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Abstract. Using <, we construct a rigid atomless Boolean algebra that has no
uncountable antichain and that admits the elimination of the Malitz quantifier Q%.

1. Introduction. Malitz quantifiers are introduced in [Mag-Mal]. Let
us recall the semantics of Q7, n > 1, a« € ORD: 2 F Qg:% o(a, :%) iff there

is a subset H of A such that card(H) > R, and 2 F ¢(a, h) for all pairwise
different hg, h1,...,hn_1 € H. Such a set H is called a homogeneous set
for (@, ). Baldwin and Kueker [Bal-Ku], Rothmaler and Tuschik [Ro-Tu],
Biirger [Bii] and Koepke [Ko] consider the question of elimination of some
of these quantifiers in certain theories or structures. [Ro-Tu] shows that any
saturated model allows the elimination of all @7, « € ORD, n > 1.

Saturated models with two elements of the same type are not rigid. On
the other hand, there are L, (Q3%)-sentences ¢ that have only rigid models
and that are satisfiable under CH (see [Ot], [Mil]). We consider

¢ := “the structure is a Boolean algebra with 0 = 1”
AVz(z #0— Quyy Cz) A~Qizyz L y.

[Ba-Ko, Theorem 5(a)] shows that all models of ¢ are rigid. The search for
a model of ¢ that contains two different elements of the same L, (Q%)-type
leads, under <, to a model of ¢ that admits the elimination of Q% and in
which therefore any two elements # 0,1 have the same L., (Q?)-type.

In ZFC + $ and even in ZFC + CH there are various constructions of
uncountable Boolean algebras with no uncountable antichains and with some
other algebraic properties (see [Ba-Ko], [Sh], [Ru], but also [Ba]). In the
course of showing that additional tasks may be fulfilled along the way given
in [Ba-Ko], we get a partition of all formulas ¢(Z,z,y) € Low(Q?), r € w,
into two classes @1 and @5 such that
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1. The methods of [Ba-Ko] are applicable to any (b(;,x,y) € &1. They
will allow us to show that the homogeneous sets for any qb(;, x,y) € P will
grow only during countably many steps in the chain which we build in the
next section.

2. For any Boolean algebra 2 with A F Vx # 0Q1yy C x and any

“gf)(;,x,y) € @17 will be shown to be equivalent under the first order
theory of atomless Boolean algebras to a first order formula with its free
variables among zg, 21,...,2-_1. The consideration of the possible quanti-

fierfree types of the % leads to a procedure for eliminating Q%.

2. The construction

Notation. We will use U, B, B, to denote Boolean algebras. Boolean
algebras are considered as 7p4-structures with g4 = {N,U, —,0,1}. x Cy
is written for x Ny = =, C means strict inclusion, z \ y is used for z N (—y).
P(w) denotes the powerset algebra of w. For 2 C P(w) we often write A
for 2. The interpretations of the 754-symbols in P(w) are denoted by the
symbols themselves.

a,b € A are comparable (in ) iff a CxphorbC%a CCAisa
chain (an antichain) iff any two distinct elements of C' are comparable (not
comparable). For a C* b€ Alet (a,b)4 :={c€ Ala C¥ c C* b}.

Using ¢, we shall construct a Boolean algebra 9B such that 9B is a model
of the sentence ¢ from the introduction and B admits the elimination of
Q?. As the construction of our Boolean algebra 9B follows the pattern of
[Ba-Ko|, we restrict ourselves to a short description, heavily referring to
[Ba-Ko].

Inductively on o € wj, we shall build a chain (B,, My)acw,, Where
the B, are countable atomless subalgebras of P(w) and each M, is a
countable collection of pairs (M, ¢(¢, x,y)), where M C B, and ¢(¢,x,y) is
a quantifierfree (qf) L., [Tpal-formula with a property that will be defined
later on, and ¢ are elements of B,,. At limit steps we take unions. 8,41 will
be the Boolean algebra that is generated by B, U {z,} in P(w), where the
Zo is chosen by the same forcing P(B,) as in [Ba-Ko]|, namely: P(B,) =
{(a,b)p, |a Cbe By}, (a/,b)p, <PB) (a,b)p, iff a Ca’ Cb Cb.

