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COERCIVE INEQUALITIES ON WEIGHTED SOBOLEV SPACES

BY

AGNIESZKA K A  L A M A J S K A (WARSZAWA)

1. Introduction. Coercive inequalities play an important role in many
disciplines of P.D.E. They are applied to derive existence and regularity
results in various boundary value problems. The most well known is the
Korn inequality

‖∇u‖Lp(Ω) ≤ C

{
‖u‖Lp(Ω) +

n∑
i,j=1

∥∥∥∥ ∂ui

∂xj
+
∂uj

∂xi

∥∥∥∥
Lp(Ω)

}
,

which has been used to obtain results of existence, uniqueness and regularity
for the principal boundary value problems in linearized elastostatics (see e.g.
[V]). Koshelev noticed that the classical Korn inequality is insufficient for
treating certain boundary value problems in the elasticity theory. To solve
some of the problems he proved the Korn inequality in a weighted version
with power-type, radial weights %(x) = |x − x0|α (see [Kos]). Kondrat’ev
and Olĕınik [KO] extended this result to a wider class of weights of type
|x|α. As is known if −n < α < n(p − 1) then such a weight belongs to the
Muckenhoupt class Ap (see [T], Sec. IX, Corollary 4.4). Thus it is natural
to ask whether coercive inequalities hold in weighted Lp spaces with Muck-
enhoupt weights. A good example of such nonradial weights are functions
of the form (dist(x, ∂Ω))α where −1 < α < p − 1 and Ω is for example a
bounded Lipschitz-boundary domain. Weighted Sobolev spaces with such
weights have been investigated by Kufner in [Ku] for needs of equations with
perturbed ellipticity.

We prove that the classical coercive inequalities (see e.g. [BIN], [S]) ex-
tend to inequalities in a weighted version with Muckenhoupt weights (The-
orem 6).

Weighted coercive inequalities relate to equivalent norms in weighted
Sobolev spaces. In recent time much attention has been paid to the study
of weighted Sobolev spaces (see e.g. [GK], [Ku], [LO]). Their understanding
leads to the generalization of regularity results in many problems of P.D.E.
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attention.

2. Preliminaries. Let Ω be an open subset of Rn, and % ≥ 0 a locally
integrable function. By Lp

%(Ω) we denote the weighted Lp-space on Ω, i.e.
the space of functions f for which

∫
Ω
|f |p% dx is finite. If % ≡ 1 then % will

be omitted in notation.
We use the following definition of weighted Sobolev spaces:

Wm,p
% (Ω) := {f ∈ D′(Ω) : Dαf ∈ Lp

%(Ω), |α| ≤ m}

with the norm
‖f‖W m,p

% (Ω) :=
∑
|α|≤m

‖Dαf‖Lp
%(Ω) .

Theorem 1. Let Ω ⊆ Rn be a bounded domain, starshaped with respect
to a ball B. Choose ω ∈ C∞

0 (B) such that
∫

B
ω dx = 1. Then for any

f ∈Wm,1(Ω),

f(x) = Pm−1
ω f(x) +

∑
|α|=m

∫
Ω

Kα(x, y)Dαf(y) dy a.e. in Ω ,

where

Pm−1
ω f(x) =

∫
Ω

{ ∑
|β|<m

Dβ
y

(
(y − x)β

β!
ω(y)

)}
f(y) dy

(Pm−1
ω f(x) is a polynomial of degree less than m) and

Kα(x, y) =
(−1)mm

α!
(y − x)α

|y − x|n
∞∫

|y−x|

ω

(
x+ t

y − x

|y − x|

)
tn−1dt .

(See [Ma], Th. 1.1.10/1 for the proof.)
Let Pj = (Pj1, . . . , Pjk) (j = 1, . . . , N) be scalar differential operators of

order m, acting on vector-valued functions f = (f1, . . . , fk):

Pjf =
k∑

i=1

Pjifi, Pjig(x) =
∑
|α|≤m

aα,j,i(x)Dαg(x) .

Denote by Pm
j the principal part of Pj , involving differentiations of highest

order, and by P 0
j the part involving differentiations of order less than m. We

say that Pj is homogeneous if P 0
j = 0. Let Pji(x, ξ) be the corresponding

characteristic polynomials. If Pj has constant coefficients then we write
simply Pji(ξ).

