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SYSTEMS OF CLAIRAUT TYPE
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SHYUICHI IZUMIYA (SAPPORO)

A characterization of systems of first order differential equations with
(classical) complete solutions is given. Systems with (classical) complete
solutions that consist of hyperplanes are also characterized.

0. Introduction. About 260 years ago Alex Claude Clairaut [2] studied
the following equation which is now called the Clairaut equation:

dy dy
y= dw+f<d:c>'
It is usually taught in the first or second year university course of calculus
and treated as an example of a non-linear equation which is easily solved.
Moreover, it has a beautiful geometric structure: There exists a “general
solution” that consists of lines y =t - x + f(t) where ¢ is a parameter, and
the singular solution is the envelope of that family.

In [6] we studied ordinary differential equations with geometric structure
such as that of the Clairaut equation. In this note we shall be concerned
with systems of first order partial differential equations (briefly, equations)
with (classical) complete solutions, which are the natural generalization of
the Clairaut equation. Since general solutions and the singular solution of
the equation can be constructed from the complete solution, this class of
equations plays a principal role in classical treatises (cf. Carathéodory [1],
Courant—Hilbert [3], Forsyth [4], [5]). However, we have never seen charac-
terizations for this class of equations. Our main result (Theorem 1.1) gives
such a characterization. In §2 we shall give the proof of the main theorem.
In §3, we shall study a class of equations with (classical) complete solutions
that consist of hyperplanes, which is a direct generalization of the classical
Clairaut equation.

All maps considered here are differentiable of class C*°, unless stated
otherwise.
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1. The main result. A first order differential equation is most natu-
rally interpreted as being a closed subset of J!(R™,R). Unless the contrary
is specifically stated, we use the following definition. A system of partial
differential equations of first order (or briefly, an equation) is a submersion
germ F : (JY(R™,R), z9) — (R%,0) on the 1-jet space of functions of n vari-
ables, where 1 < d < n. Let § be the canonical contact form on J!(R",R)
which is given by § = dy — > | p;dz;, where (x,y,p) are the canonical
coordinates of J1(R"™,R). We define a geometric solution of F = 0 to be an
immersion i : (L,qo) — (J*(R™,R), 29) of an n-dimensional manifold such
that i*0 = 0 and i(L) C F~(0) (i.e. a Legendrian submanifold which is
contained in F~1(0)). We say that zq is a m-singular point if F(z5) = 0 and
rank(gg; (20)) < n. We denote the set of 7-singular points by X (F) and
write (X (F)) = Dp, where n(z,y,p) = (x,y). We call Dp the discrimi-
nant set of the equation F' = 0.

An equation F' = 0 is said to be of Clairaut type if there exist smooth
function germs Bj;, AL, : (JL(R™,R), 29) — Rfori,j=1,...,n,k=1,...,d
and [ =1,...,d such that

OF, aF .
e o ZB]Z +ZAlka

(i=1,...,nand [ =1,...,d)

and
(2) Bji = Bij ,
aB]k aB]k; aBjk: aB]z ]Z
Di 7 - B
(3) ox; tr dy +Z "o, 8-73k +Z lk 3171

at any z € (F~1(0), 20) for i,5,k=1,...,n
We also say that an (n — d + 1)-parameter family of function germs
f : (Rn_d+l X an (tOer)) - (Rvy())
is a (classical) complete solution of F = 0 if Fj(z, f(t,z), %(t,x)) =0 for
k=1,...,d and rank(at ,8?28];]) =n—d+ 1. Our main result is the
following.

THEOREM 1.1. For an equation germ F' = 0, the following are equivalent.

(i) F =0 is a Clairaut type equation.
(ii) F =0 has a (classical) complete solution.
In this case, if X (F) # 0, then Y. (F) is a geometric solution (i.e.

the singular solution) of F = 0 and the discriminant set Dp is the
envelope of the family of graphs of the complete solution.
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By the classical existence theorem (see [7]), if ' = 0 is a m-regular
equation, there exists a (classical) complete solution. Thus we can assert
that a m-regular equation is of Clairaut type by the above theorem.

We now give two examples which describe the above assertion.

ExAMPLES 1.2. 1) The following equation is a generalization of the clas-
sical Clairaut equation:

Fl(ph?pn)zo (Zzl,,d—1)7

n
Fd(x7y7p) =Yy - szmz - f(ph s apn) =0,
i=1
where F;, f are function germs. Since F' = (Fy, ..., Fy) is a submersion, we
have rank(9F;/0x;) = d — 1. Thus the set F~!(0) is locally parametrized
by an immersion a(t) = (a1(t),...,a,(t)), where t = (t1,...,tn_qs1). It
follows that we get a complete solution

Yy = Zaz(t)xl + f(al(t)a s 7an(t)) :

We can easily check that
oF,  OF

ox; +pi oy
on F~1(0). This means that we can choose B;; = 0.
2) Consider the equation F; = p? —y =0, F» = py =0 (n = 2). Then
we have