We shall define Dy (M, ¢(¢,z,y),e, f) and Myy1. Then we take a
{DA(M7 d)(E? €L, y)? €, f) ’ ¢, f S BOH (Ma ¢(E7 €L, y)) € Ma_H}—generic subset
{(an,by) |n € w} of P(B,) such that {(a,,b,)|n € w} additionally satisfies
the properties described in [Ba-Ko] and set z, = |J{a, |n € w}. In [Ba-Ko],
M 41 is chosen so that chains and antichains are countable. Our M1 dif-
fers from that of [Ba-Ko], because we also want all homogeneous sets for
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any ¢(2, x,y) € @1 to be countable. The next items are the generalizations
of the corresponding points of [Ba-Ko|.

DEFINITION 2.1. Let A C P(w) and ¢,e, f € A. Let ¢(Z,x,y) be of.

(1) DA(M) d)(éa $7y)’ ¢, f) = {(CL, b)A € P(A) | for any u € (CL, b)P(w) one
of the following points is true:

L. (une)u(f\u) e M.

2. There is some y € M such that

P(w) E=g(c, (une)U(f\u),y) V-o(Cy, (une)U(f\u)}.

(ii) M is called mazimally homogeneous for ¢(¢,z,y) in A iff M C A is
homogeneous for ¢(¢,z,y) and for all a € A\ M there is some b € M such
that A F —¢(¢, a,b) V —¢(C, b, a).

(iii) ¢(¢,z,y) is small in A iff for any ) # M C A that is maximally
homogeneous for ¢(¢,z,y) in A, Da(M, p(¢,z,y),1,0) is dense in P(A).

LEMMA 2.2. Let 2l C P(w) be atomless, ¢ € A<, ¢(¢,x,y) qf and small

in e, f € A and M # 0 be marimally homogeneous for ¢(¢,z,y) in 2.
Then Da(M, (¢, x,y), e, f) is dense in P(A) for any e, f in A.

Proof. [Ba-Ko, Lemmas 2.3 and 2.4].

Also the proof of the next lemma can be carried out as in [Ba-Ko]: just
take a u for A and M in the same way as they take z, for B, and M,41.

LEMMA 2.3. Let 2 C P(w) be atomless and countable and let M be a
countable subset of

and M is mazimally homogeneous for ¢(¢,z,y) in A}.

Then for any (a,b)a € P(A) there is a u € (a,b)p(,) such that:

1. uégA.

2. [AU{u})P@), the subalgebra generated by AU{u} in P(w), is atomless.

3. For any (M, ¢(c,z,y)) € M the set M is maximally homogeneous for
o(¢,z,y) also in [AU {u}]P).

Now using Lemma 2.3 and <, we can construct our 8. Let (S, | a € wy)
be a {-sequence. Let (a¢ | € wi) be an enumeration of P(w) in which each
element of P(w) appears wy times.

Instep o+ 1, let Masy = Mo U{({ag| € € Su},6(e,2,9)) | {ae |€ € Su}
is a maximally homogeneous set for ¢(¢,z,y) in B, and ¢(¢,x,y) is small
in B, and ¢ € B,}. Apply Lemma 2.3 with % = B, and M = M, to
get an z,. Define By as [By U {247, Let B = J{Ba|a € wi}.
Take the z, so that B F Vz(x # 0 — Qiyy C z). Then it is easy to
see that for any ¢(¢,z,y) which is small in every B, with ¢ € B, we have
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B E -Q?zy ¢(¢, z,y). In particular, B is a model of ¢ from the introduction
(because “z Z y” is small), hence B is rigid.

