COLLOQUIUM MATHEMATICUM

VOL. LXVI 1993 FASC. 1

NONCOMMUTATIVE ANALOGS OF SYMMETRIC POLYNOMIALS
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1. Introduction. Our aim is to introduce and investigate several analogs
of the (commutative) symmetric polynomials (compare [2], Section 1.2) in
the case of the semigroup algebra of the free noncommutative semigroup
with a finite number of generators—this is the algebra of noncommutative
polynomials—and in the case of the group algebra of the free noncommu-
tative group with a finite number of generators (for the free group see [3],
Section 1.2, for the (semi)group algebra see [1], Definition 5.73).

The general idea is to consider expressions of the form

E h1 hq
l’il e .’Eiq s
il:---viq

where h;’s are nonzero integers and any two consecutive ;, ;41 are different.
Remarkably, the vector spaces spanned by these functions are algebras.
Moreover, many properties of ordinary symmetric functions hold in this new
situation.
The algebras m (of Section 4) and A (of Section 7) are basic while C' and
M are variations on the same principle.

The author is indebted to Professor M. Bo/zejko for posing the problem
and helpful discussions. The author wishes to express his thanks to the
referees for useful remarks and comments.

2. Notation and terminology. We write N = {0,1,2,...}, N, =
N\{0}. We fix a commutative ring K with unit, an integer k¥ > 2 and
free generators xy,...,x; of the free noncommutative group Fy. Let P
mean the (free noncommutative) semigroup P C Fj with unit generated
by z1,...,x. The symbols K(Fy) and K(Px) denote the group algebra of
F; and the semigroup algebra of P; respectively.

We say that a subset I of noncommutative algebra A is algebraically inde-
pendent if for every aq,...,a; € I and a polynomial f of ¢ noncommutating
variables the equality f(a,...,a;) = 0 implies f = 0.

We write B < A if B is a subalgebra over K of A and K C B. Notice
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The algebra over K generated by the sum of its subset 7" and K is
denoted by Alg(T). We call a set T an algebraic basis of an algebra A <
K (Fy) if T is algebraically independent and Alg(7T) = A.

If T is a set then 7%, T denote respectively the i-fold and countable
products of T, T* = {0} for i <1, Too = Useo T

Moreover, if a;’s belong to an algebra with unit 1 and with zero 0 then we
put [T;_, a; = a1az ... a; if i € Ny (notice the ordering of a;’s), [],cp ar = 1,
D tep @t = 0.

A sequence (it)g:p, where p, ¢ are integers, is usually denoted by i, 4,
ipq =0 for p>gq.

The symbol |...] denotes the operation of “writing in” elements of a finite
sequence into a sequence, that is,

(coosa,fipgliby o) = (oo, ayipyipit, - nyig, b)),
for instance (...,1,[(2,3)],4,...) =(...,1,2,3,4,...).
Forippirq € {1,...,k}oo, Arriq € Zoo and o € {—1, 1} we set

q

hrryq _ Rt _ q
xip,pﬁ-q - Hxip+t ) (thr_i_q - (ahr+t)t:0
t=0

and we let 1, 1, € {1}9"! be the sequence consisting of 1’s.

We say that the condition W (ij, p4+4) holds iff p,q € Z, —1 < q, ip ptq €
{1,...,k}7"! and any two consecutive i;, i;41 are different.

Let I(y) be the length of a reduced word z, where z = y € Fj, (compare
[3], Chapters 1.4 and 1.1). Every function f € K(Fj) can be written in a

unique way as
f = Z ayy,
yEFy

and we set d(f) = max{l(y) : ay # 0}, d(0) = oo.

The characteristic function of {0} C Z is denoted by 9.

In the following to denote the value of a function f at an element which
is a sequence (ip, . .. ,i,) we often write f(ip, ..., i) instead of f((ip,..., 1))
and this should not be misleading.

