 and
3 - h. By Lemma 6, we may assume h is even. We have, from (8),

V3eh = Vh ·
e−1∏
i=0

(V 2
3ih − 3Q3ih) .
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It follows that V3eh = 2 only if Vh = or 3 ; however, Vh = is impossible
for h even by Theorem 1 and 3 = Vh ≡ R − 2Q (mod 8), by Lemma 1,
and this is not possible for Q ≡ 1 (mod 4) and R ≡ 1 or 7 (mod 8).

Theorem 4. Let n ≥ 0 and Q ≡ 3 (mod 4). Then Un = 2 iff

(i) n = 0,
(ii) n = 3 and R−Q = 2 , or
(iii) n = 6, and R−Q = or 2 and R− 3Q = 2 or , respectively.

We omit the proof, since the argument is similar to those of the preceding
theorems.

We remark, in closing, that it appears likely that a different approach
may be required to prove the theorems of this paper for additional values
of Q and R. The difficulty in obtaining the result for the remaining values
is related, primarily, to the failure of Lemma 1 to hold for those additional
values, and this lemma played a key role in our proofs.
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