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SMOOTHNESS OF DENSITIES OF SEMIGROUPS OF MEASURES
ON HOMOGENEOUS GROUPS

BY

JACEK D Z I U B A Ń S K I AND JACEK Z I E N K I E W I C Z (WROC LAW)

0. Introduction. Smoothness of densities of semigroups of measures
on nilpotent Lie groups was investigated by many authors (cf. e.g. [G], [GH],
[BG]). In [G] P. G lowacki proved that the densities of a stable semigroup
of symmetric measures {µt}t>0 with smooth Lévy measure are C∞ and
belong with all their derivatives to L2(G); for a semigroup with singular
Lévy measure, this is not true in general (cf. [GH]). Recently T. Byczkowski
and P. Graczyk [BG] have shown that if the Lévy measure of a semigroup
of symmetric measures {µt}t>0 is of class C1, compactly supported and
coincides on a neighborhood of 0 with a nonzero stable Lévy measure, then
the µt have smooth densities. Their proof is based on the Malliavin Calculus
for jump processes.

The purpose of the present paper is to generalize the result of Byczkowski
and Graczyk. We prove, by analytic methods, that an estimate from below
for the Lévy measure of a semigroup {µt}t>0 (cf. (1.4)) already implies
smoothness of the densities of µt.

Acknowledgements. The authors are greatly indebted to P. G lowacki,
P. Graczyk, A. Hulanicki and L. Saloff-Coste for helpful comments.

1. Statement of the result. Let {µt}t>0 be a semigroup of posi-
tive symmetric measures on a homogeneous group G with compactly sup-
ported Lévy measure ν. We shall assume that the generating functional A
of {µt}t>0 has the form

〈Af, f〉 =
∑

ai,jXiXjf(0) + lim
ε→0

∫
‖x‖>ε

(f(x)− f(0)) dν(x) + cf(0) ,(1.1)

= ∆f(0) + 〈L, f〉+ cf(0) ,

where (ai,j) is a symmetric positive semi-definite matrix, and X1, . . . , Xn is

1991 Mathematics Subject Classification: Primary 43A80, 22E30, 43A05.
This research was supported by grants: KBN 210449101, KBN 210429101.
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a basis of the Lie algebra of G. There is no loss of generality in assuming
that the constant c in (1.1) vanishes.

Theorem 5.1 of Hunt [Hu] asserts that

(1.2)
∫
G

‖x‖2 dν(x) <∞ ,

where ‖ · ‖ denotes an Euclidean norm on G.
Assume that there exist constants α ∈ (0, 2), % > 0 and a nonnegative

symmetric function Ω ∈ L1
loc(G) homogeneous of degree 0 such that

(1.3) 0 <
∫

‖x‖<1

Ω(x) dx

and

(1.4)
Ω(x)
|x|Q+α

dx ≤ dν(x) on a ball B(0, %) = {x ∈ G : |x| < %} ,

where Q is the homogeneous dimension of G and | · | is a homogeneous norm
on G (cf. Section 2).

Our aim is to prove the following

Theorem (1.5). The measures µt have smooth densities pt such that for
any natural numbers η, k, and every left-invariant differential operator D
on G there exist constants C and N = N(D, k, η) > 0 such that

(1.6) |∂k
t Dpt(x)| ≤ Ct−Ne−η|x| for t < 1 .

Moreover , for any natural numbers s, k, η, and every left-invariant
differential operator D there are constants r and C such that

(1.7) |∂k
t Dpt(x)| ≤ Ce−η|x|ts for t < 1 and |x| > r .

2. Preliminaries. A family of dilations on a nilpotent Lie algebra G is
a one-parameter group {δt}t>0 of automorphisms of G determined by

δtej = tdjej ,

where e1, . . . , en is a linear basis for G, and d1, . . . , dn are positive real
numbers called the exponents of homogeneity . The smallest dj is assumed
to be 1.

If we regard G as a Lie group with multiplication given by the Campbell–
Hausdorff formula, then the dilations δt are also automorphisms of the group
structure of G, and the nilpotent Lie group G equipped with these dilations
is called a homogeneous group.

The homogeneous dimension of G is the number Q defined by d(δtx) =
tQ dx, where dx is a right-invariant Haar measure on G.
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Let

Xjf(x) =
d

dt

∣∣∣∣
t=0

f(xtej), Yjf(x) =
d

dt

∣∣∣∣
t=0

f(tejx) .