3. Auxiliary definitions. For calculating coefficients in the products
of our symmetric functions we need a useful function L. In the proofs that
some sets are algebraic bases we apply the orderings <1, ..., <4 defined be-
low, and the functions I; and Iy are used in proving algebraic independence
and in defining <3 and <4.

Notice that L below depends only on its first argument and on whether
other arguments are 0 or not.
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3.1. DEFINITION. The function L : N x Z* — K is given by
1 if a =0,
0 if ab # 0,
) (k=1)at if b= 0 and ac # 0,
L(a,b,c,d,e) = (k—2)(k—1)2"1 ifb=c=0and a#0 # de,
(k—1)° if b =c=de=0and a(d® + €?) # 0,
k(k —1)21 ifb=c=d=e=0and a #0.

Notice that I; and Is below are injections.
3.2. DEFINITION. (a) Let I; : (Z\{0})so — (Z\{0})s be given by induc-

tion as follows: if ¢,r € Ny, z € Z\{0}, 21,4 € (Z\{0})? and I1(21,4) = €1,»
then I1(0) = 0, I1(z) = sgn(z)1; ||, and

([e1,r—1] &r +sgn(2), [sgn(2)11,|2)-1])
I([#1,4], 2) = if sgn(e,) = sgn(z),
([e1,r], [sgn(2)1y)4]) if sgn(e,) = —sgn(z).
(b) Let Is : ({—1,1}o0)o0 — (Z\{0})x be given by the following induc-
tion: if r € Ny, h € {—1,1}0, 7 € ({—1,1}0)o0\{0} and I5(j) = €1, then
I;(0) =0, Ir(h) = (1, [h]), and
I([5], 1) = ([e1,r—1],&r + sgn(er), [sgn(er)h]) .
3.3. DEFINITION. We define orderings <i, <3 and <3 on (Z\{0})s. Let
hi,q # l1,s € (Z\{0})so. In the following for nonempty hq 4, 1 s we write
v =min{t € {1,2,...,min{q, s}} : he # l;}.
We define:

(a) hig <1 lis iff th:l |he| > Zi:l |lu| or (23:1 |he| = 22:1 |lu| and
(|hy| < |lu] or (|hy]| = |l,| and w;y holds))). The condition w; is chosen to

make <; a linear ordering; for instance, wy holds iff h, = -1, > 0.
(b) hi,q <2 1y iff Zgzl |he| > Zi:l |lu| or (Zgzl |he| = 22:1 |lu| and
(|hy] > |lu| or (Jhy| = || and ws holds))), where wy is a condition making

<5 linear; for instance, ws is equivalent to w;.
(C) th <3 ll,s iff Il(hl,q) <2 Il(ll,s)-
3.4. DEFINITION. A linear ordering <4 on ({—1,1}x )0 is given by the
following formula:
h<4l iff Ia(h) <2 I2(1),
where h,l € ({—1,1}o0)o0-

4. The algebra m. We now introduce our first version of symmetric
functions. These are functions S(h) € K(Fy) (Definition 4.1) which are anal-
ogous to complete symmetric functions. The crucial Lemma 4.2, expressing
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the product of two S(h)’s as a linear combination of S(h)’s, shows that the
linear subspace m of K (F) spanned by the S(h)’s is in fact a subalgebra.

Then we introduce two subsets n, e, which are analogs of the polynomials
o z! and of elementary symmetric polynomials respectively. It turns out
that both these sets are algebraic bases of m. Moreover, the Euler formula
holds.

At the end we remark that m consists of functions invariant under a
length preserving action of a product G of permutation groups.

