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SYSTEMS OF CLAIRAUT TYPE
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SHYUICHI I ZUMIYA (SAPPORO)

A characterization of systems of first order differential equations with
(classical) complete solutions is given. Systems with (classical) complete
solutions that consist of hyperplanes are also characterized.

0. Introduction. About 260 years ago Alex Claude Clairaut [2] studied
the following equation which is now called the Clairaut equation:

y = x · dy

dx
+ f

(
dy

dx

)
.

It is usually taught in the first or second year university course of calculus
and treated as an example of a non-linear equation which is easily solved.
Moreover, it has a beautiful geometric structure: There exists a “general
solution” that consists of lines y = t · x + f(t) where t is a parameter, and
the singular solution is the envelope of that family.

In [6] we studied ordinary differential equations with geometric structure
such as that of the Clairaut equation. In this note we shall be concerned
with systems of first order partial differential equations (briefly, equations)
with (classical) complete solutions, which are the natural generalization of
the Clairaut equation. Since general solutions and the singular solution of
the equation can be constructed from the complete solution, this class of
equations plays a principal role in classical treatises (cf. Carathéodory [1],
Courant–Hilbert [3], Forsyth [4], [5]). However, we have never seen charac-
terizations for this class of equations. Our main result (Theorem 1.1) gives
such a characterization. In §2 we shall give the proof of the main theorem.
In §3, we shall study a class of equations with (classical) complete solutions
that consist of hyperplanes, which is a direct generalization of the classical
Clairaut equation.

All maps considered here are differentiable of class C∞, unless stated
otherwise.
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1. The main result. A first order differential equation is most natu-
rally interpreted as being a closed subset of J1(Rn, R). Unless the contrary
is specifically stated, we use the following definition. A system of partial
differential equations of first order (or briefly, an equation) is a submersion
germ F : (J1(Rn, R), z0) → (Rd, 0) on the 1-jet space of functions of n vari-
ables, where 1 ≤ d ≤ n. Let θ be the canonical contact form on J1(Rn, R)
which is given by θ = dy −

∑n
i=1 pidxi, where (x, y, p) are the canonical

coordinates of J1(Rn, R). We define a geometric solution of F = 0 to be an
immersion i : (L, q0) → (J1(Rn, R), z0) of an n-dimensional manifold such
that i∗θ = 0 and i(L) ⊂ F−1(0) (i.e. a Legendrian submanifold which is
contained in F−1(0)). We say that z0 is a π-singular point if F (z0) = 0 and
rank

(
∂Fi

∂pj
(z0)

)
< n. We denote the set of π-singular points by Σπ(F ) and

write π(Σπ(F )) = DF , where π(x, y, p) = (x, y). We call DF the discrimi-
nant set of the equation F = 0.

An equation F = 0 is said to be of Clairaut type if there exist smooth
function germs Bji, A

l
ik : (J1(Rn, R), z0) → R for i, j = 1, . . . , n, k = 1, . . . , d

and l = 1, . . . , d such that

(1)
∂Fl

∂xi
+ pi

∂Fl

∂y
=

n∑
j=1

Bji
∂Fl

∂pj
+

d∑
k=1

Al
ikFk

(i = 1, . . . , n and l = 1, . . . , d)

and

Bji = Bij ,(2)

∂Bjk

∂xi
+ pi

∂Bjk

∂y
+

n∑
l=1

Bli
∂Bjk

∂pl
=

∂Bji

∂xk
+ pk

∂Bji

∂y
+

n∑
l=1

Blk
∂Bji

∂pl
(3)

at any z ∈ (F−1(0), z0) for i, j, k = 1, . . . , n.
We also say that an (n− d + 1)-parameter family of function germs

f : (Rn−d+1 × Rn, (t0, x0)) → (R, y0)

is a (classical) complete solution of F = 0 if Fk

(
x, f(t, x), ∂f

∂x (t, x)
)

= 0 for
k = 1, . . . , d and rank

(
∂f
∂ti

, ∂2f
∂ti∂xj

)
= n − d + 1. Our main result is the

following.

Theorem 1.1. For an equation germ F = 0, the following are equivalent.

(i) F = 0 is a Clairaut type equation.
(ii) F = 0 has a (classical) complete solution.

In this case, if Σπ(F ) 6= ∅, then Σπ(F ) is a geometric solution (i.e.
the s i n g u l a r s o l u t i o n) of F = 0 and the discriminant set DF is the
envelope of the family of graphs of the complete solution.
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By the classical existence theorem (see [7]), if F = 0 is a π-regular
equation, there exists a (classical) complete solution. Thus we can assert
that a π-regular equation is of Clairaut type by the above theorem.

We now give two examples which describe the above assertion.