We will be interested in Sobolev type spaces of vector-valued functions

L{Pj},p
% (Ω) = {f = (f1, . . . , fk) : fi ∈ D′, Pjf ∈ Lp

%(Ω)} .
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If % ≡ 1 then we omit % in our notation. For example one of such spaces is

Lm,p
% (Ω) = {f = (f1, . . . , fk) : fi ∈ D′, ∇mf ∈ Lp

%(Ω)}
where ∇mf stands for the vector {Dαf}|α|=m.

If f ∈ L1
loc then Mf denotes the Hardy–Littlewood maximal function

of f . We will require that % ∈ Ap (1 < p < ∞), that is, % satisfies the
Muckenhoupt condition

sup
Q

1
|Q|
∫
Q

% dx

{
1
|Q|
∫
Q

%−1/p−1 dx

}p−1

<∞

where Q are cubes in Rn. Muckenhoupt’s theorem (see e.g. [T]) states that
for 1 < p <∞ the operator f 7→Mf is bounded in Lp

% if % ∈ Ap.

Theorem 2. Let Ω be a bounded , starshaped domain, and {Pj}j=1,...,N

a family of differential operators acting on vector-valued functions f =
(f1, . . . , fk), with the following properties:

• Pj are homogeneous of order m and have constant coefficients,
• the matrix {Pji(ξ)}j=1,...,N

i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with
complex ξi (i = 1, . . . , n).

Then there exist vector-valued functions Kj(x, y) (j = 1, . . . , N), Kj(x, y) =
(Kj1, . . . ,Kjk), satisfying the following conditions:

(i) Kji ∈ C∞(Rn × Rn \ {x = y}),
(ii) Kji(x, ·) ≡ 0 near the boundary of Ω for x ∈ Ω,
(iii) |Dα

xD
β
yKji(x, y)| ≤ C/|x− y|n−m+|α|+|β| for any x, y ∈ Ω,

(iv) there exists a positive integer l ≥ m and scalar differential operators
Pj,i,α (j = 1, . . . , N, i = 1, . . . , k, |α| = l) of order l − m, homogeneous,
with constant coefficients, satisfying

Kji(x, y) =
∑
|α|=l

(Pj,i,α)yKα(x, y) ,

(v) for any f ∈ L{Pj},1
loc (Ω) and almost every x ∈ Ω

fi(x) = P l−1
ω fi(x) +

N∑
j=1

∫
Ω

Kji(x, y)Pjf(y) dy

where P l−1
ω fi is as in Theorem 1.

The proof can be found in [Ka], Ths. 4 and 6. Note that in the scalar
case the third assumption on Pj means that the Pj(ξ) with complex ξi
(i = 1, . . . , n) have no common nontrivial zeros.

Observe that if 1 < p < ∞ then the representation from Theorem 2 is
valid for every f ∈ L{Pj},p

% (Ω), since then L{Pj},p
% (Ω) ⊆ L{Pj},1(Ω).
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The following result is a consequence of Theorem 9 of [Ka] and the
inclusion Lp

%(Ω) ⊆ L1(Ω) (1 < p <∞, % ∈ Ap).

Theorem 3. Let Ω be a bounded domain with the cone property , 1 <
p < ∞, and % ∈ Ap. Then there exists a constant C such that for every
f ∈Wm,p

% (Ω), and every multiindex β with |β| = k, 0 < k < m,

‖Dβf‖Lp
%(Ω) ≤ C

{
‖f‖Lp

%(Ω) + (‖f‖Lp
%(Ω))

1−k/m
( ∑
|α|=m

‖Dαf‖Lp
%(Ω)

)k/m}
.

By C we denote the general constant. It may stand for different constants
even in the same proof.

3. A norm equivalence condition for homogeneous operators
with constant coefficients. We will need the following facts:

Lemma 1 (see [H]). Let ψ ∈ L1 be a radial-decreasing function, and
f ∈ L1

loc. Then the convolution ψ ∗ f satisfies

|ψ ∗ f(x)| ≤ C‖ψ‖L1Mf(x)

almost everywhere, with a constant independent of f .

Applying Muckenhoupt’s theorem and the above lemma we easily derive

Corollary 1. If Ω is any bounded domain, and % ∈ Ap, 1 < p < ∞,
then weakly singular operators on Ω are bounded in Lp

%(Ω).

Lemma 2 (see [Mi], Sec. II/8). Let K ∈ C∞(Rn × Rn \ {x = y}) and
h ∈ L1(Ω).

(i) If | ∂
∂xi

K(x, y)| ≤ C/|x− y|n−1 and |K(x, y)| ≤ C/|x− y|n−2 then

∂

∂xi

∫
Ω

K(x, y)h(y) dy =
∫
Ω

∂

∂xi
K(x, y)h(y) dy .