If I = (i1, . . . , in) is a multi-index, ij ∈ N ∪ {0}, we set

XIf = Xi1
1 . . . Xin

n f, Y If = Y i1
1 . . . Y in

n f, |I| = i1d1 + . . .+ indn ,

‖I‖ = i1 + . . .+ in, I! = i1! . . . in!, xI = xi1
1 . . . xin

n ,

where x = x1e1 + . . .+ xnen.
Recall (cf. [FS, p. 26]) that for every multi-index I there exist families

of polynomials {vJ}‖J‖≤‖I‖, {wJ}‖J‖≤‖I‖ such that

(2.1) XIf(x) =
∑

vJ(x)Y Jf(x), Y If(x) =
∑

wJ(x)XJf(x) .

For a distribution T on G and a multi-index I, we define a distribution
TI by the formula

(2.2) 〈TI , f〉 = 〈T,M(−x)If〉, where M(−x)If(x) = (−x)If(x) .

We choose and fix a homogeneous subadditive norm on G, that is, a
continuous positive symmetric function x 7→ |x| which is, moreover, smooth
on G \ {0} and satisfies

|δtx| = t|x|, |x| = 0 if and only if x = 0, |xy| ≤ |x|+ |y| .
The existence of such a norm was proved e.g. in [HS]. Note that if | · |0 is
another homogeneous norm on G, not necessarily subadditive, then there is
a constant C such that C−1|x| ≤ |x|0 ≤ C|x|.

Denote by ‖x‖ a fixed Euclidean norm on G. Proposition (1.5) of [FS]
asserts that there are constants C1 > 0 and C2 > 0 such that

(2.3) C1‖x‖ ≤ |x| ≤ C2‖x‖1/Q for |x| ≤ 1 .

For a nonnegative constant η let us denote by η̃(·) the weight

(2.4) η̃(x) = eη|x| ,

and by L2(η̃) the Hilbert space of functions on G with the norm

‖f‖2
η̃ =
∫
G

|f(x)|2η̃(x) dx .

Let S∞(G) = {f ∈ C∞(G) : ‖(XIf)(·)η̃(·)‖L∞ <∞ for every I and η}.
Note that if T is a compactly supported distribution, then the operator T
defined by

(2.5) Tf(x) = f ∗ T (x)

preserves S∞(G).
For r ≥ 0 let r be the smallest number such that r > r and r = |I| for

some multi-index I.
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For f ∈ C∞c (G), r > 0 and x ∈ G, define

(2.6) f (x)(y) = f(xy)−
∑
|I|≤r

1
I!
XIf(x)yI , y ∈ G .

Theorem (2.7) (cf. [FS], Theorem 1.37). For r, a > 0, there are constants
C and K such that for every f ∈ C∞(G),

|f (x)(y)| ≤ Cf 〈r〉(x)|y|r̄ for |y| ≤ a ,

where f 〈r〉(x) =
∑

I∈W sup|z|≤K |XIf(xz)|, W = {I : r < |I|, ‖I‖ ≤ [r]+1}.

A distribution T on G is said to be a kernel of order r if T ∈ L1
loc(G\{0})

and satisfies

(2.8) 〈T, f ◦ δt〉 = tr〈T, f〉 for f ∈ C∞c (G), t > 0 .

A kernel T of order r is said to be regular if T ∈ C∞(G \ {0}).
A distribution T smooth away from 0 which is supported in a compact

set and coincides with a kernel of order r in a neighborhood of 0 will be
called a truncated kernel of order r .

Note that if T is a truncated kernel of order r, then TI is a truncated
kernel of order r − |I|.

We shall denote by R̃ the kernel of order α defined by

〈R̃, f〉 = lim
ε→0

∫
|x|>ε

f(x)− f(0)
|x|Q+α

Ω(x) dx ,

where Ω is the function from the first section.
For β ∈ (0, 2) denote by Pβ the truncated kernel of order β defined by

〈Pβ , f〉 = lim
ε→0

∫
ε<|x|<1

f(x)− f(0)
|x|Q+β

dx .

The following theorem due to P. G lowacki [G1] plays a crucial role in all
what follows.

Theorem (2.9). For every regular kernel P̃ of order β, 0 ≤ β ≤ α, there
exists a constant C such that

‖P̃ f‖L2 ≤ C(‖R̃f‖L2 + ‖f‖L2) for f ∈ S∞(G) ,(2.10)

‖P̃ f‖L2 ≤ C(‖Pαf‖L2 + ‖f‖L2) for f ∈ S∞(G) .(2.11)

Using the theory of subordination and (2.9) one can prove that for a
kernel P̃ as above,

(2.12) 〈P̃ f, f〉 ≤ C(−〈R̃f, f〉+ ‖f‖L2) for f ∈ S∞(G) ,
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and, consequently,

(2.13) 〈Pf, f〉 ≤ C(−〈Rf, f〉+ ‖f‖L2) for f ∈ S∞(G) ,

where P, R are compactly supported distributions which coincide with P̃
and R̃ in a neighborhood of the origin and belong to L1

loc(G \ {0}).
A subset Γ of G is said to be uniformly discrete if for every function

ϕ ∈ C∞c (G) the function ∑
z∈Γ

λzϕ

is bounded, where λzϕ(x) = ϕ(zx).
The following lemma is due to B. Helffer and J. Nourrigat (cf. [HN]).