Examples 1.2. 1) The following equation is a generalization of the clas-
sical Clairaut equation:

Fi(p1, . . . , pn) = 0 (i = 1, . . . , d− 1) ,

Fd(x, y, p) = y −
n∑

i=1

pixi − f(p1, . . . , pn) = 0 ,

where Fi, f are function germs. Since F = (F1, . . . , Fd) is a submersion, we
have rank(∂Fi/∂xj) = d − 1. Thus the set F−1(0) is locally parametrized
by an immersion a(t) = (a1(t), . . . , an(t)), where t = (t1, . . . , tn−d+1). It
follows that we get a complete solution

y =
n∑

i=1

ai(t)xi + f(a1(t), . . . , an(t)) .

We can easily check that
∂Fl

∂xi
+ pi

∂Fl

∂y
= 0

on F−1(0). This means that we can choose Bij = 0.
2) Consider the equation F1 = p2

1 − y = 0, F2 = p2 = 0 (n = 2). Then
we have

∂F1

∂x1
+ p1

∂F1

∂y
= −p1,

∂F1

∂x2
+ p2

∂F1

∂y
= −p2 ,

∂F2

∂x1
+ p1

∂F2

∂y
= 0,

∂F2

∂x2
+ p2

∂F2

∂y
= 0

and
∂F1

∂p1
= 2p1,

∂F1

∂p2
= 0,

∂F2

∂p1
= 0,

∂F2

∂p2
= 1 .

It follows that
∂F1

∂x1
+ p1

∂F1

∂y
= −1

2
· ∂F1

∂p1
+ 0 · ∂F1

∂p2
+ 0 · F1 + 0 · F2,

∂F1

∂x2
+ p2

∂F1

∂y
= 0 · ∂F1

∂p1
+ 0 · ∂F1

∂p2
+ 0 · F1 − 1 · F2,

∂F2

∂x1
+ p1

∂F2

∂y
= −1

2
· ∂F2

∂p1
+ 0 · ∂F2

∂p1
+ 0 · F1 + 0 · F2,

∂F2

∂x2
+ p2

∂F2

∂y
= 0 · ∂F2

∂p1
+ 0 · ∂F2

∂p2
+ 0 · F1 + 0 · F2.

The complete solution is given by y = 1
4 (x1 + t)2.
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In classical textbooks (see [1], [3], [4], [5]), the notion of singular solution
appears together with the notion of complete solutions. Namely, the singular
solution is defined to be the envelope of the family of graphs of the complete
solution. Theorem 1.1 gives a characterization of the class of equations
having a complete solution as the class of Clairaut type equations.

2. Proof of Theorem 1.1. We need some elementary properties of
Legendrian singularities. For a Legendrian immersion germ i : (L, q0) →
J1(Rn, R), q0 ∈ L is said to be a Legendrian singular point if π ◦ i is not an
immersion at q0. Then we have the following lemma.

Lemma 2.1. For an equation F : (J1(Rn, R), z0) → (Rd, 0), the following
are equivalent.

(i) F = 0 has a (classical) complete solution.
(ii) There exists a foliation on F−1(0) by geometric solutions of F = 0

whose leaves are Legendrian nonsingular.

P r o o f. Suppose that f : (Rn−d+1 × Rn, (t0, x0)) → (R, y0) is a (clas-
sical) complete solution of F = 0. Then we define a map germ j1

∗f :
(Rn−d+1 × Rn, (t0, x0)) → (J1(Rn, R), z0) by

j1
∗f(t, x) =

(
x, f(t, x),

∂f

∂x
(t, x)

)
.

We can easily show that j1
∗f is an immersion if and only if rank

(
∂f
∂ti

, ∂2f
∂ti∂xj

)
= n−d+1. It follows that j1

∗f gives a local parametrization of F−1(0)
and the family {Image j1

∗ft}t∈(Rn−d+1,t0) gives the desired foliation, where
ft(x) = f(t, x).

For the converse, we remark that q0 is a Legendrian nonsingular point
of a Legendrian immersion i : (L, q0) → J1(Rn, R) if and only if π̃ ◦ i is a
local diffeomorphism at q0, where π̃(x, y, p) = x.

Suppose that there exists a foliation which satisfies (ii). Then we have an
(n−d+1)-parameter family of smooth sections s : (Rn−d+1×Rn, (t0, x0)) →
(J1(Rn, R), z0) of π̃ (i.e. π̃ ◦ s(t, x) = x) such that s is an immersion,
s(Rn−d+1 × Rn) = F−1(0) and s∗t θ = 0 for any t ∈ (Rn−d+1, t0), where
st(x) = s(t, x). It follows that there exists a family of function germs f :
(Rn−d+1 × Rn, (t0, x0)) → (Rn, y0) such that j1

∗f(t, x) = s(t, x). Since s is
an immersion, f is a (classical) complete solution of F = 0.