3. Large homogeneous sets. The aim of this section is to define a
mapping
big : U Lo [TBA}(QJI’:Z/) - U Lo [TBA](2)7
rew rew

é(2,2,y) = big(s(2,2,y))(2),

such that for every ¢(£, z,Yy) € Loyw[TBA]

T

(%) B E V2 (QFry ¢z, 2,y) © big(6(%,7,9))(2)) -
Then &5 will be
{6(Z,z,y) | big(¢(Z, z,y))(Z) is valid in any atomless Boolean algebra} .

In order to simplify the notation we tacitly assume that always the vari-
ables x and y are intended to be quantified by Q?.

Let 2 be any atomless Boolean algebra. Since 2l admits the elimination
of 3 it is enough to define big for quantifierfree gb(g, x,y) € Low[TBA]-

For any ¢ € A and of ¢(¢,z,y) there is a qf ¥ (¢, z,y) such that ¢
is an (injective) enumeration of the atoms of the subalgebra generated by
¢, and A E Vay (¢(@,x,y) < ¢(C z,y)). Also if ¢(Z,z,y) is a disjunction
V,;(6(Z, z,y) Ai(Z)) then knowing x; = big(¢(Z, z, y) A;(Z))(Z) we can de-
fine big(¢(Z, z,y))(Z) to be \/, x;. Hence it suffices to define big(¢(z, z, y))(Z)
only for those qf ¢(Z, z,y) that imply that {z,...,z.—1} is the set of atoms
in the subalgebra generated by {zo,...,2z—1}.

If H is an uncountable homogeneous set for d)(g, x,y), then there is an
L,.-1-type t(g,x) over ¢ and an uncountable H; C H such that every
element of Hy has the £,,,-1-type tp(x/¢) = t(c, x) over ¢. Hence it is enough
to define big for the qﬁ(g, x,y) with the above mentioned property and the
additional property that there is an L,,-1-type t(g, x) over z (independent
of the assignment ¢ of Z, because we consider only ¢ that are atoms in the
subalgebra generated by 2) such that

T T T T T T T
AEVryz (9(z,2,y) < (6(z,2,y) Ni(z,2) = tp(x/2) N(2,y) = tp(y/2))) -
We will call such formulas special. Finally, note that any L,.-2-type

T T . . . .
t(c,z,y) over ¢ is determined by the corresponding r-tuple of the quanti-
fierfree types of x N¢;, yNe; in {a € Ala C ¢}, i < r. For any such type
there are 15 possibilities, and under the condition tp(z/z) = tp(y/z) there
remain the 9 possibilities not marked with an e in the table below.
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The possibilities for the quantifierfree types of z N¢;, yNej, i <r,in {a € A|a C ¢;}

No. zNyNz; (—x)N(—y)Nz; zN(—y)Nz (—z)NyNz; Remarks
0 #0 #0 #0 #0
1 #£0 #0 #0 0
2 #0 #0 0 #0
Nz =
3 #£0 £0 0 0 o b0 2
4 #0 0 #0 #0
TNz =2
s #0 0 70 0 yNzi # zi
YNz =2z
o6 #0 0 0 #0 TNz # 2
Nz =
T #0 0 0 0 A
8 0 #0 #0 #0
xNz #0
zNz; =0
010 0 #0 0 #0 YNz £0
Nz =
11 0 #0 0 0 Y
xNz #0,2;
12 0 0 #0 #0 YAz = (—2) N 2
TNz =2z
o13 0 0 #0 0 N =0
rzNz; =0
14 0 0 0 70 YNz =2

Let ¢F(z;, o N 2,y N z) say “the Lo.-type of £ Nc;,y N¢; over ¢; has
number k7, k = 0,...,14. The disjunction ¢**?(u,v,w) = ¢°(u,v,w) V
' (u,v,w) V ¢*(u, v, w) will play an important role in the following.