Lemma (2.14). For every homogeneous group G there is a uniformly
discrete subset Γ of G and a function ϕ ∈ C∞c (G) such that∑

a∈Γ

|λaϕ(x)|2 = 1 .

Lemma (2.15). For a uniformly discrete subset Γ of G and every ε > 0
the sum ∑

z∈Γ

(1 + |z|)−Q−ε

is finite.

Corollary (2.16). If η > 0, then
∫
η̃(x)−1 dx < ∞, where η̃(x) is

defined by (2.4). Moreover , if Γ is a uniformly discrete subset of G, then∑
z∈Γ

η̃(z)−1 <∞ .

3. Holomorphic semigroups on weighted Hilbert spaces. The
purpose of the present section is to prove the following

Theorem (3.1). Let {µt} be a convolution semigroup of nonnegative
subprobabilistic symmetric measures on G whose generating functional has
compact support. Then for every function η̃ of the form (2.4) the family
Ttf = f ∗ µt of operators forms a C0 semigroup on L2(η̃) which has an
extension to a holomorphic semigroup in some sector ∆θ = {z : |Arg z|
< θ}.

First we prove

Proposition (3.2). Let {Tz}, Re z > 0, be a holomorphic semigroup of
operators on L2(G) which is a C0 semigroup on L2(η̃) for a fixed function η̃.
Assume that C∞c (G) is contained in the domain of the infinitesimal genera-
tor A of {Tt} considered on L2(η̃). Then for every θ ∈ [0, 1) the semigroup
{Tz} is holomorphic on L2(η̃1−θ) in the sector ∆θ = {z : |Arg z| < θ}.
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P r o o f. The idea of our proof comes from [S]. Without restriction of
generality we can assume that there are constants M0 and M1 such that

(3.3) ‖Ttf‖η̃ ≤M0‖f‖η̃ and ‖Tzf‖L2(G) ≤M1‖f‖L2(G) .

S t e p 1: The family {Tz}z∈∆θ
is uniformly bounded on L2(η̃1−θ).

P r o o f. For f, g ∈ C∞c (G) such that ‖f‖L2 = ‖g‖L2 = 1 define a
holomorphic function Ff,g in the strip 0 ≤ Re z ≤ 1 by

(3.4) Ff,g =
∫
G

Teiz (f · η̃−(1−z)/2)(x)(g · η̃−(1−z)/2)(x)η̃1−z(x) dx .

Since f, g ∈ C∞c (G) the function Ff,g is bounded. Obviously, by (3.3) and
the fact that ‖f · η̃−(1−z)/2‖η̃1−Re z = ‖g · η̃−(1−z)/2‖η̃1−Re z = 1, we get

(3.5) |Ff,g(it)| ≤M0, |Ff,g(1 + it)| ≤M1 .

In view of the Phragmén–Lindelöf theorem, we have

(3.6) |Ff,g(z)| ≤ max(M0,M1) = M .

The definition of Ff,g and (3.6) imply that for t ∈ R and θ ∈ [0, 1] the
operator Teiθ−t is bounded on L2(η̃1−θ) and

(3.7) ‖Teiθ−tf‖η̃1−θ ≤M‖f‖η̃1−θ .

By the same argument, we get

(3.8) ‖Te−iθ−tf‖η̃1−θ ≤M‖f‖η̃1−θ .

Fix x ∈ R with 0 ≤ |x| ≤ θ. By (3.7), (3.8), and (3.3), we have

‖Teix−t‖L2(η̃1−|x|)→L2(η̃1−|x|) ≤M, ‖Teix−t‖L2(G)→L2(G) ≤M .

An interpolation argument gives

‖Teix−tf‖η̃1−θ ≤M‖f‖η̃1−θ .

S t e p 2: The function ∆θ 3 z 7→ Tz ∈ L(L2(η̃1−θ)) is holomorphic.

P r o o f. This follows from Step 1 and from the fact that for f, g ∈ C∞c (G)
the function

∆θ 3 z 7→
∫
G

(Tzf)(x)g(x)η̃1−θ(x) dx

is holomorphic.

S t e p 3: If f ∈ L2(η̃1−θ), then

(3.9) lim
z→0, z∈∆θ−ε

‖Tzf − f‖η̃1−θ = 0 .

