COLLOQUIUM MATHEMATICUM

VOL. LXVI

1993

FASC. 2

ON EXTENSION OF THE GROUP OPERATION OVER THE ČECH-STONE COMPACTIFICATION

$_{\rm BY}$

JAN JELOWICKI (WROCŁAW)

The convolution of ultrafilters of closed subsets of a normal topological group \mathbb{T} is considered as a substitute of the extension onto $(\beta \mathbb{T})^2$ of the group operation. We find a subclass of ultrafilters for which this extension is well-defined and give some examples of pathologies. Next, for a given locally compact group \mathbb{L} and its dense subgroup \mathbb{G} , we construct subsets of $\beta \mathbb{G}$ algebraically isomorphic to \mathbb{L} . Finally, we check whether the natural mapping from $\beta \mathbb{G}$ onto $\beta \mathbb{L}$ is a homomorphism with respect to the extension of the group operation. All the results involve the existence of R-points.

0. Notation. We use the following notation: $\operatorname{card}(X)$ is the cardinality of a set X; ω is the first infinite cardinal as well as its ordinal type; **c** is 2^{ω} . For any topological space \mathbb{T} we denote the operators of closure, interior and boundary in \mathbb{T} by $\operatorname{cl}_{\mathbb{T}}$, $\operatorname{int}_{\mathbb{T}}$ and $\operatorname{bd}_{\mathbb{T}}$. Open-closed sets are briefly named clopen. Nwd means "nowhere dense". $F^{\rightarrow}X$ and $F^{\leftarrow}X$ are the image and preimage of a set X under a function F.

Let $\mathbf{Z}(\mathbb{T})$ be the ring of closed subsets of a given normal space \mathbb{T} . The *Stone space* $\mathbf{S}(\mathbb{T})$ over \mathbb{T} is the space of ultrafilters on $\mathbf{Z}(\mathbb{T})$ with topology introduced by the closed base $\{\{u \in \mathbf{S}(\mathbb{T}) : X \in u\} : X \in \mathbf{Z}(\mathbb{T})\}$. It is well known that $\mathbf{S}(\mathbb{T})$ is homeomorphic to the Stone–Čech compactification $\beta \mathbb{T}$ of \mathbb{T} [4, pp. 11–19], [5]. In the present paper they are identified. We treat \mathbb{T} as a subset of $\beta \mathbb{T}$. Hence, any $t \in \mathbb{T}$ is identified with the principal ultrafilter $\{X \in \mathbf{Z}(\mathbb{T}) : t \in X\}$. The set $\beta \mathbb{T} \setminus \mathbb{T}$ is called the *growth*.

All spaces considered are assumed to have a countable base.

In the paper \mathbb{L} is a locally compact topological group with group operation + and neutral element e, while \mathbb{G} is its dense subgroup. Basic results on topological groups [3] yield normality and translation-invariant metrizability of \mathbb{L} .

¹⁹⁹¹ Mathematics Subject Classification: Primary 54D35, 54H11; Secondary 03E99, 22D99.

 Ψ is the continuous extension onto $\beta \mathbb{G}$ of the canonical injection $\mathbb{G} \to \beta \mathbb{L}$, $q \mapsto q$. We denote the set $\Psi^{-}(\beta \mathbb{L} \setminus \mathbb{L})$ by \mathbb{G}_{∞} and $\Psi^{-}(\mathbb{L})$ by $\beta \mathbb{G}_{\text{fin}}$.

1. Imbedding $\beta \mathbb{G} \to \beta \mathbb{L}$. In this section the algebraic structures of \mathbb{L} and \mathbb{G} are not taken into account.

For each $U \in \beta \mathbb{G}$ let $\overline{U} = \{ cl_{\mathbb{L}}(X) : X \in U \}.$

PROPOSITION 1.1. (a) For every $U \in \beta \mathbb{G}$, \overline{U} has a unique extension to an ultrafilter from $\beta \mathbb{L}$.

(b) Let $U \in \beta \mathbb{G}$ and $u \in \beta \mathbb{L}$. Then $\Psi(U) = u$ if and only if $\overline{U} \subseteq u$.

Proof. (a) Suppose that $u_1, u_2 \in \beta \mathbb{L}$, $\overline{U} \subseteq u_1$, $\overline{U} \subseteq u_2$ and $u_1 \neq u_2$. Fix disjoint $V_i \in u_i$ (i = 1 or 2) with nonempty interiors. Both sets $\mathbb{G} \cap V_i$ meet every element of U. This contradicts the fact that U is an ultrafilter.