DEFINITION 3.1. Let ¢(2,2,y) € Luo[rpa] be quantifierfree and be of
the special form as described above.

big(6(2, z,9))(2) =
Ja C bey((a Cx,y COA /\((b \a) Nz #0— ¢ (zi, 2Nz, y N Zz)))

i<r
— ¢(z, 2, y)) .
Equivalent to big(¢(Z,z,))(%) is the formula
\/ ny(( /\ "2 (2, 2 0 25,y N 24)
IoULL UL UT3={0,...,r—1},1o#0 i€lo

A /\xﬂzi:yﬁzi#(),zi
el
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A /\ xNz;=yNz; =0
i€la
A /\ TNz =yNgz; :Zi) —>¢(27$ay)) )
i€ly
(U denotes the disjoint union) which will be useful for the easy direction
of (x):

LEMMA 3.2. Let A be an atomless Boolean algebra. Let A F VY # 0
Qiyy C =, and ¢(z,x,y) be as above. Then A E Vz (big(¢(z,z,y))(z) —

iy ¢(z,2,y)).

Proof. Let 2 E big(¢(z,z,y))(¢c). For i € I take an uncountable set
H; C (0,¢;)g such that for any = € H; the relative complement ¢; \ z € H;.
Let (hio|a € wi) be an injective enumeration of a subset of H;. Finally,
fori € I let H; = {d;} for some d; with 0 C d; C ¢;, for i € Iz let H; = {0},
and for i € I3 let H; = {¢;}. Then

H = {U{hm\i eyuJtdilie nyuJlelic 13}\(1 Ewl}

is an uncountable homogeneous set for ¢(2, x,y).

Now for 9B as in Section 2, we shall prove the other direction of (x). By
the construction, it would suffice to show:

(#x)  For any enumeration ¢ of the atoms in the subalgebra of B generated
by %, if B E ﬂbig(gb(;,x,y))(g), then qﬁ(é,x, y) is small in every B,

with ¢ € B,.
Unfortunately, this is true only for qb(g,x,y) that do not forbid certain

equalities of Boolean terms. We introduce some notation and then give a
sketch of our proof of the hard direction of (x).

We say briefly “(;5(2, x,y) is valid” or just “¢” for “(;5(2, x,y) is valid in all
atomless Boolean algebras if the assignment of Z is an enumeration of the
atoms in the subalgebra generated by 2”. gb(g, x,y) is satisfiable or consistent
if =p(%,z,7) is not valid.

For a given special ¢(27 x,y) set

R(¢) :={i<r|¢ —xNz =yNz is not valid} .
We will define two mappings s and enl from the set of all special gb(,g, z,y)
into itself. The mapping s is a technical means used to prove enl(enl(s(¢)))

— enl(s(¢)) (Lemma 3.7) and —big(s(¢)) — —big(enl(s(¢))) (Lemma 3.8).
Lemma 3.9 says that (%) is true for formulas of the form enl(s(¢)) for some
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special ¢. Hence we get from the construction and from 3.8

r

B E —big(s(¢))(c) — ~Qizy enl(s(9))(c, z,y),
whence s(¢) — enl(s(¢)) and the monotonicity of the quantifier Q% imply

r

B F —big(s(¢))(c) = ~Qizy s(¢)(c, z,y)

(Theorem 3.10). Using this result we prove by induction on card(R(¢)),
simultaneously for all special formulas ¢,

B = ~big(¢) () — ~Qixy d(c,x,y),

which will finish the proof of (x).

In order to simplify the notation, we often suppress the free variables
(g,x,y) or (zi,x Nz, yN z).

DEFINITION 3.3 (The mapping s). For R C r ={0,1,...,r—1} and for
X(zi,x N zi,yNz;) € Low|[TBa] We define
( x(zi,zNz,yNz) ifigRor

A (2, N 2y N 25) — X (26,2 N 2,y N 25)
sr(x(zi,xN2,yN2i)) i= is valid;
X(zi,x Nz yNz) AxNz; yNz;

else.