P r o o f. This follows from Steps 1 and 2 and from the fact that⋃
t>0 Ran(Tt) is dense in L2(η̃1−θ) (cf. [Da, p. 63, Problem 2.35]).
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P r o o f o f T h e o r e m (3.1). Since Ttf = f ∗ µt form a semigroup
of selfadjoint contractions on L2(G), by the spectral theorem, we conclude
that {Tt} has an extension to a holomorphic semigroup {Tz}Re z>0 on L2(G).
Now fix η sufficiently large. Theorem (4.1) of Hulanicki [H] asserts that for
every s > 0 there is a constant Cs such that

(3.10) 〈µt, η̃〉 ≤ Cs <∞ for t ∈ (0, s) .

It follows from [H, Proposition (4.2)] that {Tt} is a C0 semigroup of operators
on L1(η̃), and C∞c is contained in the domain of the infinitesimal generator
A of {Tt} considered on L1(η̃). Hence by (3.10) for f ∈ C∞c (G),

(3.11) ‖f ∗ µt‖η̃ ≤ C‖f‖η̃〈µt, η̃
1/2〉 ≤ Cs‖f‖η̃ for t ∈ (0, s) ,

and

(3.12) lim
t→0

‖t−1(Ttf − f)−Af‖2
η̃

≤ lim
t→0

‖t−1(Ttf − f)−Af‖L∞‖t−1(Ttf − f)−Af‖L1(η̃) = 0.

Now, (3.11) and (3.12) imply that the family {Tt} is a C0 semigroup on
L2(η̃), and C∞c (G) is contained in the domain of the infinitesimal generator
of {Tt} considered on L2(η̃). Our proof is finished by applying Proposi-
tion (3.2).

4. Weighted subelliptic estimates. In this section we prove some
subelliptic estimates associated with the operator A. Our aim is the following

Theorem (4.1). For any weights η̃, η̃′ of the form (2.4) such that η > η′

and for every multi-index I there are constants N and C such that

(4.2) ‖XIf‖2
η̃′
≤ C

N∑
j=1

‖Ajf‖2
η̃ + C‖f‖2

η̃ for f ∈ S∞(G) .

First we prove some lemmas.

Lemma (4.3). For every multi-index I with ‖I‖ = 1 there is a constant
C such that

(4.4) ‖AIf‖2
L2 ≤ −C〈Af, f〉 for f ∈ S∞(G) .

Moreover , if ‖I‖ > 1 then AI is bounded on L2(G), and

(4.5) ‖LIf‖2
L2 ≤ C‖f‖2

L2 , ‖∆If‖2 ≤ C‖f‖2
L2 .

P r o o f. Note that if ‖I‖ > 1, then the estimate ‖LIf‖2
L2 ≤ C‖f‖2

L2

follows from (1.2) and the definition of LI . It is obvious that ∆I is bounded
in this case. So (4.5) is proved.

Let ‖I‖ = 1. Since ν is symmetric,∫
‖fx − f‖2

L2 dν(x) = −2〈Lf, f〉 ,
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where fx(y) = f(yx). Applying the Schwarz inequality and (1.2), we have

‖LIf‖2
L2(G) =

∫ ∣∣∣ ∫ (f(yx)− f(y))xI dν(x)
∣∣∣2 dy

≤
∫ ( ∫

|f(yx)− f(y)|2 dν(x)
)( ∫

(xI)2 dν(x)
)
dy

≤ −2C〈Lf, f〉 .

Change the coordinates in such a way that ∆ =
∑

j Z
2
j , where the Zj

are left-invariant vector fields (not necessarily homogeneous). Then ∆If =
(
∑

j Z
2
j )If =

∑
j αj,IZjf , and

‖∆If‖2
L2 ≤ C

∑
j

α2
j,I‖Zjf‖2

L2 ≤ −C
∑

j

〈Z2
j f, f〉 ≤ −C〈∆f, f〉.

Corollary (4.6). For every ε > 0 there exists a constant Cε such that

‖AIf‖2
L2 ≤ ε‖Af‖2

L2 + Cε‖f‖2
L2 , f ∈ S∞(G), ‖I‖ = 1 .

Lemma (4.7). Assume that ϕ ∈ C∞c (G). Then

[Mϕ,A]f(y) =
∑

0<|I|≤Q

1
I!
XIϕ(y)AIf(y) +Kϕf(y) ,

where Kϕf(y) =
∫
ϕ(y)(x)f(yx) dν(x) (cf. (2.6)). Moreover , the operator

Kϕ is bounded on L2(G).

P r o o f. Using the Taylor expansion (cf. (2.6)) to the function ϕ at the
point y, we get the required equalities.

The following lemma is a weighted version of Corollary (4.6).

Lemma (4.8). For every function η̃ of the form (2.4) and every ε > 0
there exists a constant Cε such that if ‖I‖ = 1, then

(4.9) ‖AIf‖2
η̃ ≤ ε‖Af‖2

η̃ + Cε‖f‖2
η̃ .