(b) (\Rightarrow) Assume that $\Psi(U) = u$. Let $X \in \mathbf{Z}(\mathbb{G})$ be an element of U. Then $U \in \mathrm{cl}_{\beta\mathbb{G}}(X)$ and hence $u \in \Psi^{\rightarrow}(\mathrm{cl}_{\beta\mathbb{G}}(X))$. Since $\Psi^{\rightarrow}(\mathrm{cl}_{\beta\mathbb{G}}(X))$ is compact we get $\mathrm{cl}_{\mathbb{L}}(X) = \Psi^{\rightarrow}(\mathrm{cl}_{\beta\mathbb{G}}(X)) \in u$.

(⇐) Suppose that $\overline{U} \subseteq u$. If $\Psi(U) = v$, then $\overline{U} \subseteq v$ and u = v by (a).

PROPOSITION 1.2. Let $u \in \beta \mathbb{L}$. Then $\operatorname{card}(\Psi^{\leftarrow}\{u\})$ is either 1 or $2^{\mathbf{c}}$.

Proof. If $u \in \Psi^{-}(\mathbb{G})$, its preimage is obviously one-element. Otherwise $\Psi^{-}\{u\} \subseteq \beta \mathbb{G} \setminus \mathbb{G}$. If it is infinite, one can find its countable discrete subset E. Since $\Psi^{-}\{u\}$ is a closed subset of $\beta \mathbb{G} \setminus \mathbb{G}$, $E \in \mathbb{Z}(\mathbb{G} \cup E)$. $\mathbb{G} \cup E$ is normal as it is a regular Lindelöf space. Hence $cl_{\beta \mathbb{G}}(E) \cong \beta E \cong \beta \omega$. In particular, $card(\beta E) = 2^{c}$.

Suppose now that $\Psi^{-}\{u\} \subseteq \beta \mathbb{G} \setminus \mathbb{G}$ is finite and contains $n \ (n > 1)$ elements U_1, \ldots, U_n . There are pairwise disjoint closed sets $V_i \in U_i, 1 \leq i \leq n$. By Proposition 1.1(b), $V = \operatorname{cl}_{\mathbb{L}}(V_1) \cap \ldots \cap \operatorname{cl}_{\mathbb{L}}(V_n) \in u$. Note that $V = \operatorname{bd}_{\mathbb{L}}(V) \subseteq \mathbb{L} \setminus \mathbb{G}$. As stated above, \mathbb{L} is a metric space and hence V is G_{δ} . Fix any sequence $\{G_i\}$ of open subsets of \mathbb{L} such that $\operatorname{cl}_{\mathbb{L}}(G_{i+1}) \subseteq \operatorname{int}_{\mathbb{L}}(G_i)$ and $\bigcap \{G_i : i < \omega\} = V$. It can be assumed that $G_1 \cap \mathbb{G} \subseteq V_1$ (one could take $\operatorname{int}_{\mathbb{G}}(V_1) \neq \emptyset$). We define

$$V' = \bigcup \{ \operatorname{cl}_{\mathbb{G}}(G_{4n} \setminus G_{4n+1}) : i < \omega \},$$
$$V'' = \bigcup \{ \operatorname{cl}_{\mathbb{G}}(G_{4n+2} \setminus G_{4n+3}) : i < \omega \}.$$

Note that $V' \cup V'' \subseteq V_1$, $V' \cap V'' = \emptyset$ and $V \subseteq cl_{\mathbb{L}}(V') \cap cl_{\mathbb{L}}(V'')$. Hence at least one of V', V'' is not a member of U_1 and we have got an (n + 1)th element of $\Psi^-\{u\}$. This proves that the only possible finite cardinality of $\Psi^-\{u\}$ is 1. \blacksquare

DEFINITION 1.3. (a) $U \in \beta \mathbb{G}_{\text{fin}} \setminus \mathbb{G}$ is regular if there is $\mathfrak{u} \in \beta(\mathbb{L} \setminus \{\Psi(U)\})$ such that $U = \{\mathbb{G} \cap A : A \in \mathfrak{u}\}.$

(b) $U \in \mathbb{G}_{\infty}$ is regular if there is $\mathfrak{u} \in \beta \mathbb{L}$ such that $\{U\} = \Psi^{\leftarrow} \{\mathfrak{u}\}$.