Let S = {Aic, Xw,i(zi,® N 25,y N z;) |w € W} be a finite set such that
for all w € W the conjunction A,_, Xw,i(2i, 2 N z;,y N 2;) is satisfiable and
Nicr Xuw,i(zi, N2 yN2i) — #(z, z,y) is valid, and such that for any satisfi-
able conjunction d = A, . x;(2i, zNz;, yNz;) such that § — gb(;, x,y) is valid
thereisaw € W with A,_, xj(2zs, 2Nz, yN2) — Niop Xuw,i(2i, 2N 25, y N 25).
We will call such a set .S a set of representatives for ¢. Given such a set, let
R = R(¢) and define

s(B(z,x,y)) = \/ /\SR(Xw7i(Zi,IﬂZi,yﬂZi)).

weW i<r
If E —3zy?z gb(;, x,y), then let s(gb(;, x,y)) be any inconsistent formula.

A brief reflection shows that s(¢) is well defined up to logical equiva-
lence: Let S" = {A;_, X4 (i, N 2,y N z;) [w' € W'} be another set of
representatives for ¢.

For V cw Nicr SR(Xawri) = Vwew Nicr SR(Xw,i), it suffices to show
that for each w’ € W’ there is some w € W such that A,_, sr(x}.;) —
Ni<r 8R(Xw,i)- Let w' € W' be given. Since S is a set of representatives for

¢ there is a w € W such that A, _, xi,; — Ai<, Xw,i, Which is equivalent to
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xiulﬂ- — Xuw,i for i < r. Immediately from the definition of s, if X;u’,i — Xw,i»
then SR(XL,/,Z') — SR(Xw,i). Hence /\Kr SR(XQU/,Z') — Nicr SE(Xw,i)-
The other direction follows by symmetry.

Remark. s(¢) may be unsatisfiable, e.g. for ¢ = (zNzy = yNzoAzNz1 C
yNz1)V(zNzo CyNzoAxNzy = yﬂzl)/\/\i:m xNz; # 2i>0/\/\i:0,1 yNz; #
2i, 0N2zoNz1 =0A 29U z1 = 1.

DEFINITION 3.4 (The mapping enl). For x(z;, 2N z;,yNzi) € Low[TBA]

we define
X(zi,x N ziyy N z;)
VeNz =(—y) Nz Adex(zi, 2Nz yNzg)
Ay x(zi, oMz yNz))

if @O12(z, 2Nz yNz) — x(zi e Nz y N 2)
enl(x(2i, zNzi,yN2;)) = is not valid;
X(zi,xNzi,yNz)V((eNz = (—y) Nz
VaNz =yNz)AJxx(zi,xNz,yNz)
Ay x(zi, 2N 2,y N 2))

otherwise.

Let { A<, Xw,i(2zi,2 N 2;,y N 2z;) |w € W} be a set of representatives for ¢.
Then set

enl(p(z,z,y)) = \/ /\ enl(xuw,i(zi, z N 2,y N 2;)).

weW i<r
If £ —3zyz (%, x,y), then let enl(¢(%,z,y)) be any inconsistent formula.

From the fact that x.,,; — Xuw,: implies enl(x;,,;) — enl(xw,), we con-
clude by an analogous consideration as above that enl(¢) is well-defined.

In order to apply Lemmas 2.2 and 2.3 we may replace enl(qﬁ(g, x,y)) by
an equivalent (with respect to the theory of atomless Boolean algebras) qf
formula.

The next two lemmas collect some properties of s and enl that will be
useful in the proofs of 3.7 and of 3.8.

LEMMA 3.5. Let xs(zi,x Nz yNz), s=0,1, be ¢f and R C r.
(i) (enl(xo) Venl(x1)) — enl(xo V x1)-
(ii) (sr(x0) V sr(x1)) — sr(xo0 V x1)-

For (iii), (iv) and (v), assume additionally that xs(zi,x N 25,y N 2),
s = 0,1, determine the same 1-type t(z;,xNz;) of N z; over z; and of yN z;
over z;.
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(iii) Assume that, for s = 0,1, if not ¢°12(z;, 2 N z;,y N 2;) — xs(zi, 2N
2,y N z), then xs(zi,x Nz, y N z;) — x Nz #yNz. Then (enl(xg) A
enl(x1)) — enl(xo A x1)-

(iv) (sr(x0) A sr(x1)) = sr(xo A X1)-

(v) Assume that xs — xNz; =yNz fors=0,1ifi & R. Then for any
i <1 the formula

(enl(sr(x0))(zi,z N zi,y N z;) Aenl(sr(x1))(zi, 2 N 2,y N 2))
— enl(sr(xo A X1)) (2, N 23,y N 2)
15 valid.