Moreover , if ‖I‖ > 1, then

(4.10) ‖AIf‖2
η̃ ≤ CI,η‖f‖2

η̃ for f ∈ S∞(G) .

P r o o f. (4.10) is obvious since AI is bounded on L2(G) and has compact
support (cf. [Dz, Lemma (4.6)]).

Fix I0 with ‖I0‖ = 1. Let ϕ and Γ be as in Lemma (2.14). Let ψ ∈
C∞c (G) with ψ = 1 on supp ϕ · supp ν. Since Γ is uniformly discrete, by
Corollary (4.6), we get

‖AI0f‖2
η̃ =
∫
G

∣∣∣ ∑
a∈Γ

AI0((λaϕ)f)(y)
∣∣∣2η̃(y) dy(4.11)

≤ C
∫
G

∑
a∈Γ

|AI0((λaϕ)f)(y)|2η̃(y) dy
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≤ Cε

∑
a∈Γ

‖(λaϕ)f‖2
L2 η̃(a) + C

∑
a∈Γ

ε‖A((λaϕ)f)‖2
L2 η̃(a)

≤ Cε

∑
a∈Γ

‖(λaϕ)f‖2
L2 η̃(a) + Cε

∑
a∈Γ

‖(λaϕ)(Af)‖2
L2 η̃(a)

+ Cε
∑
a∈Γ

‖(λaψ)[Mλaϕ,A]f‖2
L2 η̃(a) = I1 + I2 + I3 .

Obviously I1 + I2 ≤ Cε‖f‖2
η̃ + ε‖Af‖2

η̃. Similarly, using Lemmas (4.3)
and (4.7), we obtain

I3 ≤ Cε
∑
‖I‖=1

‖AIf‖2
η̃ + Cε‖f‖2

η̃ .

Finally, we have

(4.12) ‖AI0f‖2
η̃ ≤ Cε‖f‖2

η̃ + ε‖Af‖2
η̃ + Cε

∑
‖I‖=1

‖AIf‖2
η̃ .

Now taking ε sufficiently small and summing (4.12) over all I0 with ‖I0‖ = 1,
we get (4.9).

Lemma (4.13). For a fixed function η̃ of the form (2.4) there is a constant
C such that

(4.14) ‖Pα/2f‖2
η̃ ≤ C(‖Af‖2

η̃ + ‖f‖2
η̃) for f ∈ S∞(G) .

P r o o f. By (2.9), we get

‖Pα/2f‖2
L2 ≤ C(−〈R̃f, f〉+ ‖f‖2

L2) ≤ C(‖Af‖2
L2 + ‖f‖2

L2) .

The last inequality holds because

−2〈R̃f, f〉 =
∫

‖fx − f‖2
L2

Ω(x)
|x|Q+α

dx(4.15)

≤
∫

|x|<%

‖fx − f‖2
L2 dν(x) +

∫
|x|≥%

‖fx − f‖2 Ω(x)
|x|Q+α

dx

≤ −2〈Lf, f〉+ C‖f‖2
L2 ≤ −2〈Af, f〉+ C‖f‖2

L2 .

Analogously to the proof of the previous lemma, we have

‖Pα/2f‖2
η̃ ≤ C

∑
a∈Γ

‖Pα/2((λaϕ)f)‖2
L2 η̃(a)

≤ C
∑
a∈Γ

(‖A((λaϕ)f)‖2
L2 η̃(a) + ‖(λaϕ)f‖2

L2 η̃(a))

≤ C
(
‖Af‖2

η̃ +
∑
‖I‖=1

‖AIf‖2
η̃ + ‖f‖2

η̃

)
.

Using Lemma (4.8) we obtain (4.14).
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Lemma (4.16). For every α ∈ (0, 1) there is β > 0 such that for any
functions η̃ > η̃′ of the form (2.4) there is a constant C such that

(4.17) ‖Pβ ∗ f‖2
η̃′
≤ C(‖Pαf‖2

η̃ + ‖f‖2
η̃), f ∈ S∞(G) .

P r o o f. Assume that φ ∈ C∞c (G), 0 ≤ φ,
∫
φ = 1, φ(x) = φ(x−1). Let

φt(x) = t−Qφ(δt−1x).

S t e p 1: There is a constant C such that

(4.18) ‖f ∗ φt − f‖2
L2 ≤ −Cαt

α〈Pαf, f〉 for f ∈ C∞c (B(0, 1)) .

P r o o f. By the definition of Pα, we have

lim
ε→0

∫
ε<|x|<1

∫
|f(yx)− f(y)|2 dy 1

|x|Q+α
dx = −2〈Pαf, f〉 .