2. Remote points in $\beta \mathbb{T}$ **.** Let \mathbb{T} be any normal space.

DEFINITION 2.1. An ultrafilter $Z \in \beta \mathbb{T}$ is a *remote point* (*R-point*) if it does not contain any nwd set. Z is a *far point* if it does not contain any discrete set.

The following R-point existence theorem is due to van Douwen [1]:

THEOREM 2.2. If \mathbb{T} has a countable base then every nonvoid G_{δ} subset of $\beta \mathbb{T}$ included in $\beta \mathbb{T} \setminus \mathbb{T}$ contains $2^{\mathbf{c}} R$ -points.

Since \mathbb{L} has a countable base we have

COROLLARY 2.3. There are R-points in the growth of any noncompact dense-in-itself subset of \mathbb{L} . In particular, for any $u \in \mathbb{L} \setminus \mathbb{G}$, $\Psi^{-}\{u\}$ contains R-points.

For given $X \subseteq \mathbb{L}$ and $a \in \mathbb{L}$, X + a is defined by $\{x + a : x \in X\}$.

DEFINITION 2.4. Let $T, U \in \beta \mathbb{G}$. T is similar to U if there is $r \in \mathbb{L}$ such that $T_r(A) = \mathbb{G} \cap \operatorname{cl}_{\mathbb{L}}(A - r) \in T$ for any $A \in U$.

PROPOSITION 2.5. (a) Any ultrafilter similar to a regular R-point is a regular R-point.

(b) Similarity of regular R-points is an equivalence relation.

Proof. (a) Let T be an ultrafilter similar to a regular R-point U. There is $r \in \mathbb{L}$ such that $T_r(A) \in T$ for $A \in U$. Let N be a nwd subset of \mathbb{L} . By regularity of U there exists $M \in U$ whose closure in $\mathbb{L} \setminus \{\Psi(U)\}$ is disjoint from N + r. Then $T_r(M) \in T$ and $T_r(M) \cap N = \emptyset$. Hence T is a regular R-point.

(b) Let $S, T, U \in \beta \mathbb{G}$ be regular *R*-points. It is clear that similarity is reflexive. To prove symmetry suppose that *S* is similar to *U*. There is $r \in \mathbb{L}$ such that $T_r(A) \in T$ for all $A \in U$. Suppose that $B \in T$ and $T_{-r}(B) \notin U$. There is $C \in U$ which does not meet $T_{-r}(B)$. Although the set $T_r(T_{-r}(B)) \cap T_r(C)$ is not necessarily void, it is nwd and avoids a certain element of the regular *R*-point *U*. Since *B* and $T_r(T_{-r}(B))$ are equal up to a nowhere dense set, there is an element of the regular *R*-point *T* which is disjoint from $T_r(C)$, which contradicts the assumption of similarity.

Assume now that S is similar to T and T is similar to U. There are $q, r \in \mathbb{L}$ such that $T_r(A) \in T$ for any $A \in U$ and $T_q(B) \in S$ for any $B \in T$. Let $A \in U$. By regularity of U there is $C \in U$ which avoids $\mathrm{bd}_{\mathbb{L}}(\mathrm{cl}_{\mathbb{L}}(A))$. One can assume that $C \subseteq A$ (in the other case take $C \cap A$). Note that $T_r(T_q(C))$ is a subset of $T_{q+r}(A)$ and belongs to S. Hence $T_{q+r}(A) \in S$ as well and transitivity is proved.

Example 3.4 will show that similarity is not transitive on $\beta \mathbb{G}$ or even on $\beta \mathbb{G} \setminus \mathbb{G}$.

3. Extension of the group operation: $\beta \mathbb{G}_{\text{fin}}$ and \mathbb{L} . For each $p \in \mathbb{G}$ let $t_p : \mathbb{G} \to \mathbb{G}$ be the right translation $t_p(x) = x + p$, and let βt_p be its continuous extension onto $\beta \mathbb{G}$. For any $U \in \beta \mathbb{G}$ we have

$$\beta t_p(U) = \{X + p : X \in U\}.$$

PROPOSITION 3.1. Let \mathbb{G} be a dense-in-itself noncompact topological group. There is no continuous extension of the group operation from \mathbb{G}^2 onto $(\beta \mathbb{G})^2$.