(ii) If

K(x, y) =
c

(
x,

x− y

|x− y|

)
|x− y|n−1

and c ∈ C∞(Rn × Sn−1) then
∂

∂xi

∫
Ω

K(x, y)h(y) dy =
∫
Ω

∂

∂xi
K(x, y)h(y) dy − h(x)

∫
Sn−1

c(x, θ)θi dSθ

where dSθ is the area element on the sphere Sn−1.

Lemma 3. Let h(x, y) = g(x, x − y) where g(x, z) is smooth with
respect to x and homogeneous of order −(n − 1) with respect to z. Then
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for every x ∈ Rn, ∫
Sn−1

∂

∂yi
h(x, y) dSy = 0 .

P r o o f. Define P (r1, r2) = {y : r1 ≤ |x − y| ≤ r2}. Since ∂
∂yi

h(x, y) is
homogeneous of order −n with respect to x− y, we have∫

P (r1,r2)

∂

∂yi
h(x, y) dy = ln

(
r1
r2

) ∫
Sn−1

∂

∂yi
h(x, y) dSy .

But the left hand side is zero since by Green’s formula∫
P (r1,r2)

∂

∂yi
h(x, y) dy

=
∫

|x−y|=r2

h(x, y)
yi − xi

|x− y|
dSy −

∫
|x−y|=r1

h(x, y)
yi − xi

|x− y|
dSy

and h is homogeneous.

Lemma 4. Let Ω be a bounded domain, % ∈ Ap, 1 < p < ∞, and let α,
β, γ be multiindices such that |α| = |β| = |γ| = m. Then the operator

h 7→ Dγ
∫
Ω

Dβ
yKα(x, y)h(y) dy

is bounded in Lp
%(Ω).

P r o o f. Let

r(x, y) = |y − x|, θ(x, y) =
y − x

|y − x|
,

Aα(x, y) =
θα

rn−m

∞∫
0

ω(x+ tθ)tn−1 dt ,

Bα(x, y) =
θα

rn−m

r∫
0

ω(x+ tθ)tn−1 dt .

SinceKα = Aα−Bα it is sufficient to prove that the corresponding operators
with Kα replaced by Aα and Bα respectively are bounded in Lp

%(Ω).
Let us look at the function Aα(x, y). Its first m− 1 derivatives are sums

of functions of the form c(x, θ)/rn−k for k ≥ 1, smooth with respect to x
and θ. If k > 1 then by Lemma 2 and Corollary 1 the operator

h 7→ ∂

∂xi

∫
Ω

c(x, θ)
rn−k

h(y) dy
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is bounded in Lp
%(Ω). If k = 1 then by Lemma 2,

∂

∂xi

∫
Ω

c(x, θ)
rn−1

h(y) dy =
∫
Ω

∂

∂xi

(
c(x, θ)
rn−1

)
h(y) dy − h(x)

∫
Sn−1

c(x, θ)θi dSθ .

And
∂

∂xi

(
c(x, θ)
rn−1

)
= − ∂

∂yi

(
c(x, θ)
rn−1

)
+
c′(x, θ)
rn−1

with c′ ∈ C∞(Rn × Sn−1). To obtain the boundedness of the operator
h 7→ Dγ

∫
Ω
Dβ

yAα(x, y)h(y) dy it is enough to show that the operator

h 7→ Th =
∫
Ω

∂

∂yi

(
c(x, θ)
rn−1

)
h(y) dy

is bounded in Lp
%(Ω).

Lemma 3 yields that T is a Calderón–Zygmund operator (see [T], Sec.
XI, Remark 8.11 and [CZ], Th. 2). Now it is enough to apply a version of
the Calderón–Zygmund theorem stating that Calderón-Zygmund operators
are bounded in Lp

% for p > 1 and % ∈ Ap ([TJ], see also [T], Sec. XIII,
Remark 4.5).

The result for Bα follows by similar methods and the observation that
there exists a constant C such that 1

r

∫ r

0
ω(x + tθ)tl dt ≤ C for all r <

diam(Ω), θ ∈ Sn−1. That property follows from Lebesgue’s differentiation
theorem (see e.g. [T]).

Theorem 4. Let Ω be a bounded , starshaped domain, % ∈ Ap, 1 <
p < ∞, and let {Pj}j=1,...,N be a family of differential operators acting on
vector-valued functions f = (f1, . . . , fk) and satisfying

• the Pj are homogeneous of order m and have constant coefficients,
• the matrix {Pji(ξ)}j=1,...,N

i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with
complex ξi.