4.1. DEFINITION. If h = () or h is a finite sequence of zeros then S(h) = 1,

and
Sy = >
W (j1,s)
for other h € Z,, where the sequence l; , arises from h by omission of zeros.
The vector space spanned by the S(h)’s is denoted by m.
Every element f € m can be written in a unique way as

f= Y anS(h),
hE(Z\{0}) oo

where aj, € K. We call aj, the coefficient of S(h) in f.
Practical use of the following Lemma 4.2 is made easier by the fact that
if hg41—u + 1y # 0 for an index u then

t—1
Z\hqﬂfw-f—lw\#o fort > u,

w=1
t—1
L<t7 Z |hq+1—w + lw‘7 hq+1—t + lt7 q—t,s— t) =0
w=1

and we actually sum over t until h;1q + Iy # 0.

4.2. LEMMA. Let ¢,s € N, hy 4, l1s € (Z\{0})oo and lp = hgy1 = 0.
Then

min(q,s) t—1
S(hi)She) = Y L(t,z|hq+1_u—I—lu|,hq+1—t+lt,q—t,s—t)
t=0 u=1

“S([h1,g—t)s hgr1—t + e, [lLis1,s)) -

Proof. If ¢ = 0 then S(0)S(l; 5) = S(l1,s), and similarly for s = 0. Let
¢,s > 1. Set v =max{t € {0,1,...,min(q,s)} : hgp1 +lo=hg+ 1L =... =
hq+1_t + lt = 0} If v =0 then

S(h1,¢)S(l1,s) = S([h1,q)s [l1,5]) + S([P1,g-1], hg + 11, [l2,5]) -
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Let v > 0. Then
S(hl,q)S(ZI,S)

=( X ) (X )= Xl

W(ilyq) W(jl,s) W(il,q+5)

Fle=2) 30l
W(i1,q4+s—2)

hl q—2] l ,S
tk-2)k-1) > altmebley
W (i1,q+s—4)

t ([h1,q—1—¢].[le+2,5])
+ (k - 2)(k - 1) Z xil,q+s—2(t+l) .
W(il,q+572(t+l))

v— h ,q—v W[l S
(k= 2)(k = 1" Cipiy ) T g0

; ([h1,qg—v—1]hg—vtlot1;[lot2,s])
+ (k o 1) ZW(il,tﬁ-S—l—Qv) xi1<,lll+qs—1—12v ’ o "

if v < min{g, s},

v ([h1,q—v],llot1,s])
(k - 1) ZW(i1,q+s—2v) xiE,qlﬁ»qsz}v[ o }

if v = min{q, s} < max{q, s},
k(k—1)v—1! ifv=¢g=s.m

4.3. COROLLARY. m < K(Fy). m

4.4. DEFINITION. We put n = {Zle z! 1€ Z\{0}}. These are analogs

of the polynomials Y, z!.

4.5. THEOREM. (a) Alg({f € n: d(f) <i}) = Alg({g € m : d(g) < i})
for every i € N.
(b) Alg(n) = m.

Proof. To show that if ¢ € N, hy 4 € (Z\{0})? and S(h1,4) € {g € m :
d(g) < i} then S(hy4) € Alg({f € n:d(f) < i}) we apply induction on g.
We have S(hy,1) € n. If ¢ > 1 then, by Lemma 4.2,

S(th) = S(hl)S(th) — L(]., 0, hl —|— hg, 0, q— 2)S(h1 + hz, [hg,q])

e Alg({f €n:d(f) <i}) by the inductive assumption. m

4.6. THEOREM. The set n is algebraically independent. Thus it forms an
algebraic basis of m.

Proof. Every polynomial f over K with elements of n as noncommu-
tative variables is of the form

f= > an, ,P(h1,q)

qEN,thE(Z\{O})o@
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where ap, , € K, P(h14) = [[{_; S(h:) and all but finitely many aj, , are
equal to 0.

All the elements S(l1,5) € K(Fy), where l; 3 € (Z\{0})so, appearing
with nonzero coefficients in P(hy 4) € K(F) for an hy 4 € (Z\{0})oo, satisfy
Sty Thel =300 1 |l If equality holds then every [, is a sum of some h;’s
which are of the same sign and

(Il1] > |h1| or (I3 = hy and |la| > |h2]) or

(i = hy and ls = ho and |l3] > |hs|) or ... or

(4 =hy and Iy = hg and ... and l; = hy)),
which means that hy 4 <1 11 s.