Proof. We show that for fixed $U \in \beta \mathbb{G} \setminus \mathbb{G}$ the mapping $p \mapsto \beta t_p(U)$ is not continuous. Let $\{p_n : n < \omega\} \subseteq \mathbb{G}$ be a discrete-in-itself sequence with a limit point $p \in \mathbb{G}$. Let $U \in \beta \mathbb{G} \setminus \mathbb{G}$. Take any open $X \subseteq \mathbb{G}$ such that $\beta t_p(U) \in \mathrm{cl}_{\beta \mathbb{G}}(X)$. The sequence $\{\beta t_{p_n}(U)\}$ can be disjoint from X, since U is fixed independently of p_n 's. Thus the range of p over the mapping need not be the limit point of the range of $\{p_n : n < \omega\}$.

DEFINITION 3.2. Let \mathbb{T} be a topological semigroup. For each $T, U \in \beta \mathbb{T}$ we put $T + U = \{X \in \mathbb{Z}(\mathbb{T}) : (\exists A \in U) (\forall a \in A) X \in \beta t_a(T)\}.$

Note that the family T + U is a filter on $\mathbf{Z}(\mathbb{T})$. In fact, for any $X, Y \in T + U$ we have $\{a \in \mathbb{T} : X \in \beta t_a(T)\} \supseteq A \in U$ and $\{a \in \mathbb{T} : Y \in \beta t_a(T)\} \supseteq B \in U$. Since T and U are filters, $\{a : X \cap Y \in \beta t_a(T)\} \supseteq \{a : X \in \beta t_a(T)\} \cap \{a : Y \in \beta t_a(T)\} \supseteq A \cap B \in U$. Every superset of a given $X \in T + U$ is obviously a member of T + U. Finally, $T + U \neq \emptyset$ (i.e. $\mathbb{G} \in T + U$).

By an extended group operation on $\beta \mathbb{T}$ we mean every function that assigns to the pair (T, U) any extension of T + U to an ultrafilter. 3.1 states that in the general case there can be no continuous extended group operation on $\beta \mathbb{T}$. Examples of its uniqueness and nonuniqueness will be given below. For the case $\mathbb{T} = \omega$, 3.2 defines the sum of ultrafilters, which has been investigated by many authors (e.g. Frolík [2]). If \mathbb{T} is a group, we can rewrite 3.2 in the form

 $T + U = \{ X \in \mathbf{Z}(\mathbb{T}) : (\exists A \in U) \ A \subseteq \{ a \in \mathbb{G} : X - a \in T \} \}.$

PROPOSITION 3.3. Let $t, u \in \mathbb{L} \setminus \mathbb{G}$.

(a) If $T \in \Psi^{\leftarrow}\{t\}$ and $U \in \Psi^{\leftarrow}\{u\}$ then every extension of T + U to an ultrafilter is an element of $\Psi^{\leftarrow}\{t + u\}$.

(b) If $T \in \mathbb{G}_{\infty}$ or $U \in \mathbb{G}_{\infty}$ then every extension of T+U to an ultrafilter is an element of \mathbb{L}_{∞} .

Proof. (a) By 1.1(a) it is sufficient to show that $\overline{T+U}$ is a subfamily of the principal ultrafilter t + u. Fix any $X \in T + U$. Let $A \in U$ be such that $X - a \in T$ for all $a \in A$. Then $(\forall a \in A) \ t \in cl_{\mathbb{L}}(X - a)$ and $u \in cl_{\mathbb{L}}(A)$. Hence $t + u \in cl_{\mathbb{L}}(X)$ for any $X \in T + U$. (b) Case $T \in \mathbb{G}_{\infty}$. $X \in T + U$ yields $X - a \in T$ for some $a \in \mathbb{G}$. Then for any conditionally compact (in \mathbb{L}) $C \subseteq X$ we have $(X \setminus C) - a \in T$ as well. Hence T + U has no extension in \mathbb{L} .

Case $U \in \mathbb{G}_{\infty}$. Let $X \in T + U$. If X were conditionally compact, then since $X - a \in T$ for some $a \in \mathbb{G}$, there would be $\Psi(T) \in \mathbb{L}$; but then $\{a : X - a \in T\}$ could not contain an "unbounded" member of U.