Hence, for j > 0, ∫
2−j−1≤|x|≤2−j

‖fx − f‖2
L2 dx ≤ −2−j(Q+α)+1〈Pαf, f〉 ,

and, consequently,

‖f ∗ φt − f‖2
L2 ≤
∫
G

‖fx − f‖2
L2φt(x) dx

≤ Ct−Q
∫

|x|<ct

‖fx − f‖2
L2 dx

≤ Ct−Q
∑

j≥0,2−j<ct

2−j(Q+α)〈Pαf, f〉

≤ C1

∑
j≥0,2−j<ct

2−jα〈Pαf, f〉 ≤ Cαt
α〈Pαf, f〉 .

S t e p 2: There are constants C and d > 0 such that for |x| < 1,

(4.19) ‖λx(f ∗ φt)− f ∗ φt‖2
L2 ≤ C|x|2t−2d‖f‖2

L2 ,

f ∈ C∞c (B(0, 1)), t < 1 .

P r o o f. Indeed, let x = ‖x‖Y , ‖Y ‖ = 1. By (2.1) we get∫
G

|f ∗ φt(xy)− f ∗ φt(y)|2 dy =
∫
G

∣∣∣∣ ‖x‖∫
0

d

ds
(f ∗ φt)(sY · y) ds

∣∣∣∣2 dy
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=
∫
G

∣∣∣ ‖x‖∫
0

Y (f ∗ φt)(sY · y) ds
∣∣∣2 dy

=
∫
G

∣∣∣ ‖x‖∫
0

∑
‖I‖=1

wI(sY · y)(f ∗XIφt)(sY · y) ds
∣∣∣2 dy

≤ C
∑
‖I‖=1

( ‖x‖∫
0

( ∫
G

|f ∗XIφt(sY · y)|2 dy
)1/2

ds
)2

,

which combined with the Schwarz inequality and (2.3) implies (4.19).

S t e p 3: There are γ > 0 and C > 0 such that for f ∈ C∞c (B(0, 1)),

(4.20) ‖λxf − f‖ ≤ C|x|γ(‖Pαf‖L2 + ‖f‖L2) .

P r o o f. It suffices to consider |x| < 1. By (4.17) and (4.19), we have

‖λxf − f‖2
L2 ≤ C(‖λxf − λx(f ∗ φt)‖2

L2

+ ‖λx(f ∗ φt)− f ∗ φt‖2
L2 + ‖f ∗ φt − f‖2

L2)
≤ − 2Cαt

α〈Pαf, f〉+ C|x|t−2d‖f‖2
L2 .

Putting t = |x|σ with sufficiently small σ > 0, we get (4.20).

S t e p 4: There are m and γ > 0 such that for f ∈ C∞c (B(0, r)),

(4.21) ‖λxf − f‖L2 ≤ C|x|γ(1 + r)m(‖Pαf‖L2 + ‖f‖L2) .

P r o o f. This follows by applying dilations to the function f and using
Step 3.

S t e p 5: There is γ > 0 such that for every η > η′ there is a constant
C such that

(4.22) ‖λxf − f‖2
η̃′
≤ C|x|γ(‖Pαf‖2

η̃ + ‖f‖2
η̃) for f ∈ S∞(G), |x| < 1 .

P r o o f. Let Γ and ϕ be as in Lemma (2.14). Then

‖λxf − f‖2
η̃′

=
∑
a∈Γ

∫
|f(xy)− f(y)|2(λaϕ)(y)2η̃′(y) dy

≤ C
( ∑

a∈Γ

∫
|f(xy)(λaϕ)(xy)− f(y)(λaϕ)(y)|2η̃′(a) dy

+
∑
a∈Γ

∫
|f(xy)|2|(λaϕ)(xy)2 − (λaϕ)(y)2|η̃′(a)

)
dy

= I1 + I2 .
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Using Step 4 we conclude that there is a polynomial w such that

I1 = C
∑
a∈Γ

‖λx(fλaϕ)− (fλaϕ)‖2
L2 η̃′(a)η̃(a)−1η̃(a)

≤ C|x|γ
∑
a∈Γ

w(a)η̃′(a)η̃(a)−1(‖Pα((λaϕ)f)‖2
L2 + ‖(λaϕ)f‖2

L2)η̃(a) .

Since η > η′ we obtain

I1 ≤ C0C|x|γ
∑
a∈Γ

(‖(λaϕ)(Pαf)‖2
L2 + ‖(λaϕ)f‖2

L2 + ‖[Mλaϕ, Pα]f‖2
L2)η̃(a),

where C0 = supa∈Γ {w(a)η̃′(a)η̃(a)−1}. One can easily check using the Tay-
lor expansion of ϕ that∑

a∈Γ

‖[Mλaϕ, Pα]f‖2
L2 η̃(a) ≤ C‖f‖2

η̃ .

Hence,

I1 ≤ C|x|γ(‖Pαf‖2
η̃ + ‖f‖2

η̃) .