Now we can give the proof that (i) implies (ii) in Theorem 1.1.

P r o o f o f T h e o r e m 1.1, (i)⇒(ii). By the assumption, there exist
function germs Bij , A

l
ik : (J1(Rn, R), z0) → R such that formulas (1), (2)

and (3) hold.
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We consider linearly independent vector fields

Vi =
∂

∂xi
+ pi

∂

∂y
−

n∑
j=1

Bji
∂

∂pj
(i = 1, . . . , n)

on (J1(Rn, R), z0). Let c(t) be an integral curve of Vi such that c(0) ∈
F−1(0). Then we can show that

dFl(c(t))
dt

∣∣∣∣
t=0

=
∂Fl

∂xi
+ pi

∂Fl

∂y
−

n∑
j=1

Bji
∂Fl

∂pj
= 0 .

It follows that Vi(z) ∈ TzF
−1(0) for any z ∈ F−1(0). Since the Vi are lin-

early independent, we can define an n-dimensional distribution E on F−1(0)
which is generated by the vectors Vi(z) at each z ∈ F−1(0). By direct cal-
culation, we have

[Vi, Vk] =
n∑

j=1

(
∂Bji

∂xk
− ∂Bjk

∂xi
+ pk

∂Bji

∂y
− pi

∂Bjk

∂y

+
n∑

l=1

Blk
∂Bji

∂pl
−

n∑
l=1

Bli
∂Bjk

∂pl

)
∂

∂pj

for any i, k = 1, . . . , n. By the assumption, [Vi, Vk](z) ∈ Ez for any z ∈
F−1(0). Thus the distribution E is integrable and there exists an n-dimen-
sional foliation on F−1(0) by the Frobenius theorem. Since θ(Vi) = 0, the
leaves of this foliation are Legendrian submanifolds. By the definition of
Vi, we have dπ̃(Vi) = ∂/∂xi. It follows that the leaves are Legendrian
nonsingular. Hence this foliation gives a (classical) complete solution by
Lemma 2.1.

The converse direction is fairly direct.

P r o o f o f T h e o r e m 1.1, (ii)⇒(i). Let y = f(t, x) be a complete
solution of F = 0. Calculating the xi-derivative of Fl

(
x, f(t, x), ∂f

∂x (t, x)
)

= 0, we have

∂Fl

∂xi
+

∂f

∂xi

∂Fl

∂y
+

n∑
j=1

∂2f

∂xj∂xi

∂Fl

∂pj
= 0

at
(
x, f(t, x), ∂f

∂x (t, x)
)
∈ F−1(0).

Since j1
∗f is an immersion germ, there exist function germs Bji:

(J1(Rn, R), z0) → R such that

Bji ◦ j1
∗f =

∂2f

∂xj∂xi
for i, j = 1, . . . , n .

For any z ∈ F−1(0), there exists (t, x) ∈ (Rn−d+1 × Rn, (t0, x0)) such that
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(
x, f(t, x), ∂f

∂x (t, x)
)

= z. Then we have

∂Fl

∂xi
+ pi

∂Fl

∂y
=

n∑
j=1

Bji
∂Fl

∂pj
on F−1(0) .

This means that there exists a function germ Al
ik : (J1(Rn, R), z0) → R such

that

∂Fl

∂xi
+ pi

∂Fl

∂y
=

n∑
j=1

BjiFpj
+

d∑
k=1

Al
ikFk

for i, j = 1, . . . , n and l = 1, . . . , d.
On the other hand, calculating the xk-derivative of

∂2f

∂xj∂xi
(t, x) = Bji

(
x, f(t, x),

∂f

∂x
(t, x)

)
,

we have

∂3f

∂xj∂xi∂xk
=

∂Bji

∂xk
+

∂Bji

∂y

∂f

∂xk
+

n∑
l=1

∂Bji

∂pl

∂f

∂xl∂xk
.

Since ∂f
∂xk

(t, x) = pk, ∂2f
∂xl∂xk

= Blk and f is smooth, F = 0 is Clairaut type.
This completes the proof that (ii) implies (i).

P r o o f o f t h e s e c o n d p a r t o f T h e o r e m 1.1. By the first
part of the theorem, we may assume that there exists a (classical) complete
solution y = f(t, x) of F = 0 and Σπ(F ) 6= ∅. By the definition, j1

∗f(t, x) ∈
Σπ(F ) if and only if

rank
(

E ∂f
∂x

0 ∂f
∂t

)
= n at (t, x) .