EXAMPLE 3.4. Let $X = \operatorname{cl}_{\mathbb{L}}(X) \subseteq \mathbb{G}$ be an infinite discrete set. Let $R \in \operatorname{cl}_{\beta \mathbb{G}}(X) \setminus X$ and $r = \Psi(R)$. Let $s \in \mathbb{L} \setminus \mathbb{G}$, $s + r \in \mathbb{L} \setminus \mathbb{G}$, $S \in \Psi^{-}\{s\}$ and suppose S is a regular R-point. Then:

(a) S + R is a remote point, but not a regular one.

(b) R is similar to S + R, but S + R is not similar to R.

4. Regularity of the extended group operation. Now we shall try to answer the question if (and under what conditions) T + U has a unique extension to an ultrafilter.

PROPOSITION 4.1. Let \mathbb{G} be totally disconnected. Let $T, U \in \beta \mathbb{G}$ and $\Psi(T) = t \in \mathbb{L} \setminus \mathbb{G}$. The filter T + U has no less than two different extensions iff there exists a clopen $X \subseteq \mathbb{G}$ and sets $B_X, B_Y \subseteq \mathbb{G}$ such that:

(1) For each $V \in U$, $\{a \in \mathbb{G} : X - a \in T\} \cap V \neq \emptyset$ and $\{a \in \mathbb{G} : (\mathbb{G} \setminus X) - a \in T\} \cap V \neq \emptyset$.

(2) $B_X \subseteq \{a \in \mathbb{G} : X - a \in T\}$ and $B_Y \subseteq \{a \in \mathbb{G} : (\mathbb{G} \setminus X) - a \in T\}.$ (3) $B_X \cup B_Y = \mathrm{bd}_{\mathbb{G}}(\mathbb{G} \cap \mathrm{cl}_{\mathbb{L}}(X - t)) = \mathrm{bd}_{\mathbb{G}}(\mathbb{G} \cap \mathrm{cl}_{\mathbb{L}}((\mathbb{G} \setminus X) - t)).$

Proof. Assume that T + U has more than one extension. Then there exist clopen subsets X and $Y = \mathbb{G} \setminus X$ of \mathbb{G} such that:

(i) For every closed C contained in $\{a \in \mathbb{G} : X - a \in T\}$ or in $\{a \in \mathbb{G} : Y - a \in T\} = \mathbb{G} \setminus \{a \in \mathbb{G} : X - a \in T\}$ there exists $B \in U$ disjoint from C. (ii) Both X and Y meet every element of T + U.

Hence for $V \in U$ we get $\{a \in \mathbb{G} : X - a \in T\} \cap V \neq \emptyset$ and $\{a \in \mathbb{G} : Y - a \in T\} \cap V \neq \emptyset$.

On the other hand, since $\Psi(T) \in \mathbb{L}$, we obtain

$$\{a \in \mathbb{G} : X - a \in T\} = \operatorname{int}_{\mathbb{G}}(\mathbb{G} \cap \operatorname{cl}_{\mathbb{L}}(X - t)) \cup B_X$$

and

$$\{a \in \mathbb{G} : Y - a \in T\} = \operatorname{int}_{\mathbb{G}}(\mathbb{G} \cap \operatorname{cl}_{\mathbb{L}}(Y - t)) \cup B_Y,$$

where B_X and B_Y are certain subsets of $\mathrm{bd}_{\mathbb{G}}(\mathbb{G} \cap \mathrm{cl}_{\mathbb{L}}(X-t)) = \mathrm{bd}_{\mathbb{G}}(\mathbb{G} \cap \mathrm{cl}_{\mathbb{L}}(Y-t))$.

THEOREM 4.2. Let \mathbb{G} be a totally disconnected first Baire category group. There are ultrafilters $T, U \in \beta \mathbb{G}$ such that T+U has more than one extension to an ultrafilter. The set of such ultrafilters is dense in $\beta \mathbb{G}_{fin} \times \beta \mathbb{G}$ and in $\Psi^{-}\{t\} \times \Psi^{-}\{u\}$ for any $t, u \in \mathbb{L}$ whenever $t + u \in \mathbb{L} \setminus \mathbb{G}$.

Proof. Fix $t \in \mathbb{L}$ and $T \in \Psi^{-}\{t\}$. Fix a sequence $\{G_n : n < \omega\}$ of pairwise disjoint nwd closed subsets of \mathbb{G} such that $\mathbb{G} = \bigcup \{G_n : n < \omega\}$ and an open base $\{B_n : n < \omega\}$ of \mathbb{L} .