Therefore, S(l1,s) appears with coefficient 0in P(h; ) € K(Fy) if by g >1
ll,s and ll,s 7é hqu.

Now, by induction in (Z\{0})s with respect to <;, one can show that
an, , is the coefficient of S(hy ) in f and therefore as, , = 0. =

4.7. DEFINITION. Let e = {S(sgn(i)1; ;) : @ € Z\{0}}; these are analogs
of elementary symmetric polynomials.

4.8. PROPOSITION (Euler formula). If i € N; and e € {—1,1} then

D (=1)'S(el14)S(e(i — 1) =Y (—1)'S(e(i — 1)) S(el14) = 0.

t=0 t=0

Proof. It suffices to apply Lemma 4.2 and to consider the differences
between the products for t and t + 1. m

4.9. PROPOSITION. (a) Alg({f € e : d(f) < i}) = Alg({g € m : d(g)
<i}) for every i € N.
(b) Alg(e) = m.

Proof. (a) is a consequence of Theorem 4.5 and Proposition 4.8. =

4.10. THEOREM. The set e is algebraically independent. Thus it forms
an algebraic basis of m.

Proof. Let
Q(hg) = [[S((h))  for hy € (Z\{0})

(I is defined in 3.2) and let
f= > an, ,Q(h1,4) =0,

CIGN:hl,qE(Z\{O})oo

where ap,, . € K and all but finitely many ay, , are 0.
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All the elements S(l; ;) € K(Fy), where l; s € (Z\{0})s, which have
nonzero coefficients in a fixed Q(h1 4), satisfy

q s
=D PNIME
t=1 u=1

If equality holds then every [, is a sum
L, = sgn(hy) +sgn(heg1) + ... +sgn(hy),
with all signs equal to 1 or all signs equal to —1. Therefore, I1(h1,4) <2 11 .
Moreover, the coefficient of S(I;(hi 4)) in Q(h1,4) is 1.
Finally, one can apply induction in (Z\{0})s with respect to <3 and

show that each ay, , is the coefficient of S(I1(h1,4)) in f and therefore ap,
=0.m

4.11. Remark. The algebra m consists of functions invariant under a
length preserving action of the group G = S, x (Sx—1)>° on K (F}), where S;
denotes the permutation group of {1,...,l}. The action does not preserve
multiplication in Fy for & > 2. It is defined as follows.

Let i(j) =i —1+sgn(j — 1) for 4,5 € N and let

¢ :{i1,q:q € Ny and W(iy4) holds} — {1,...,k} x {1,...,k =1}
be defined by the formula
Plir,q) = (i1, i2(i1), i3(i2), - -, iq(ig—1)) -

Notice that ¢ is a bijection.
The group G acts on K(IFy) in the following way:

(0f)e) = f(e), (i) = Flahit,pi )

where f € K(Fy), 0 € G, ¢ € Ny, W(i14) holds, hy, € (Z\{0})? and e
denotes the unit of Fy.

5. The algebra C'. We study a second version of symmetric functions:
linear combinations of Sc(h)’s (Definition 5.1). This again turns out to be
an algebra with a basis ec. The elements of C are functions invariant under
a length preserving action of a group Ge¢.

5.1. DEFINITION. (a) Let Sc(h) € K(Fy) be defined as follows: Sc(h) =
1 € K(Fy) if h = 0 or h is a finite sequence of zeros, and Sc(h) = S(h) +
S(—h) for other h € Zy. These are analogs of the complete symmetric
functions.

(b) The set C of all linear combinations of Sc(h), where h € Zo, is an
analog of the set of symmetric polynomials.
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Every element f € C can be written in a unique way as

= > anSc(h),

he{D}UN, x (Z\{0})oo

where aj, € K. We call a;, the coefficient of S¢(h) in f.