This is equivalent to the fact that ∂f
∂ti

(t, x) = 0. The Jacobian matrix of this
equation is given by J

(
∂f
∂t1

, . . . , ∂f
∂tn−d+1

)
=

(
∂f

∂ti∂xj
, ∂f

∂ti∂tk

)
. Since

rank
(

∂f

∂t1
,

∂f

∂ti∂xj

)
= rank

(
0,

∂f

∂ti∂xj

)
= n− d + 1

at the point (t, x) with j1
∗f(t, x) ∈ Σπ(F ), we have rankJ

(
∂f
∂t1

, . . . , ∂f
∂tn−d+1

)
= n− d + 1. It follows that Σπ(F ) = j1

∗f
({

∂f
∂ti

= 0 | i = 1, . . . , n− d + 1
})

is an n-dimensional submanifold.
On the other hand, (j1

∗f)∗θ = 0 if and only if ∂f
∂ti

(t, x) = 0. This means
that Σπ(F ) is a Legendrian submanifold. Furthermore, we consider the
family of graphs of the complete solution which is given by the equation
f(t, x)− y = 0. Then we can show that the set
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(x, f(t, x))

∣∣∣∣ there exists t ∈ (Rn, t0) such that

∂f

∂ti
(t, x) = 0 (i = 1, . . . , n− d + 1)

}
is the envelope of this family by the usual method of elementary calculus.
This set is equal to the discriminant set DF by the previous arguments.
This completes the proof of Theorem 1.1.

3. The Clairaut system. In this section we shall study equations with
(classical) complete solutions that consist of hyperplanes.

Theorem 3.1. For an equation F : (J1(Rn, R), z0) → (Rd, 0) with
Σπ(F ) 6= ∅, the following are equivalent.

(i) There exist smooth function germs Al
ik : (J1(Rn, R), z0) → R such

that

∂Fl

∂xi
+ pi

∂Fl

∂y
=

d∑
k=1

Al
ikFk for i = 1, . . . , n, l = 1, . . . , d .

(ii) There exists a (classical) complete solution of F = 0 such that all
members are hyperplanes.

(iii) There exists a submersion germ G : (Rn, p0) → (Rd, 0) and a func-
tion germ f : (Rn, p0) → R such that

F−1(0) =
{

(x, y, p)
∣∣∣ G(p1, . . . , pn) = 0 and y =

n∑
i=1

xipi − f(p1, . . . , pn)
}

.

P r o o f. Suppose that the equation F = 0 satisfies (i). By the proof
of Theorem 1.1, the vector fields Vi = ∂

∂xi
+ pi

∂
∂y generate a completely

integrable distribution E. By the definition of Vi, maximal integral sub-
manifolds of E are affine Legendrian subspaces in J1(Rn, R), so that (ii)
follows.

Suppose that a family of hyperplanes y =
∑n

i=1 ai(t)xi + b(t) is a
complete solution of F = 0, where t ∈ (Rn−d+1, t0). Since Σπ(F ) 6= ∅,
we can calculate that rank

(∂ai(t)
∂tj

(t0)
)

= n − d + 1, so that the germ
a : (Rn−d+1, t0) → (Rn, p0) defined by a(t) = (a1(t), . . . , an(t)) is an immer-
sion germ. It follows that there exists a submersion germ G : (Rn, p0) →
(Rd−1, 0) such that (G−1(0), p0) = (Image a, p0). We can also find a func-
tion germ f : (Rn, p0) → R such that f ◦ a(t) = b(t). Then we have the
following inclusion:

F−1(0) ⊃
{

(x, y, p)
∣∣∣ G(p1, . . . , pn) = 0 and y =

n∑
i=1

xipi − f(p1, . . . , pn)
}

.
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However, both manifolds are of codimension d, so their germs are equal.
This completes the proof that (ii) implies (iii). The remaining assertion can
be proved by direct calculation just as in the proof of Theorem 1.1.
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[1] C. Carath éodory, Calculus of Variations and Partial Differential Equations of
First Order , Part I, Partial Differential Equations of the First Order , Holden-Day,
San Francisco, 1965.

[2] A. C. Cla i raut, Solution de plusieurs problèmes, Histoire de l’Académie Royale de
Sciences, Paris, 1734, 196–215.

[3] R. Courant and D. Hi lbert, Methods of Mathematical Physics I , II , Wiley, New
York, 1962.

[4] A. R. Forsyth, Theory of Differential Equations, Part III, Partial Differential Equa-
tions, Cambridge Univ. Press, London, 1906.

[5] —, A Treatise on Differential Equations, Macmillan, London, 1885.
[6] S. Izumiya, On Clairaut-type equations, Publ. Math. Debrecen, to appear.
[7] V. V. Lychag in, Local classification of non-linear first order partial differential

equations, Russian Math. Surveys 30 (1975), 105–175.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

HOKKAIDO UNIVERSITY

SAPPORO 060, JAPAN
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