First we shall construct a nwd $D \subseteq \mathbb{L}$ and next an ultrafilter $U \in \beta D$. We consider two cases:

Case 1: Fix $u \in \mathbb{L}$ such that $t + u \in \mathbb{L} \setminus \mathbb{G}$.

Let D_0 be a fixed compact subset of \mathbb{L} such that $D_0 \cap (\mathbb{G} + t)$ is clopen in $\mathbb{G} + t$ and $t + u \in D_0$. By induction we define sets W_n , V_n and D_n as follows.

Let $k = \min\{i < \omega : B_i \subseteq D_n\}$. Fix $a_{n+1}, b_{n+1} \in D_n \cap B_k \cap (\mathbb{G} + t)$. Fix an open subset A of D_n with $A \subseteq D_n \setminus (G_{2n} \cup G_{2n+1})$ and $t + u \in A$. Then W_{n+1} is an open subset of \mathbb{L} such that

 $G_{2n} \subseteq W_{n+1} \subseteq \operatorname{int}_{\mathbb{L}}(D_n \setminus A), \quad W_{n+1} \text{ is clopen in } \mathbb{G},$

 $a_{n+1} \in \mathrm{bd}_{\mathbb{L}}(W_{n+1}), \quad b_{n+1} \notin \mathrm{bd}_{\mathbb{L}}(W_{n+1}) \quad \text{and} \quad W_{n+1} - a_{n+1} \in T;$ next, V_{n+1} is an open subset of \mathbb{L} such that

$$G_{2n+1} \subseteq V_{n+1} \subseteq \operatorname{int}_{\mathbb{L}}(D_n \setminus (A \cup W_{n+1})), \quad V_{n+1} \text{ is clopen in } \mathbb{G},$$
$$b_{n+1} \in \operatorname{bd}_{\mathbb{L}}(V_{n+1}) \quad \text{and} \quad V_{n+1} - b_{n+1} \in T,$$

and

$$D_{n+1} = D_n \setminus (W_{n+1} \cup V_{n+1})$$

Finally, we put

$$D = \mathbb{G} \cap \left(\bigcap \{ D_n : n < \omega \} - t \right)$$

Case 2: Fix $u \in \mathbb{L}_{\infty}$. The construction goes similarly.

Let $U \in \Psi^-\{u\}$ be any *R*-point with respect to *D* (see Corollary 2.3). The clopen set $X = \mathbb{G} \cap (\bigcup \{W_i : i < \omega\})$ and boundary sets $B_X = \{a \in D : X - a \in T\}$, $B_Y = \{a \in D : Y - a \in T\}$ satisfy conditions (1), (2) and (3) of 4.1, so T + U has at least two different extensions.

THEOREM 4.3. Let $t \in \mathbb{L}$. If $U \in \beta \mathbb{G}$ is a regular *R*-point and $T \in \Psi^{-}\{t\}$, then T+U has exactly one extension to an ultrafilter. It is a principal ultrafilter if $\Psi(U) \in \mathbb{L}$ and $\Psi(U) + t \in \mathbb{G}$, and a regular *R*-point similar to *U* otherwise.

Proof. Let $S \in \beta \mathbb{G}$ be the extension of T+U. If $\Psi(U) \in \mathbb{L}$ and $\Psi(U)+t \in \mathbb{G}$ then by Proposition 3.3, S is a principal ultrafilter.

Suppose now that $u = \Psi(U) \in \mathbb{L}\backslash\mathbb{G}$ and $t + u \in \mathbb{L}\backslash\mathbb{G}$. Let A be any element of U. Every closed set containing $T_t(A)$ in its interior belongs to T + U. By regularity of U the set $\mathrm{bd}_{\mathbb{L}}(A)$ avoids some member of U. Hence

 $\mathrm{bd}_{\mathbb{L}}(T_t(A))$ avoids an element of T + U and, consequently, $T_t(A)$ meets every member of T + U. Thus $A \in S$ and hence S is similar to U. By Proposition 2.5(a), S is a regular R-point. Hence the extension is unique.

The case $U \in \mathbb{G}_{\infty}$ can be proved in a similar way.