Proof. (i), (ii) xs — xo V x1 implies enl(xs) — enl(xo V x1) and
sr(Xs) = sr(xo V x1)-

(iii) Define

Od=(zi,xNziyyNzy)i=xNz;=yNz ANt(z;,zNz;) and

G (zi,xNziyyNzy) =Nz = (—y) Nz Az, 20 z) ANtz y 0 2;) .

Case 1: ¢°'2 — x4 for s = 0,1. Then ¢*12 — xo A x1 and enl(xo) A
enl(x1) = (XoVo-Vo=)A(x1VP-Vo=) < (XoAX1)VP- Vo= = enl(xoAX1)-

Case 2: Not ¢°'? — x, for s = 0,1. Then not ¢°'2 — yog A x1 and
enl(xo) Aenl(x1) = (xo Vé-) A (x1Vd-) < (XoAx1)Vé— =enl(xoAxi)

Case 3: ¢°'2 — o and not ¢°'?2 — x;. Then not ¢°'2 — yo A x1 and
enl(xo) Aenl(x1) = (xoVo-VI=)A(x1V¢-) < (XoAX1)Vé-V (= Ax1).
Since by the assumption of (iii), ¢ A x1 is not satisfiable, the latter formula
is equivalent to (xo A x1) V ¢— = enl(xo A x1)-

(iv) Assume ¢ € R, otherwise sg does not change xo, x1, X0 A X1-

Case 1: ¢"2 — x4 for s = 0,1. Then ¢°12 — o A x1 and sg(xo0) A
sr(X1) = xo A x1 = sr(Xo A X1)-

Case 2: E.g. not $°'2 — xo. Then not ¢°'? — xo A x1 and sg(xo0) A
sr(x1) = oAz Nz ZyNz) Asr(x1) < (xoAx1)ANzNz #FyNz =
sr(Xo A X1)-

(v) For i € R, the assumptions for (iii) are true for s = sgr(xs). Hence
by (iii) and (iv),

(enl(sr(x0))(zi,x N zi,y N z) Aenl(sr(x1))(zi,x N zi,y N z))

—enl(sr(xo A x1))(zi,xNzi,yNz;).
For i ¢ R, we have xys — xNz; = yNz; for s = 0,1 and hence enl(sg(xo)) A
enl(sr(x1)) = (xo Vo) A(xa vV o-) < (xo A xa) V é— = enl(sr(xo A x1))-

LEMMA 3.6. Let ¢ be special and satisfiable, R = R(¢), and let
{Nicr Xw,i |w € W} be a set of representatives for ¢.

(i) For any N, Xi = Vwew Nicr SR(Xw,i), there is a w € W such
that N\, Xi = Nicr SE(Xw,i)-



10 H. Mildenberger

(ii) enl(s(#)) = Vyew Nic, enl(sr(Xw,i))-
(iii) For any N,c, Xi = Vwew Nicr e0l(8R(Xw,i)), there is a w € W
such that N\, .. X; — Nicr enl(5R(Xw,i))-

Proof. We will first prove (iii). Then the proof of (i) which is similar
but easier will be clear. Let A,_, xj(z:, 2Nz, yNz;) be consistent, otherwise
one can take any w € W.

For ¢ < r there is an n;, 0 < n; < 15, and there are X;0,..., Xi,n;—1 €
{¢Y, ..., ¢} such that

/\ Xi(zi,x N ziyy N z;) < /\(5@-’0 VooV Ximi—1)(zi,x Nz, y N 24)

i<r i<r
We will show the claim by induction on [T, _, n.