To make the use of the following Lemma 5.2 easier notice that if hg4q1—,+
ely # 0 for 1 < wu <t then L.y = 0, and in the formula of Lemma 5.2 we
actually sum over ¢ until hgy1_; + €l # 0.

5.2. LEMMA (an application of Lemma 4.2). Let ¢,s € N, hy 4,015 €
(Z\{0})oo, lo = hgt1 =0, and fore € {—1,1}, t € {1,2,...,min(q, s)} let

t—1
Ley = L<t, Z |hgt1—u + €luls hgr1—t +ele,q — £, s — t) )

u=1

Set = Sc([hi,g—t]s hgr1—t +€ly, [eli15]) -

Then
min(q,s)
SC(hl,q)SC(ll,s) — Z Z 25(d(Sg,t))—5(¢1+s)
ec{-1,1} t=0
(1 —=0(gs+1+¢€))LctSecr. m

5.3. COROLLARY. C < K(F). =

5.4. DEFINITION. The set ec € C we now define is the analog of the

set of elementary symmetric polynomials. Let
ec = {Sc(h) :he {—1, 1}00} .
5.5. PROPOSITION (an application of Lemma 5.2). Let ¢ € Ny, hy 4 €
(Z\{0})oo\{—1,1}oo and v =min{t € {1,...,q} : hy € {—1,1}}. Then
SC(hl,q) = SC([hl,v—l]a sgn(hy))Sc(hy —sgn(hy), [hv-l-l,q})
- Z Sc([h,v-1],sgn(he), e(hy — sgn(hy)), €[hut1,q])
ee{-1,1}
- 25(‘h”|+q_3)L(1,0, 2sgn(hy) — hy,v — 1,9 — v)
- Sc([h1,v-1],28gn(hy) = by, —[hot1,q])
min(v,q+1—v)
- Z Z Lle,tSé,ta
ee{—1,1} t=2

where L, ; and S, , are as in Lemma 5.2. =
5.6. THEOREM. (a) Alg({f € ec : d(f) <i}) = Alg({g € C : d(g) < i})

for every i € N.
(b) Alg(ec) = C.
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Proof. First Alg({f € ec : d(f) <0}) = K = Alg({g € C : d(g) < 0}).

Let (a) hold for i < j, where j > 0. To show that if hy , € (Z\{0})so
and d(Sc(h14)) < j then Sc(hi,4) € Alg({f € ec : d(f) < j}), apply
Proposition 5.5 and induction in (Z\{0}),, with respect to <;. m

5.7. THEOREM. The set ec is algebraically independent. Thus it is an
algebraic basis of C.

Proof. Let

q
f= > an,, [ [ Se(1,[h)) =0,

hi,e€({—1,1}o0) oo t=1
where ap, . € K and all but finitely many ay, , are 0.

To show that every ap, , = 0 it is enough to apply induction in
({—1,1}00)o0 With respect to <4 showing that ap, , is the coefficient of
Sc(I2(h1,q)) in f and therefore ap, , = 0, similarly to Theorems 4.6 and
4.10. m

5.8. Remark. The algebra C' consists of functions invariant under the
following length preserving action of the group Go = G x Zs on K(Fy),
where Zs = ({—1,1},-) (compare Remark 4.11): if 0 € G, ¢ € {—1,1},
W (i1,4) holds, hy 4 € (Z\{0})? and f € K(FF}) then

(0.) ) @iy = (o f) (@it

6. The algebra M. We give a third version of analogs: an algebra
M with bases N and E. Elements of M are invariant under an action of a
group Gyy.