From Propositions 2.5 and 4.3 we obtain

PROPOSITION 4.4. There exists a family $\mathbf{L} = \{R_{\xi} : \xi \in \mathbb{L}\} \subseteq \beta \mathbb{G}$ such that $R_{\xi} \in \Psi^{\leftarrow}\{\xi\}$ and \mathbf{L} with the extended group operation on $\beta \mathbb{G}$ is isomorphic to the group \mathbb{L} .

Proof. For any $\xi \in \mathbb{G}$ let R_{ξ} be the principal ultrafilter generated by $\{\xi\}$. Let $\{R_{\xi} : \xi \in \mathbb{L} \setminus \mathbb{G}\}$ be any similarity class of regular *R*-points. By Propositions 3.3 and 4.3 the filter $R_{\xi} + R_{\zeta}$ extends uniquely to $R_{\xi+\zeta}$.

In the light of 3.1, \mathbb{L} and \mathbf{L} are algebraically (but not topologically) isomorphic.

EXAMPLE 4.5. Let \mathbb{R} be the field of real numbers and \mathbb{Q} the field of rationals. By 4.4, there are subsets \mathbf{R}_+ and \mathbf{R}_* of $\beta \mathbb{Q}$ isomorphic to the additive and multiplicative groups of \mathbb{R} , but there is no family isomorphic to the field. In fact, if we assume that for fixed $r \in \mathbb{R} \setminus \mathbb{Q}$, $\mathbf{R}_+ \cap \Psi^- \{r\} = \mathbf{R}_* \cap \Psi^- \{r\}$, we get $\mathbf{R}_+ \cap \mathbf{R}_* \cap \Psi^- \{-r\} = \emptyset$.

PROPOSITION 4.6. Assume that $\operatorname{card}(\mathbb{G}) = \omega$. Let $T, U \in \beta \mathbb{G}$.

(a) If $T \in \mathbb{G}_{\infty}$ is a regular *R*-point, then every extension of T + U is a regular *R*-point from \mathbb{L}_{∞} .

(b) If T and U are regular R-points then T + U extends either to a principal ultrafilter or to a regular R-point.

Proof. (a) By Proposition 3.3 the filter T + U has an extension in \mathbb{L}_{∞} . Let N be a nwd subset of \mathbb{L} and let $A \in U$. Fix an enumeration $(a_i)_{i < \omega}$ of elements of A. Let $\{G_n : n < \omega\}$ be an increasing sequence of conditionally compact (in \mathbb{L}) neighborhoods of the neutral element in \mathbb{G} such that $\mathbb{G} = \bigcup \{G_n\}$.

For any $i < \omega$ let $X_i \in T$ be such that $X_i \subseteq \mathbb{G} \setminus G_i$ and $X_i \cap (N - a_i) = \emptyset$. Then the set $X = \bigcup \{X_i + a_i : i < \omega\}$ is closed, belongs to T + U and avoids N. Hence the extension of T + U is a regular R-point.

(b) follows directly from Propositions 3.3(a), 4.3 and (a).

5. Extension of the group operation: $\beta \mathbb{G}$ and $\beta \mathbb{L}$. This part of the paper is devoted to verification whether Ψ is a homomorphism with respect to the extended group operations on $\beta \mathbb{G}$ and on $\beta \mathbb{L}$.

From now on we assume that $t, u \in \beta \mathbb{L}, T, U \in \beta \mathbb{G}, \Psi(U) = u$ and $\Psi(T) = t$.

The following statement results from Propositions 1.1(b) and 3.3:

R e m a r k 5.1. If $t, u \in \mathbb{L}$ and S is any extension of T+U to an ultrafilter, then $\Psi(S) = t + u$.

PROPOSITION 5.2. Let $t \in \mathbb{L}$ and $u \in \beta \mathbb{L} \setminus \mathbb{L}$. The filter $\overline{T+U}$ is a subfamily of t + u.

Proof. If $X \in \mathbf{Z}(\mathbb{G})$ is an element of T + U then there exists $A \in U$ such that $A \subseteq \{a \in \mathbb{G} : X - a \in T\} \subseteq \{a \in \mathbb{L} : \operatorname{cl}_{\mathbb{L}}(X - a) \in t\} = \operatorname{cl}_{\mathbb{L}}(X) - t$. The set $\operatorname{cl}_{\mathbb{L}}(X) - t$ is closed, so $\operatorname{cl}_{\mathbb{L}}(A) \subseteq \operatorname{cl}_{\mathbb{L}}(X) - t$ and hence $\operatorname{cl}_{\mathbb{L}}(X) \in t + u$.

