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1. Introduction. In [11] Petersen gave a direct proof of Cotlar’s [8]
result on the existence a.e. and boundedness of the ergodic Hilbert transform
defined by a measure-preserving invertible transformation on a probability
space (X, µ). Petersen’s proof consists in proving `p-inequalities for the
maximal discrete Hilbert transform on sequence spaces and then applying
Calderón’s transference principle ([6], also [7]).

In this paper we study a class of operators, called singular series op-
erators (Definition 2.1), which are discrete analogues of singular integral
operators on R ([13], [14]). By transference, we then consider the corre-
sponding ergodic operators on Lp-spaces of Banach space valued functions
on X, for suitable Banach spaces B.

In Section 2, the singular series operators are defined as convolution
operators on the sequence spaces `p, 1 ≤ p < ∞, and we show that the
associated maximal operator is bounded on `p for 1 < p < ∞ and is of weak
type (1, 1). This result can be proved by standard real variable methods
using Calderón–Zygmund decomposition. We prove the maximal operator
inequalities by transferring these from the corresponding inequalities on R.
This transference works for Banach space valued sequence spaces `p

B where
B is a Banach space. The singular integral operators are well behaved on the
Banach space valued function spaces Lp

B(R) if B is a UMD space (uncon-
ditional martingale differences) with an unconditional basis. UMD spaces
were discovered by Burkholder ([4]). A Banach space B is a UMD space
iff the Hilbert transform is a bounded operator on Lp

B(R), 1 < p < ∞ ([4]
and [2]). A UMD space can also be characterized by the boundedness of the
discrete Hilbert transform on `p

B ([1]) . For a geometric characterization, we
refer to [5].

In Section 3, we define the ergodic singular operators and using the
transference principle as in [11], we prove the existence a.e. and boundedness
of these operators on the spaces Lp

B(X) consisting of B-valued (strongly)
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measurable functions on X with
∫

X
‖f(x)‖p dµ(x) < ∞, where B is as in

the above paragraph.
Throughout we write C1, Cp, C ′ etc. for positive constants which may

vary from one line to the next. Z denotes the additive group of integers, T
the circle group. We write ‖ ‖p for the norm in `p as well as in Lp

B , as the
case may be. For a subset E of Z, cardE denotes the cardinality of E.

2. Singular series operators on sequence spaces

2.1. Definition. A sequence φ = {φ(n)}n∈Z is said to be a singular
kernel if there exist constants C1, C2 > 0 such that

N∑
n=−N

φ(n) converges as N →∞ ,(S1)

φ(0) = 0 and |φ(n)| ≤ C1/|n|, n 6= 0 ,(S2)

|φ(n + 1)− φ(n)| ≤ C2/n2, n 6= 0 .(S3)

Clearly a singular kernel φ is in `r for all 1 < r ≤ ∞. Hence the convolution

φ ∗ a(n) =
∑
k∈Z

φ(n− k)a(k) ≡ Tφa(n)

is defined for all a = {a(n)}n∈Z in `p, 1 ≤ p < ∞ (in fact also for a ∈ `p
B

where B is any Banach space). The kernel of the discrete Hilbert transform,
φ(n) = 1/n, is an example, as is also φ(n) = 1/(n log |n|), n 6= 0, ±1.

It is not difficult to see that if φ is a singular kernel, then the truncations
φN , N ≥ 1, defined as φN (n) = φ(n) for |n| ≤ N and 0 otherwise, satisfy

(S3)′ sup
n

∑
|k|>2|n|

|φN (k − n)− φN (k)| ≤ C2

where C2 does not depend on N . This fact is needed in §2.3. We remark
that the {φN} need not satisfy (S3) uniformly in N (take φ(n) = 1/n as an
example).

2.2. The following proposition along with the Plancherel theorem shows
that the operator Tφ , where Tφa(n) = φ ∗ a(n), is bounded on `2.

Proposition. If φ = {φ(n)}n∈Z is a singular kernel , then φ̂ ∈ L∞(T).

P r o o f. Observe that

φ̂(t) = lim
j→∞

Nj∑
k=−Nj

φ(k)e−ikt = lim
j→∞

φ̂Nj (t) a.e. ,

for some subsequence Nj , so that it is enough to prove that supN ‖φ̂N‖∞ <
∞. Fix N ≥ 1 and t ∈ T. We will choose m, depending on N and t, to
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estimate φ̂N (t):

|φ̂N (t)| =
∣∣∣ N∑

k=−N

φ(k)e−ikt
∣∣∣

≤
∣∣∣ ∑
|k|≤m

φ(k)e−ikt
∣∣∣ +

∣∣∣ ∑
m<|k|≤N

φ(k)e−ikt
∣∣∣ = A1 + A2 .