=0

oF; n ory B o0F; n oFy B
7(%1 b1 783/ = —DP1, 783:2 b2 783/ = —p2,
8F2 8F2 BFQ 3F2
0xq th oy ’ Oxa t P2 oy
and OF OF OF OF
71:2]717 1207 2:07 2:1‘
op1 Op2 Ip1 Op2
It follows that
oF oF 1 o0 or
- L . 402224 0-F,+0-F
0z, th Oy 2 Opy + Op2 + 1t >
8F1 8F1 (9F1 8F1
1 1 . 22240022240 F -1 -F
81’2 +p2 ay 8p1 + 8])2 + 1 25
0y 0Fy 1 0F, 0F,
= s . 2402224 0-F,+0-F
0z, th Oy 2 Opy + Op1 + 1t >
8F2 8F2 (9F2 8F2
— — =0-—4+0-—4+0-F1,+0- 5.
g + p2 By a1 + s + 1+ 2

The complete solution is given by y = i(ml +1)2.
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In classical textbooks (see [1], [3], [4], [5]), the notion of singular solution
appears together with the notion of complete solutions. Namely, the singular
solution is defined to be the envelope of the family of graphs of the complete
solution. Theorem 1.1 gives a characterization of the class of equations
having a complete solution as the class of Clairaut type equations.

2. Proof of Theorem 1.1. We need some elementary properties of
Legendrian singularities. For a Legendrian immersion germ i : (L,qy) —
JYR™ R), qo € L is said to be a Legendrian singular point if 7 o1 is not an
immersion at gg. Then we have the following lemma.

LEMMA 2.1. For an equation F : (JL(R",R), z9) — (R%,0), the following
are equivalent.

(i) F =0 has a (classical) complete solution.

(ii) There exists a foliation on F~1(0) by geometric solutions of F = 0
whose leaves are Legendrian nonsingular.

Proof. Suppose that f : (R4 x R", (tg,2z0)) — (R,90) is a (clas-
sical) complete solution of F = 0. Then we define a map germ jlf :
(Rn_d+1 x R™, (tvaO)) - (Jl(RnaR)azO) by

itpea) = (s, G o).

of 62f)
8ti’6ti8mj

= n—d+1. Tt follows that jlf gives a local parametrization of F~1(0)
and the family {Image j! fi}ic@n-a+14,) gives the desired foliation, where
fe(z) = f(t,z).

For the converse, we remark that qg is a Legendrian nonsingular point
of a Legendrian immersion i : (L,qy) — J*(R™,R) if and only if 7o is a
local diffeomorphism at gg, where 7(z,y,p) = x.

We can easily show that j!f is an immersion if and only if rank(

Suppose that there exists a foliation which satisfies (ii). Then we have an
(n—d+1)-parameter family of smooth sections s : (R" =91 xR", (t9, x¢)) —
(JL(R™,R), z9) of @ (i.e. 7o s(t,x) = x) such that s is an immersion,
s(R=4+1 x R") = F~1(0) and s; = 0 for any t € (R"9*1 ), where
si(x) = s(t,x). It follows that there exists a family of function germs f :
(R*=4+1 x R™ (tg,20)) — (R™,yo) such that jlf(¢t,z) = s(t,x). Since s is
an immersion, f is a (classical) complete solution of F' = 0.

Now we can give the proof that (i) implies (ii) in Theorem 1.1.

Proof of Theorem 1.1, (i)=(ii). By the assumption, there exist
function germs Bj, AL, : (J1H(R™,R),29) — R such that formulas (1), (2)
and (3) hold.
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We consider linearly independent vector fields

0

V— +p B;
% z Z_; ]zap]

on (JY(R",R),zp). Let c(t) be an integral curve of V; such that c¢(0) €
1

F~10). Then we can show that
AR _oR Z
dt | = B — 3pg

It follows that V;(z) € T,F~1(0) for any 2 € F~1(0). Since the V; are lin-
early independent, we can define an n-dimensional distribution £ on F~1(0)
which is generated by the vectors V;(z) at each z € F~1(0). By direct cal-
culation, we have

- Bi; B Bi; B
vl = 3o (L O, O, O

Ory, ox; Pk oy T b dy

. OBji OB\ 0
+2_ B Ipi ;B opi >3pj
for any i,k = 1,...,n. By the assumption, [V;, Vi](z) € E, for any z €
F~1(0). Thus the distribution E is integrable and there exists an n-dimen-
sional foliation on F~1(0) by the Frobenius theorem. Since 6(V;) = 0, the
leaves of this foliation are Legendrian submanifolds. By the definition of
Vi, we have dn(V;) = 0/0z;. It follows that the leaves are Legendrian
nonsingular. Hence this foliation gives a (classical) complete solution by
Lemma 2.1.

The converse direction is fairly direct.