Case [],., nis = 1. Take an atomless Boolean algebra 2 and ¢ € A such
that ¢ is an enumeration of all the atoms in the generated subalgebra. Take
a,b € Asuch that AF A,_ xj(ci,aNc;,bN¢;). Then there is some w € W
with A F A, enl(sr(xw,i(ci,aNei, bNe;))). Since A, xG(zi, 2Nz, y N 2;)
defines an L,,,-2-type of (z,y) over %, we have Nier Xi(zi, 2z N 25,y N 2) —
/\KT enl(sr(Xw,i(zi,z Nz, y N 2;))).

Induction step. We consider the step from [[,_ n; to (ng + 1)
X [g<icy ni, the other cases are similar.

(X0,0V- - -VX0,n0) A\ /\ X; < ()?0,0/\ /\ Xé)\/((fo,ﬂ/-u\/fo,no)/\ /\ X;)
0<i<r o<i<r o<i<r

By induction hypothesis there are w’,w” € W such that

XooA N X — /\ enl(sr(xuwi),

0<i<r i<r
(Xo,1 V-V Xo,ne) A /\ Xi — /\ enl(sr(Xwi)) -
o<i<r i<r

Thus we have

(()?0,0/\ /\ X§>V((>?o,1\/...\/>20’no)/\ /\ X;>>—>

0<i<r 0<i<r
(enl(sr(Xwr0)) Venl(sr(xwr0)) A /\ (enl(sr(xw:s)) A enl(sp(xwri)) -
o<i<r
Note that in the last conjunction we get “and” and not only “or”, because
A xi—= N enlisr(xw)) A A\ enl(sr(xwri)
0<i<r o<i<r 0<i<r

as the situation below any z; is independent of the situation below the
other z;.
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From 3.5(i), (ii) and (v) we get
()?0,0 N /\ Xi) v ((20,1 V...V Xome) A /\ X;)

o<i<r o<i<r
— enl(sp(Xw,0 V Xw”0)) A /\ enl(sr(Xw,i A Xw"i)) -
o<i<r
Since {A; <, Xw,i(2i,® N 25,y N 2z;) |w € W} is a set of representatives for
d(z,z,y) and since w’,w” € W, we have (w0 V Xwro) A No<icr Xuwri A
Xwi) — ¢ and there is a w € W such that

(Xw’,0 V Xw,0) A /\ (Xwi A\ Xwr,i) = /\ Xuw,i -
0<i<r i<r

For such a w we have

enl(sp(Xwo V Xwr0) A\ enl(sr(xwri A xwri)) = /\ enl(sr(xuw.i))
0<i<r i<r
and thus the induction step is complete and (iii) is shown.

(ii) Assume s(¢) is satisfiable, otherwise both sides are not satisfiable.
Let S = {A;c, Xw,i|w € W} be a set of representatives for ¢, and S" =
{Nicr Xowri |0 € W'} be a set of representatives for s(¢) = V,cp Nic,
Sr(Xw,i) such that W' D W= {we W A,., sr(Xw,) is satisfiable} and
Xuwi = SR(Xw,i) for w e W.

By definition, enl(sr(¢)) = Vew: Aicrenl(Xy;).- By (i), for any
w' € W' there is some w € W such that A;_. x5, — Aic, SrR(Xw,) and
hence A, _, enl(xiu,ﬂ-) — Nicrenl(sr(Xw,)). Thus enl(s(¢)) — Ve Nicr
enl(sr(Xw,:)). The other direction follows immediately from the choice of
S’ and the definition of enl.

LEMMA 3.7. Let ¢ be a special formula. Then enl(enl(s(¢))) < enl(s(¢)).