Let m = min(N, [π/|t|]), where for a non-negative real number α, [α] denotes
the largest integer less than or equal to α. Then

A1 ≤
∣∣∣ ∑
|k|≤m

φ(k)(e−ikt − 1)
∣∣∣ +

∣∣∣ ∑
|k|≤m

φ(k)
∣∣∣

≤
∑
|k|≤m

|φ(k)||kt|+ C ≤ C12m|t|+ C ≤ C ,

using (S1), (S2) and the choice of m.
For estimating A2 we have m < N , and so

A2 ≤
∣∣∣ N∑

k=m+1

φ(k)e−ikt
∣∣∣ +

∣∣∣ N∑
k=m+1

φ(−k)eikt
∣∣∣ = A′2 + A′′2

and

A′2 =
∣∣∣ N−1∑

k=m+1

(φ(k)− φ(k + 1))
k∑

j=m+1

e−ijt + φ(N)
N∑

j=m+1

e−ijt
∣∣∣

≤
∣∣∣ N−1∑

k=m+1

(φ(k)− φ(k + 1))
∣∣∣|1/ sin t/2|+ |φ(N)||1/ sin t/2|

≤ C|1/ sin t/2|
{ N−1∑

k=m+1

1/k2 + 1/N
}
≤ Cπ

|t|m
≤ C

since |1/ sin t/2| ≤ π/|t| for t ∈ [−π, π] and by the choice of m, we have
m ≥ (m + 1)/2 ≥ π/(2|t|). The estimate for A′′2 is similar. This completes
the proof of the proposition.

2.3. With Proposition 2.2 and (S3)′, the kernels {φN} satisfy the hy-
pothesis of Corollary 2.4.5 of [10], so that the operator Tφ (T∧φ in the notation
of [10]) is bounded on `p for 1 < p < ∞ and is of weak type (1, 1).

In the following theorem we show that in fact the maximal operator
defined as

T ∗φa(n) = sup
N

∣∣∣ N∑
k=−N

φ(k)a(n− k)
∣∣∣

is bounded on `p for 1 < p < ∞ and is of weak type (1, 1).
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2.4. Theorem. Let φ be a singular kernel and 1 ≤ p < ∞. Then there
exists a constant Cp > 0 such that

‖T ∗φa‖p ≤ Cp‖a‖p, ∀a ∈ `p, if 1 < p < ∞ ,(i)

card{j ∈ Z : T ∗φa(j) > λ} ≤ C1

λ
‖a‖1, ∀λ > 0 and a ∈ `1 .(ii)

Before proving the theorem we observe that if φ is a singular kernel and
we let K be the linear extension of φ to R , then K is locally integrable and
satisfies : ∫

ε<|x|<1/ε

K(x) dx converges as ε → 0 ,(K1)

|K(x)| ≤ C/|x|, x 6= 0 ,(K2)
|K(x)−K(x− y)| ≤ C ′|y|/x2 for |x| > 2|y| .(K3)

Then K is a Calderón–Zygmund singular kernel on R ([14], Ch. XI, §5).
The principal value integral

TKf(x) = p.v.
∫

K(x− y)f(y) dy

is defined a.e. for f ∈ Lp(R), 1 ≤ p < ∞, and the maximal operator

T ∗Kf(x) = sup
ε>0

∣∣∣ ∫
ε<|x−y|<1/ε

K(x− y)f(y) dy
∣∣∣

satisfies

‖T ∗Kf‖p ≤ Cp‖f‖p for 1 < p < ∞ ,(i)

m{x ∈ R : T ∗Kf(x) > λ} ≤ C1

λ
‖f‖1(ii)

(where m denotes the Lebesgue measure on R).

For these results we refer to [14] , Theorems 6.2 and 6.3 in Ch. XI.

P r o o f o f T h e o r e m 2.4. Let a = {a(k)}k∈Z ∈ `p and define

f(x) =
∑
k∈Z

a(k)χIk
(x)

where Ik = [k − 1/4, k + 1/4] and χI denotes the characteristic function of
I. Clearly f ∈ Lp(R) with ‖f‖p = 1

2‖a‖p. Fix n ≥ 0; then for j ∈ Z and
x ∈ Ij , we have∑

|k−j|>n

a(k)φ(j − k)− 2
∫

|x−y|>n+1/2

K(x− y)f(y) dy

= 2
∑

|k−j|>n

∫
y∈Ik

(φ(j − k)−K(x− y))f(y) dy .
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If x ∈ Ij , y ∈ Ik and j 6= k, we have |x− y − j + k| ≤ 1
2 ≤

1
2 |j − k| so that

by (K3),

|φ(j − k)−K(x− y)| ≤ C

(x− y)2
.