Let us remark that there is a polynomial v and positive ω, δ such that

(4.23) |λaϕ(xy)− λaϕ(y)| ≤ C|axa−1|ω ≤ Cv(a)|x|δ for |x| < 1 .

Moreover, there is r > 0 such that

(4.24) λaϕ(xy)− λaϕ(y) = 0 for y 6∈ {z ∈ G : |a| − r < |z| < |a|+ r} .

We are now in a position to estimate I2. By (4.24) we get

I2 ≤ C
∑
a∈Γ

|f(xy)|2|(λaϕ)(xy)2 − (λaϕ)(y)2| η̃′(a) dy

≤ C

∞∑
k=0

∑
a∈Γk

∫
k−r<|y|<k+r

|f(xy)|2v(a)|x|δ η̃′(a) dy ,

where Γk = {a ∈ Γ : k − r < |a| < k + r}. Since card Γk increases
polynomially with respect to k and |x| < 1, we get I2 ≤ C|x|δ‖f‖2

η̃.

S t e p 6: ‖Pβ ∗ f‖2
η̃′
≤ C(‖Pαf‖2

η̃ + ‖f‖2
η̃).

P r o o f. By the Schwarz inequality

‖Pβ ∗ f‖2
η̃′

=
∫
G

∣∣∣∣ ∫
|x|<1

(f(xy)− f(y))
φ(|x|)
|x|Q+β

dx

∣∣∣∣2η̃′(y) dy
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≤
∫
G

(( ∫
|x|<1

1
|x|Q−ε

dx

)( ∫
|x|<1

|f(xy)− f(y)|2 dx

|x|Q+ε+2β

))
η′(y) dy

≤ C
∫

|x|<1

‖λxf − f‖2
η̃′

dx

|x|Q+ε+2β
.

Taking ε and β sufficiently small and using (4.22), we obtain the required
estimate.

Note that the operator f 7→ Pβ ∗ f commutes with the operator f 7→
Af = f ∗ A on S∞(G). Hence by Lemmas (4.16) and (4.13), we get

Corollary (4.25). For every natural k there exist constants N and
C = Ck,N,η,η′ such that

‖P k
β ∗ f‖η̃′ ≤ C

N∑
j=0

‖Ajf‖η̃ for f ∈ S∞(G) .

Lemma (4.26). For every multi-index I there are constants N and C
such that

‖Y If‖η̃′ ≤ C(‖f‖η̃′ + ‖PN
β ∗ f‖η̃′) .

P r o o f. This lemma is a consequence of [Dz, Theorem (4.3)].

P r o o f o f T h e o r e m (4.1). Since ‖XIf‖η̃′ ≤ C
∑

‖J‖≤‖I‖ ‖Y Jf‖η̃,
using Lemma (4.26) and Corollary (4.25), we get (4.2).

5. Smoothness and pointwise estimates. In the present section we
give the proof of Theorem (1.5).

Lemma (5.1). For any weights η̃ > η̃′, every multi-index I and every
relatively compact neighborhood U of the origin there are constants C and
N such that for every a ∈ G,

(5.2) ‖XIf‖2
L∞(aU) ≤ Cη̃′(a)−1

N∑
j=0

‖Ajf‖2
η̃ .

P r o o f. Let V be relatively compact such that U ⊂ V . The Sobolev
inequality implies that there is a constant C such that

(5.3) ‖XIf‖2
L∞(aU) ≤ C

∑
‖J‖≤M(I)

‖XJf‖2
L2(aV ) ,

which combined with Theorem (4.1) gives

‖XIf‖2
L∞(aU) ≤ Cη̃′(a)−1

∑
‖J‖≤M

‖XJf‖2
η̃′
≤ Cη̃′(a)−1

N∑
j=0

‖Ajf‖2
η̃ .
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P r o o f o f t h e f i r s t p a r t o f T h e o r e m (1.5). Let ϕ ∈
C∞c (B(0, 2)). Theorem (3.1) and (2.1) imply that ϕ ∗ µt ∈ S∞(G). From
Lemma (5.1) and from the fact that our semigroup is holomorphic on weigh-
ted Hilbert spaces we deduce that for every multi-index I and every η > η′

there are constants N and C such that for t ∈ (0, 1),

(5.4) |XI(ϕ ∗ µt)(a)| ≤ Cη̃′(a)−1/2t−N‖ϕ‖η̃ ≤ C ′η̃′(a)−1/2t−N‖ϕ‖L2 .

Hence, the linear functional Λϕ = XI(ϕ ∗ µt)(a) on L2(B(0, 2)) is bounded
and its norm is estimated by Cη̃′(a)−1/2t−N . From the Riesz theorem, we
get

(5.5) ‖XIµt‖L2(B(0,2)a) ≤ Cη̃′(a)−1/2t−N , t ∈ (0, 1) .