6.1. DEFINITION. (a) We now define functions Sys(h) € K(Fj) which are
analogs of the complete symmetric functions. Let Sys(h) = 1 if either h = ()
or h is a finite sequence of zeros, and

Su(h)= > S(eih,...,dls)
e1,s€{—1,1}*
for other h € Z, where the sequence [; , is obtained from h by omission of
ZEros.
(b) The set of all linear combinations of the Sy (h), where h € Zo, is
denoted by M. This is an analog of the algebra of symmetric polynomials.

Applying Lemma 4.2 we have

6.2. LEMMA. Let q,s € N, hl,qall,s S (Z\{O})Oo and hq+1 =lgp=¢0=0.
Then

min(g,s)

Sm (hlq SM lls = Z Z Qt_1+5(hq+1—t+€tlt)

t=0 €1, te{ ll}t
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t—1

) L(t, Z ’hq—i-l—u + Eulu‘y hq—i—l—t + Etlh q— t, s — t)

u=1

’ SM([hl,q—t]a hq+1—t + e¢ly, [lt—‘rl,s]) .

Similarly to Lemmas 4.2 and 5.2 we can stop the summation in Lemma
6.2 when hgy1-¢ + €4ly # 0 (compare remarks before 4.2 and 5.2).

6.3. COROLLARY. M < K(Fi). =

6.4. DEFINITION. We now define a set N C M which is an analog of the
set of the polynomials >, zt. We put N = {Sy(i) : i € N }.

6.5. THEOREM. (a) Alg({f € N : d(f) <i}) = Alg({g € M : d(g) < i})
for every i € N.
(b) Alg(N) = M.

Proof. Lemma 6.2 implies that
Snr(h1,q) = Sar(h)Sar(haq)
— Z 25(h1+6h2)L(1,0,h1 +€h2,0,q — Q)SM(hl +€h2, [hg’q])
ee{-1,1}
for 2 < ¢ € Nand hy 4 € (Z\{0})s. To prove that Sy;(hi,) € Alg({f €
N :d(f) <i})if d(Sp(ha,q)) < i, use induction on ¢. m
6.6. THEOREM. The set N is an algebraic basis of M.

Proof. To show the algebraic independence apply induction with re-
spect to <y considered in (N4 ) (compare Theorem 4.6). m

6.7. DEFINITION. We define a set £ C M which is an analog of the
elementary symmetric polynomials. We put E = {Sy(11 4) : ¢ € N4}

The connection between elements of E and NV is given in Proposition 6.8
which follows from Lemma 6.2.

6.8. PROPOSITION (Euler formula). Let i € Ny and e € {—1,1}. Then

> (=1)!Sn(11,4)Sar(i — t)

t=0
i—1
=3 (~1)"2°CTOL(1L,0,0 — 1=t — 1,080 (11 41,0 — 1 — t)
t=1
and

S (1) s (1) (L1.-1)

t=0
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1
(=1)t2°C=1=D(1,0,t — 1,0, —t — 1)Sy(t — 1,115 41). m
1
6.9. THEOREM. (a) Alg({f € E:d(f) <i}) = Alg({g € M : d(g) < i})
for every i € N.
(b) Alg(E) = M.

%

t

Proof. (a) We apply Theorem 6.5, Proposition 6.8 and induction on i. m

6.10. THEOREM. The set E is algebraically independent. Thus it is an
algebraic basis of M.

Proof. This follows from Theorem 5.7 because

Sullig)= > Sc(lfe]) forgeN;. m
ee{-1,1}a—-1

6.11. Remark. The algebra M consists of functions invariant under
the following length preserving action of the group Gy = G X (Z2)*> on
K(Fy) (compare Remarks 4.10 and 5.8): if 0 € G, ¢ = (g4)2, € (Z2)*°,
W (i1,4) holds, hy 4 € (Z\{0})? and f € K(FFy) then

() )(@lr) = (o f) (@l o)y

7. The algebra \. We give a version of analogs in the case of the algebra
K (PPy) which consists of noncommutative polynomials. We introduce an
algebra A with algebraic bases e) and ny; the Euler formula also holds in
this setting. The algebra A consists of polynomials invariant under the action
of the group G on K (P). We show, in the case of k > 2 generators, that the
algebra Aperm of noncommutative polynomials invariant under permutations
of generators cannot be generated by a sum of A and a finite number of
elements of Aperm.