Hence∣∣∣ ∑
|k−j|>n

a(k)φ(j − k)− 2
∫

|x−y|>n+1/2

K(x− y)f(y) dy
∣∣∣

≤ C
∑

|k−j|>n

∫
y∈Ik

|f(y)|
(x− y)2

dy ≤ C
∫

|x−y|>1/2

|f(y)|
(x− y)2

dy ≡ CSf(x) .

Therefore, if x ∈ Ij then∣∣∣ ∑
|k−j|>n

a(k)φ(j − k)
∣∣∣ ≤ C(T ∗Kf(x) + Sf(x)) .

In particular, putting n = 0,

|Tφa(j)| ≤ C(T ∗Kf(x) + Sf(x)) for x ∈ Ij

and
T ∗φa(j) = sup

n

∣∣∣ ∑
|k−j|≤n

a(k)φ(j − k)
∣∣∣

≤ T ∗φa(j) + sup
n

∣∣∣ ∑
|k−j|>n

a(k)φ(j − k)
∣∣∣

≤ C(T ∗Kf(x) + Sf(x)), x ∈ Ij .

From this the conclusion of Theorem 2.4 follows, since using Hölder’s in-
equality we have ‖Sf‖p ≤ C‖f‖p for 1 ≤ p < ∞ .

2.5. If B is a Banach space for which the maximal singular integral
operators

T ∗Kf(x) = sup
ε>0

∥∥∥ ∫
ε<|x−y|<1/ε

K(x− y)f(y) dy
∥∥∥, f ∈ Lp

B(R) ,

satisfy inequalities (i) and (ii) of Section 2.4, where now ‖ · ‖p denotes the
norm in Lp

B(R), then the above proof works and Theorem 2.4 holds for the
sequence spaces `p

B . In particular, this is the case if B is a UMD space
with an unconditional basis ([3] and [12]). We remark that the geometric
properties of the Banach space do not play any role in the above transference.

3. Ergodic operators

3.1. Let (X, µ) be a probability space and U an invertible measure-
preserving transformation on X. In this section, we assume that B is a



304 A. M. ALPHONSE AND S. MADAN

UMD space with an unconditional basis. Then by 2.5 above, Theorem 2.4
holds for the B-valued sequence spaces `p

B .
If φ = {φ(n)}n∈Z is a singular kernel and f ∈ Lp

B(X), consider the
operator defined, a priori, as

T̃φf(x) =
∑
j∈Z

φ(j)f(U−jx) .

We observe that for f ∈ Lp
B(X), the sequences {f(U−jx)}j∈Z need not be in

the sequence spaces `p
B , so that nothing can be said about the convergence

of the series defining T̃φf . We show below that if B is reflexive then the
operator is well defined for f belonging to a dense subspace of Lp

B(X).
In particular, this is so for a UMD space, since such a space is always
reflexive [5].

3.2. Lemma. Let B be a reflexive Banach space, and U an invertible
measure-preserving transformation on a probability space (X, µ). Let 1 ≤
p ≤ 2 and

D = {f : f = g − g ◦ U with g ∈ L∞B (X)}+ {f ∈ Lp
B(X) : f = f ◦ U} .

Then D is dense in Lp
B(X).

P r o o f. For a reflexive Banach space B with dual B∗, the dual of Lp
B(X)

is Lp′

B∗(X), where 1/p+1/p′ = 1 ([9]). Suppose h∗ ∈ Lp′

B∗(X) and 〈f, h∗〉 = 0,
∀f ∈ D.

First, if f = g − g ◦ U , g ∈ L∞B (X), we have

0 = 〈f, h∗〉 =
∫
X

〈g(x)− g(Ux), h∗(x)〉 dµ(x)

=
∫
X

〈g(x), h∗(x)− h∗(U−1x)〉 dµ(x)

= 〈g, h∗ − h∗ ◦ U−1〉 .
Since this holds for all g ∈ L∞B (X), a dense subset of Lp

B(X), we conclude

h∗(x) = h∗(U−1x) a.e.

Now observe that h∗ is almost separably valued, i.e. the space M =
(ess. range h∗)− is separable and reflexive, so that M∗ is also separable.

Let {bj} be a countable dense set in M∗ ≈ B/M⊥ and put fj(x) =
〈bj , h

∗(x)〉bj . Then fj ∈ Lp
B(X) if 1 ≤ p ≤ 2, since h∗ ∈ Lp′

B∗(X). Also if
h∗ = h∗ ◦ U , we have fj = fj ◦ U so that fj ∈ D and 〈fj , h

∗〉 = 0 implies∫
X

|〈bj , h
∗(x)〉|2 dµ(x) = 0 .