By the Sobolev inequality, we obtain dµt(x) = pt(x) dx with pt ∈ S∞(G)
and for every η and every multi-index I there exist constants C and N such
that

(5.6) |XIpt(x)|+ |Y Ipt(x)| ≤ Ct−N η̃(x)−1, t ∈ (0, 1) .

It follows from (5.6) that the pt belong to the domain of the operator
Ak for every natural k and

(5.7) |Akpt(x)| ≤ Ct−N(k)η̃(x)−1 for t ∈ (0, 1) .

Hence, by (5.6) and (5.7), the function Y Ip2t(x) = Y Ipt ∗ pt(x) is differen-
tiable with respect to t and

(5.8) ∂k
t Y

Ip2t(x) = (Y Ipt) ∗ (Akpt)(x) .

The equality (5.8) combined with (5.6) and (5.7) implies

|∂k
t Y

Ipt(x)| ≤ Cη̃(x)−1t−N(k,I) ,

which by (2.1) gives (1.6).

In order to prove the second part of Theorem (1.5) we need the following
lemma in the spirit of Duflo [Du, Proposition 14].

Lemma (5.9). For every η and every natural number k there exist a
relatively compact neighborhood U of the origin and a constant C such that∫

x6∈U

pt(x)η̃(x) dx ≤ Ctk, t ∈ (0, 1) .

P r o o f. Fix k. Let r be such that supp ν ⊂ U0 = B(0, r) and let
U = Uk+2

0 . For ψ ∈ C∞c (U) with 0 ≤ ψ ≤ 1 and ψ = 1 on Uk+1
0 we define a

family of functions η̃n ∈ C∞c (G) by

(5.10) η̃n(x) = η̃(x)(1− ψ(x))ψ(δ1/nx) .
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Obviously there exists a constant C independent of n such that

|XI η̃n(x)| ≤ Cη̃(x), |Akη̃n(x)| ≤ Cη̃(x) ,(5.11)
lim

n→∞
η̃n(x) = η̃(x) for x 6∈ U .(5.12)

Now, define a function hn by

hn(t) =
∫
G

η̃n(x)pt(x) dx = Ttη̃n(0) .

Obviously hn ∈ C∞[0,∞). Moreover,

(5.13) ∂j
t hn(t) =

∫
G

(Aj η̃n)(x)pt(x) dx, j = 0, 1, . . . , k .

By (3.10), (5.11) and (5.13), we obtain

|∂j
t hn(t)| < C, j = 0, 1, . . . , k, t ∈ (0, 1), with C independent of n .

Since ∂j
t hn(0) = 0 for j = 0, 1, . . . , k, we get hn(t) ≤ Ctk for t ∈ (0, 1),

which by (5.12) and the Lebesgue convergence theorem ends the proof of
the lemma.

P r o o f o f t h e s e c o n d p a r t o f T h e o r e m (1.5)

Lemma (5.14). For every weight η̃′, every natural number k and every
multi-index I there exist constants C and r such that

(5.15) |XIpt(x)| ≤ Ctkη̃′(x)−1 for |x| > r, t < 1 .

P r o o f. Let η > η′. For a multi-index I let N and C be constants such
that

(5.16)
∑

‖J‖≤‖I‖

(|XJpt(x)|+ |Y Jpt(x)|) ≤ Ct−N η̃(x)−1 for t ∈ (0, 1) .

By Lemma (5.9) for a fixed natural number k there are constants l and C
such that
(5.17)

∫
|x|>l

pt(x)η̃(x) dx ≤ CtN+k for t ∈ (0, 1) .

Let ϕ ∈ C∞c (G) with ϕ(x) = 1 for |x| < 2l and 0 ≤ ϕ ≤ 1. Then by (2.1),
we get

|η̃′(x)XIpt(x)|

≤ C
∫
G

|((1− ϕ)pt/2)(xy−1)XIpt/2(y)|η̃′(xy−1)η̃′(y) dy

+ C
∑

‖J‖≤‖I‖

∫
G

|wJ(x)| |Y J(ϕpt/2)(xy−1)pt(y)|η̃′(xy−1)η̃′(y) dy ,

which combined with (5.16), (5.17) gives (5.15).
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Corollary (5.18). For every multi-index I, every weight η̃′ and any
nonnegative integers s, k there exist C and r such that

(5.19) |∂s
tX

Ipt(x)| ≤ Ctkη̃′(x)−1 for t < 1, |x| > r .

P r o o f. Let us remark that ∂tpt = Apt and ∂t and XI commute. Using
the fact that the distribution A has compact support, Lemma (5.4) and
Sobolev inequalities we obtain (5.19).
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