7.1. DEFINITION. (a) We introduce analogs A, ey and ny of the sets of
symmetric polynomials, elementary symmetric polynomials and the polyno-
mials >, 2! respectively:

A=mNK(Py), ex=enK(P;) and ny=nnK(Py).

(b) The functions S(h) € K(Py) for h € N, are analogs of the complete
symmetric functions.

7.2. LEMMA (a special case of Lemma 4.2). Let ¢,s € N, hy 4,015 €
(Ni)oo and lo = hgy1 = 0. Then

S(h1,¢)S(l1,s) = S([h1,q]; ll1,s]) + (1 = (gs))S([h1,g-1], g + 11, [l2;s]) - m
7.3. COROLLARY. A < K(Py). m
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7.4. PROPOSITION (follows from Lemma 7.2). Let ¢ € Ny and hy 4 €
(Ni)oo- Then

S(hi,q) DS (hy + ha + .o 4 h)S(hiy1 )

MQ
I—\H

:Z qt1Shlt)S(ht+1+ht+2+...+hq).l
t=0

7.5. THEOREM. (a) (an application of Proposition 7.4 and induction

on q). Alg({f € ny : d(f) < i}) = Alg({g € A : dlg) < i}) for every
teN.

(b) Alg(ny) = Alg()). =

7.6. THEOREM. The set ny is an algebraic basis of .

Proof. The fact that n) is algebraically independent follows from The-
orem 4.6 because ny Cn. m

7.7. PROPOSITION (Euler formula). If i € Ny then

7 %

S 181108~ 1) = S-S — 1)S(11.) = 0.
t=0 t=0
Proof. This is a special case of Proposition 4.8 ife =1. m
7.8. THEOREM. (a) Alg({f € ex : d(f) <i}) = Alg({g € A : d(g) < i})
for every i € N.
(b) Alg(ex) = Alg(A).
Proof. (a) We apply Theorem 7.5, Proposition 7.7 and induction on i. m
7.9. THEOREM. The set ey is an algebraic basis of A.

Proof. The algebraic independence of ey follows from Theorem 4.10
because ey C e. =

7.10. Remarks. (a) The algebra A consists of functions invariant under
the length preserving action of the group G on K(Pj) (compare Remark
4.11).

(b) M <C <m and A < m.

We denote by Aperm < K (Pj) the subalgebra composed of functions
invariant under permutations of the generators x1, ...,z of Px. It is clear
from the definitions that A < Aperm. Moreover, A = Aperm for k = 2, which
is essential in the proof of the following theorem.

7.11. THEOREM. If k > 2 then the algebra Aperm cannot be obtained as
an algebra generated by A and a finite number of elements of Aperm-
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Proof. Let t € Ny, fi,...,ft € Aperm\{O}, T = AU {f1,..., ft} and
r = max{d(f,) : v € {1,...,t}} + 1, where the degree d(f,) is defined in
Section 2.

In order to show that Apeym\ Alg(T) # 0 we consider

h = szxgxz € Aperm -
1]
It is clear that h(z1zhx1) = 1 # 0 = h(z12523). We prove that h ¢ Alg(T).
Let p € Ny and let g, € T\K for v € {1,...,p}. For every s € N we
obtain
gp(w371) = gp(a573)
because g, € Aperm and

gp(z12571) = gp(@12573)
because if one of g,(z12521), gp(r12523) is nonzero, then d(g,) > r and
gp € A. Therefore,

(9192 - gp)(@125%1) = (9192 - - - gp) (12573) -
This yields that the function h cannot be a linear combination of such prod-
ucts gi1g2 . . . gp, which means that h ¢ Alg(T). m
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