Hence 〈bj , h
∗(x)〉 = 0 a.e., ∀ bj . But then h∗ = 0 a.e.
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3.3. Lemma. Let φ = {φ(n)}n∈Z be a singular kernel. Then the series∑N
k=−N φ(k)f(U−kx) converges a.e. for all f ∈ D.

P r o o f. If f = f ◦U , this is obvious by (S1). If f = g−g◦U , g ∈ L∞B (X),
we use a partial summation formula:∥∥∥ ∑

N≤|k|≤M

φ(k)f(U−kx)
∥∥∥

=
∥∥∥ ∑

N≤|k|≤M

φ(k){g(U−kx)− g(U−k+1x)}
∥∥∥

≤ ‖g‖∞
( M−1∑

k=N

+
−N−1∑
k=−M

)
|φ(k)− φ(k + 1)|

+ ‖g‖∞(|φ(N)|+ |φ(−N)|+ |φ(M)|+ |φ(−M)|)

≤ ‖g‖∞
(

C

M∑
k=N

1/k2 +
C

min(M,N)

)
→ 0 as N,M →∞ .

3.4. In the following theorem we prove the boundedness of the maximal
ergodic singular operator by transferring the result of Theorem 2.4. This
transference works exactly as it does for the ergodic Hilbert transform ([11]).
The details are given below for completeness.

Theorem. Let φ = {φ(n)} be a singular kernel , (X, µ) a probability
space and U an invertible measure-preserving transformation on X. Then
the maximal ergodic singular operator

T̃ ∗φf(x) = sup
N

∣∣∣ N∑
k=−N

f(U−kx)φ(k)
∣∣∣

satisfies

‖T̃ ∗φf‖p ≤ Cp‖f‖p if 1 < p < ∞ ,(i)

µ{x ∈ X : T̃ ∗φf(x) > λ} ≤ C

λ
‖f‖1, ∀f ∈ L1(X) and λ > 0 .(ii)

P r o o f. Fix N > 0 and let

T̃ ∗Nf(x) = sup
1≤n≤N

∣∣∣ n∑
k=−n

f(U−kx)φ(k)
∣∣∣ .

It is enough to prove that T̃ ∗N satisfies (i) and (ii) with constants not de-
pending on N . Let λ > 0 and put

EN = {x ∈ X : T̃ ∗Nf(x) > λ} .
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Since U is measure-preserving, we have

µ(EN ) = µ(U−mEN ) ∀m

=
1

2M + 1

M∑
m=−M

µ(U−mEN ) ∀M

=
1

2M + 1

M∑
m=−M

µ
{

x : sup
1≤n≤N

∣∣∣ n∑
k=−n

f(U−k+mx)φ(k)
∣∣∣ > λ

}
.

For x lying outside a µ-null set, we can define

aM
x (k) =

{
f(Ukx) if |k| ≤ M + N,
0 otherwise.

Then, using Theorem 2.4 and Fubini’s theorem, we get

µ(EN ) =
1

2M + 1

M∑
m=−M

µ
{

x : sup
1≤n≤N

∣∣∣ n∑
k=−n

aM
x (m− k)φ(k)

∣∣∣ > λ
}

≤ 1
2M + 1

(card×µ)
{

(m,x) : sup
1≤n≤N

∣∣∣ n∑
k=−n

aM
x (m− k)φ(k)

∣∣∣ > λ
}

≤ 1
2M + 1

∫
X

card{m : T ∗φaM
x (m) > λ} dµ(x)

≤ 1
2M + 1

Cp

λp

∫
X

∑
j∈Z

|aM
x (j)|p dµ(x)

≤ 1
2M + 1

Cp

λp

M+N∑
j=−M−N

∫
X

|f(U jx)|p dµ(x)

=
Cp

λp

2(M + N) + 1
2M + 1

‖f‖p
p

and so by choosing M large enough,

µ(EN ) ≤ Cp

λp
‖f‖p

p, ∀λ > 0 .

Conclusion (i) of the theorem now follows by using the Marcinkiewicz inter-
polation theorem.

3.5. As remarked earlier, if B is a UMD Banach space with an uncon-
ditional basis, then Theorem 2.4 holds for the sequence spaces `p

B . In that
case Theorem 3.4 holds for Lp

B(X) with the same proof upon replacing |·| by
the norm in B wherever necessary. For such Banach spaces, T̃φ is defined
on a dense subset of Lp

B(X) by Lemmas 3.2 and 3.3. Then Theorem 3.4
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and standard arguments show that T̃φf is defined a.e. for all f ∈ Lp
B(X),

1 ≤ p < ∞.
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