PROPOSITION 5.3. If $\operatorname{card}(\Psi^{\leftarrow}\{u\}) = 1$ then $\overline{T+U}$ and t+u have some common extension to an ultrafilter.

Proof. Let a closed $X \subseteq \mathbb{G}$ be a member of T + U. There exists $A \in U$ such that $A \subseteq \{a \in \mathbb{G} : X - a \in T\}$. Note that

 $\left\{a\in\mathbb{G}:X-a\in T\right\}\subseteq\left\{a\in\mathbb{G}:\mathrm{cl}_{\mathbb{L}}(X)-a\in t\right\}\subseteq\left\{a\in\mathbb{L}:\mathrm{cl}_{\mathbb{L}}(X)-a\in t\right\}.$

For any $Y \in t + u$ the set $\{a \in \mathbb{L} : Y - a \in t\}$ contains an element B' of u, but the set $B = \mathbb{G} \cap B'$ is, by Proposition 1.1(b), a member of U. Hence $A \cap B \subseteq \{a \in \mathbb{G} : (Y \cap \operatorname{cl}_{\mathbb{L}}(X)) - a \in t\}$. Therefore $Y \cap \operatorname{cl}_{\mathbb{L}}(X) \neq \emptyset$, so the family $(\overline{T + U}) \cup (t + u)$ has the finite intersection property.

EXAMPLE 5.4. Let $u \in \mathbb{R}\setminus\mathbb{Q}$. There exists $t \in \beta\mathbb{R}\setminus\mathbb{R}$ such that $\overline{T+U}$ and t+u have no common extension. One can require $\operatorname{card}(\Psi^{\leftarrow}\{t\})$ to be 1.

Proof. Let k be any natural number greater than u. Let $X_n = \mathbb{G} \cap [kn, kn + u - 1/n]$ and let $X = \bigcup \{X_n : n < \omega\}$. Let $t \in cl_{\beta \mathbb{R}}(k\omega) \setminus \mathbb{R}$. Note that $X \in T + U$, because

 $\{a \in \mathbb{G} : X - a \in T\} \supseteq \{a \in \mathbb{G} : (\exists m \in \omega) X - a \supseteq k(\omega - m)\} \supseteq \mathbb{Q} \cap [0, u).$

Moreover, $\{a \in \mathbb{L} : \operatorname{cl}_{\mathbb{R}}(X) - a \in t\} \supseteq [0, u)$, and $(\operatorname{cl}_{\mathbb{R}}(X) - u) \cap k\omega = \emptyset$. Hence $\operatorname{cl}_{\mathbb{R}}(X) \cap (k\omega + u) = \emptyset$. Consequently, $\operatorname{cl}_{\mathbb{R}}(X) \notin t + u$.

COROLLARY 5.5. (a) Ψ is a homomorphism $\beta \mathbb{G}_{\text{fin}} \to \mathbb{L}$ with respect to the extended group operation.

(b) Ψ need not be a homomorphism $\beta \mathbb{G} \to \beta \mathbb{L}$.

(c) There exists a version of the extended group operation such that Ψ is a homomorphism of the set of regular *R*-points in $\beta \mathbb{G} \setminus \beta \mathbb{G}_{fin}$ onto the set of *R*-points in $\beta \mathbb{L}$.

(d) Ψ need not be a homomorphism of the set of regular R-points in $\beta \mathbb{G}$ onto its image.

Proof. (a) follows from Proposition 3.3. Parts (b) and (d) follow from 5.4. Part (c) follows from Proposition 5.3. \blacksquare

REFERENCES

- E. K. van Douwen, *Remote points*, Dissertationes Math. 188 (1981).
 Z. Frolík, *Sums of ultrafilters*, Bull. Amer. Math. Soc. 73 (1967), 87–91.
- [3] D. Montgomery and L. Zippin, *Topological Transformation Groups*, Interscience, New York, 1955.
- [4] R. C. Walker, The Stone-Čech Compactification, Springer, Berlin, 1974.
- [5] H. Wallman, Lattices and topological spaces, Ann. of Math. 39 (1938), 112–126.

DEPARTMENT OF MATHEMATICS AGRICULTURAL ACADEMY OF WROCŁAW NORWIDA 25 50-375 WROCŁAW, POLAND

> Reçu par la Rédaction le 20.1.1992; en version modifiée le 28.11.1992