Then there exists a constant C such that for any f ∈ L{Pj},p
% (Ω),

‖∇mf‖Lp
%(Ω) ≤ C

{
‖f‖Lp

%(Ω) +
N∑

j=1

‖Pjf‖Lp
%(Ω)

}
.

P r o o f. Since every domain with the cone property is a finite union
of starshaped domains ([Ma], Lemma 1.1.9/1), we may assume that Ω is
starshaped. Now the assertion is an immediate consequence of Theorem 2
and Lemma 4.

R e m a r k s. 1. Using Lemma 2 we can also prove that if Ω is a bounded,
starshaped domain, φ ∈ C∞

0 (Rn), φ ≡ 1 in a neighbourhood of Ω, and
1 < p <∞, then the function f(x) given by
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f(x) = φ(x)
{
Pm−1

ω f(x) +
∑
|α|=m

∫
Ω

Kα(x, y)Dαf(y) dy
}

satisfies f = f in Ω, and

‖f‖W m,p
%

≤ C‖f‖W m,p
% (Ω)

with a constant C independent of f .
It follows by the same arguments that if Pj , p and % are as in Theorem 2

then there exists a bounded extension operator L{Pj},p
% (Ω) → L

{Pj},p
% .

2. If Ω is a bounded, starshaped domain then functions smooth in a
neighbourhood of Ω are dense in Wm,p

% (Ω) and in L{Pj},p
% (Ω), provided Pj ,

p and % are as in Theorem 2. We will show this for the space Wm,p
% (Ω). By

Remark 1 it is enough to prove that any f∈Wm,p
% with compact support can

be approximated by smooth functions in Wm,p
% . Choose a radial-decreasing

function φ∈C∞
0 (Rn) such that φ≡1 in a neighbourhood of 0 and

∫
φ=1.

Define φε(x) = ε−nφ(x/ε) and fε = φε ∗ f . Since f ∈ Wm,1 we have
Dαfε(x)→Dαf(x) a.e. for |α| ≤ m and by Lemma 1, |Dαfε(x)−Dαf(x)| ≤
2M(Dαf)(x) almost everywhere. Thus, by the Lebesgue dominated conver-
gence theorem and Muckenhoupt’s theorem we obtain Dαfε→Dαf in Lp

%.

3. If Ω, {Pj}, %, and p are as in Theorem 4 then L{Pj},p
% (Ω) = Wm,p

% (Ω).

4. A norm equivalence condition for operators with non-con-
stant coefficients

Theorem 5. Let Ω be a bounded domain with the cone property , % ∈
Ap, 1 < p <∞, and let {Pj}j=1,...,N be a family of differential operators of
order m acting on vector-valued functions f = (f1, . . . , fk) and satisfying

• the coefficients of Pm
j are continuous in Ω, and those of P 0

j are
bounded in Ω,

• the matrix {Pji(x, ξ)}j=1,...,N
i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with

complex ξi and x ∈ Ω.

Then there exists a constant C such that for any f ∈Wm,p
% (Ω),

‖∇mf‖Lp
%(Ω) ≤ C

{
‖f‖Lp

%(Ω) +
N∑

j=1

‖Pjf‖Lp
%(Ω)

}
.

P r o o f. As in the proof of Theorem 4 we may assume that Ω is star-
shaped. We introduce the following notation:

• Qx
j — the operator Pm

j evaluated at x:

Qx
j f(y) =

k∑
i=1

∑
|α|=m

aα,j,i(x)Dαfi(y) ,
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• B(x,R) — the ball with center x and radius R,
• Ω(x,R) = Ω ∩B(x,R),
• a(x,R) = supy∈Ω(x,R),j=1,...,N,|α|=m,i=1,...,k |aα,j,i(y)− aα,j,i(x)|,
• C(x) — the constant in the coercivity condition (i.e. the inequality of

Theorem 4) for {Qx
j } on Ω.

Choosing R sufficiently small we may assume that

• a(x,R) <
(
2C(x)Nk

(
m
n

))−1,
• Ω(x,R) is starshaped.

Since the balls B(x,R) cover Ω, we can choose a finite subcover {Bk =
B(xk, Rk) : k = 1, . . . ,K} and a smooth partition of unity {φk} subordinate
to this subcover. Set Ωk = Ω(xk, Rk), Qk

j = Qxk
j , Ck = C(xk).