Proof of Theorem 1.1, (ii)=(i). Let y = f(¢,x) be a complete
solution of FF = 0. Calculating the x;-derivative of Fl(x, f(t,x), 8£ (t, x))
= 0, we have

OF  0f OF —~ 0*f OF
ox; 81‘1 8y p 633]81‘1- op;

at (z, f(t, 2), %(t, z)) € F71(0).
Since jif is an immersion germ, there exist function germs Bj;:
(JL(R™,R), z9) — R such that

0% f
ijaxi
For any z € F~1(0), there exists (t,x) € (R"~9+! x R" (tg,7¢)) such that

Bjiojlf = fori,j=1,...,n
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(z, f(t,z), 5 91 L(t,x)) = z. Then we have

OF, | OF g~ p OF

i = i F~10).
s +p 3y i o, on (0)

j=1
This means that there exists a function germ A%, : (J}(R™,R), 29) — R such
that

n d
OF; OF;
D =Y BjiFy, + > ALF
O % j=1 k=1

fori,j=1,...,nandl=1,...,d.
On the other hand, calculating the xp-derivative of

0% f _ of
W(t,x) = Bj; (l‘, f(t,x), M‘(t’m)> )

we have

0 f ~ 0By; aBﬂ of Z 0B
O0x;0x;0xy, N 6mk Oy Oxyg Opy &rlﬁzk

Since 6f (t,z) = pk, 828” By, and f is smooth, F' = 0 is Clairaut type.
This completes the proof that (ii) implies (i).

Proof of the second part of Theorem 1.1. By the first
part of the theorem, we may assume that there exists a (classical) complete
solution y = f(t,x) of F =0 and Y, (F) # 0. By the definition, jl f(¢,z) €
Y. (F) if and only if

E 9
rank<0 g§>:n at (t,x).
at

This is equivalent to the fact that %(t x) = 0. The Jacobian matrix of this

af of of of
atl [ 8tn,d+1) (Bt-aa:j ’ 8tl—8tk ) Slnce

of of of
k(2L — rank n—d+1
ran (E?tl’ﬁtiaxj) ran < ¥ axj) nodt

at the point (¢, z) with j!f(¢,2) € X (F), we have rank J(at e, E)t,f)_];H)
=n—d+ 1. It follows that X (F) = jlf({5 af =0]i=1,...,n—d+1})
is an n-dimensional submanifold.

On the other hand, (j!f)*0 = 0 if and only if g—é(t, x) = 0. This means
that X (F') is a Legendrian submanifold. Furthermore, we consider the
family of graphs of the complete solution which is given by the equation
f(t,x) —y = 0. Then we can show that the set

equation is given by J (
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{(a:, f(t,x)) ‘ there exists ¢ € (R",¢y) such that

of

ot;
is the envelope of this family by the usual method of elementary calculus.
This set is equal to the discriminant set Dpr by the previous arguments.
This completes the proof of Theorem 1.1.

(t,x)zO(izl,...,n—d—i—l)}

3. The Clairaut system. In this section we shall study equations with
(classical) complete solutions that consist of hyperplanes.

THEOREM 3.1. For an equation F : (JY(R™ R),z) — (R 0) with
Yo (F) # 0, the following are equivalent.

(i) There exist smooth function germs Al : (JY(R™,R),z9) — R such
that
d

OF, OF)
Lyt =S ALE fori=1,...m, 1=1,....d.
k=1

ox; P oy

(ii) There exists a (classical) complete solution of F' = 0 such that all
members are hyperplanes.

(iii) There exists a submersion germ G : (R™,py) — (R%,0) and a func-
tion germ f : (R™, pg) — R such that

F7Y0) = {(ﬂs,y,p) ‘G(ply-..,pn) =0andy = inpi —f(pl,...,pn)}.
i=1

Proof. Suppose that the equation F' = 0 satisfies (i). By the proof
of Theorem 1.1, the vector fields V; = B%i + pia% generate a completely
integrable distribution F. By the definition of V;, maximal integral sub-
manifolds of E are affine Legendrian subspaces in J*(R™,R), so that (ii)
follows.

Suppose that a family of hyperplanes y = Y. a;(t)z; + b(t) is a
complete solution of FF = 0, where t € (R"~%*! ). Since X, (F) # 0,

we can calculate that rank (a%tgt)(tg)) = n —d+ 1, so that the germ

a: (R~ t5) — (R, pg) defined by a(t) = (ay(t),...,an(t)) is an immer-
sion germ. It follows that there exists a submersion germ G : (R", py) —
(R4=1,0) such that (G=1(0),po) = (Imagea,py). We can also find a func-
tion germ f : (R”,pg) — R such that f oa(t) = b(t). Then we have the
following inclusion:

F~Y0)> {(w,y,p) ‘ G(p1y...ypn) =0and y = Zmip,- — f(pl,...,pn)}.

=1
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However, both manifolds are of codimension d, so their germs are equal.
This completes the proof that (ii) implies (iii). The remaining assertion can
be proved by direct calculation just as in the proof of Theorem 1.1.
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