Applying Theorem 4 to {Qk
j }j=1,...,N we derive

‖∇m(φkf)‖Lp
%(Ω) ≤ Ck

{
‖φkf‖Lp

%(Ω) +
N∑

j=1

‖Qk
j (φkf)‖Lp

%(Ω)

}
and

‖Qk
j (φkf)‖Lp

%(Ω) ≤ ‖(Qk
j − Pm

j )(φkf)‖Lp
%(Ωk)

+ ‖Pj(φkf)‖Lp
%(Ωk) + ‖P 0

j (φkf)‖Lp
%(Ωk) .

Hence

‖∇m(φkf)‖Lp
%(Ω) ≤ C{‖f‖W m−1,p

% (Ω) + ‖Pjf‖Lp
%(Ω)}+ 1

2‖∇
m(φkf)‖Lp

%(Ω) .

Now the assertion follows easily from Theorem 3.

Lemma 5. Let {Pj}j=1,...,N be a family of differential operators of order
m satisfying the following conditions:

• the Pj are homogeneous with constant coefficients,
• the matrix {Pji(iξ)}j=1,...,N

i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with
real ξi.

Let f = (f1, . . . , fk), fi ∈ C∞
0 . Then for every multiindex α of order m

there exist functions mα,j(ξ) such that

(i) mα,j(ξ) is smooth except at ξ = 0,
(ii) |mα,j(ξ)| ≤ C in Rn \ {0},
(iii) R2|α|−n

∫
R<|ξ|<2R

|Dαmα,j(ξ)|2 dξ ≤ C for all R > 0, |α| < n/2 + 1,

(iv) D̂αfi(ξ) =
∑

j mα,j(ξ)P̂jf(ξ) for any multiindex α of order m,
where ĝ denotes the Fourier transform of g.

The construction of mα,j is given in [BIN], Theorem 11.6.
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Lemma 6. Let Ω be a bounded domain with the cone property , and
{Pj}j=1,...,N be a family of differential operators of order m acting on vector-
valued functions f = (f1, . . . , fk) and satisfying

• the coefficients of Pm
j are continuous in Ω, and those of P 0

j are
bounded in Ω,

• the matrix {Pji(x, iξ)}j=1,...,N
i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with

real ξi and x ∈ Ω.

Let f ∈ (C∞
0 (Ω))k

, 1 < p <∞, and % ∈ Ap. Then

‖∇mf‖Lp
%(Ω) ≤ C

{
‖f‖Lp

%(Ω) +
N∑

j=1

‖Pjf‖Lp
%(Ω)

}
with a constant independent of f .

P r o o f. If the operators Pj are homogeneous with constant coefficients
then Lemma 6 follows directly from Lemma 5 and Hörmander’s multiplier
theorem in a weighted version (see [T], Sec. XIII, Remark 4.3). In the
general case we apply the above observation and the methods described in
the proof of Theorem 5.

Now we can formulate the main theorem.

Theorem 6. Let Ω be a bounded domain with the cone property , % ∈
Ap, 1 < p <∞, and let {Pj}j=1,...,N be a family of differential operators of
order m acting on vector-valued functions f = (f1, . . . , fk) such that

• the coefficients of Pm
j are continuous in Ω, and those of P 0

j are
bounded in Ω,

• the matrix {Pji(x, iξ)}j=1,...,N
i=1,...,k has rank k for any ξ 6= (0, . . . , 0) with

real ξi and x ∈ Ω, and for any ξ 6= (0, . . . , 0) with complex ξi and x ∈ ∂Ω.

Then there exists a constant C such that for any f ∈Wm,p
% (Ω),

‖∇mf‖Lp
%(Ω) ≤ C

{
‖f‖Lp

%(Ω) +
N∑

j=1

‖Pjf‖Lp
%(Ω)

}
.

P r o o f. We may assume that Ω is starshaped. By Remark 2 of Section 3
it is enough to prove the inequality for f ∈ (C∞(Ω))k. It follows from the
assumptions that there exists a set Ωδ, a neighbourhood of ∂Ω in Ω, such
that the matrix {Pji(x, iξ)}j=1,...,N

i=1,...,k has rank k for any nontrivial ξ with
complex components and x ∈ Ωδ. Choose any φ ∈ C∞

0 (Ω \ Ωδ). We have
f = φf+(1−φ)f and φf ∈ (C∞

0 (Ω))k. Now it is enough to apply Lemma 6
to φf , Theorem 5 to (1− φ)f and add the resulting estimates.

R e m a r k s. 1. Theorem 6 can be stated for differential operators acting
between sections of bundles on differentiable manifolds.
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2. Theorem 6 does not hold for p = 1 or p = ∞ (see [B], [O]).
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