Proof. Assume s(¢) is satisfiable, otherwise both sides are not satisfi-
able. Let S, W be as above and S” = {A,_, Xyn; |w” € W"} be a set of
representatives for enl(s(¢)). By definition, enl(enl(s(¢))) =V e Nicr
enl(xy,. ;). For w"” € W" we have A\;_, X\, — enl(s(#)), hence by 3.6(ii),
Nicr Xwri = Vwew Nicr e0l(8R(Xw,i)). By 3.6(iil) there is some w €
W such that A, X — Nijcpenl(sr(Xw,i)), whence A;_, enl(xy.;) —
Ni<,enl(enl(sgr(Xw,))). It is easy to check that for qf x(z;, # Nz, y N z;) by
definition

enl(enl(x(z;, Nz, yNz;))) — enl(x(zi, x Nz yNz;)).

Therefore A,;_,enl(xy.;) — A, enl(sr(Xxw,i)), and putting things to-
gether yields \/w”EW” /\i<r enl(XZ;”,i) - \/weW /\i<r enl(SR(Xw,i))7 and, by
3.6(11), Vv Mg eIV L5) — enl(s(6))
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The other direction is obvious.

LEMMA 3.8. =big(s(¢)) — —big(enl(s(¢))) is valid for special ¢.

Proof. Let 2 be any atomless Boolean algebra. Assume 2 F
big(enl(s(4(z, z,1))))(¢). We show that 2 E big(s(¢(z,x,y)))(¢). Since
the 1-types of z and of y over ¢ are determined by A F Jy enl(s(qﬁ(é, x,y)))
and 2 E 3z enl(s(4(c, x,y))), there is just one pair (I, I3) such that

A E \ Vry
{(Io,Il)‘I()UIIUIzUIg,:{O ..... 7‘71},[03’50}

<< /\ ¢012(Cz‘7fl3mci7yﬁci)/\ /\ xNe;=yNc #0,¢

ielo el
A /\ rNe=yNe;=0A /\ rNe=yNg :ci) —>enl(s(¢(2,x,y)))> :
i€l i€l3
Take Iy C-maximal such that

A E me(( /\ ¢ (ci,x Neg,yNeg) A /\ xNe; =yNe; #£0,¢
iely iel

A /\ xNe;=yNe,=0A /\ :Uﬂci:yﬁci:ci> —>enl(s(¢(2,x,y)))).
i€I2 ielg

Let R = R(¢) and {\,_, Xw,i |w € W} be a set of representatives for ¢. By
3.6(ii) and (iii) there is a w € W such that

A |=ny<< /\ ¢012(Ci,xﬂci,yﬁci)A /\xﬂci:yﬁci;ﬁo,ci

i€lp i€l

A /\xﬂci:yﬂci:O/\ /\wﬂci:yﬁci:ci>

iEIQ i€I3
— /\ enl(sp(xw,i(ci,x Nei,yN Cz)))) :
i <r

We claim that also
A E ny(( /\ 2 (ci,x Neg,yNeg) A /\ xNe;=yNe; #0,¢

i€l i€l

A /\ rzNe;,=yNc; =0A /\ :Uﬂci:yﬂci:cZ)
1€l i€l3
- /\ $R(Xw,i(ci,z N ey N Cz))) .
i<r
Indeed, by the definition of enl we have for any sg(Xw,i(zi,x N 2,y N 2)):
For i € Io, if ¢°*? — enl(sr(xw,i)), then ¢°1? — sp(xw:). For i € Iy, if
xNz;=yNz =0 —enl(sp(Xw,)), then x Nz, =y Nz =0 — Sp(Xwi)-
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Foriels, ifxNz =yNz =2 — enl(sp(xw,)), then Nz =y Nz =
2i = SR(Xw,i)-

For i € I the formula x Nz, = yNz; # 0,2z Aenl(Sr(Xw,i)) A 7Sr(Xw,i)
is consistent only if ¢*1? — sgr(xw,i). But then we could take I, := Io U {i}
and I = I \ {i} and replace (Ip,I1) by (I}, I), which contradicts the
maximality of Ij.

Now we are ready to prove (xx) for special formulas of the form s(¢).

LEMMA 3.9. Let ¢ be special and ¢ € B be an r-tuple that consists of
atoms in the generated subalgebra.

(i) If —big(¢) and enl(¢) — ¢ are valid, then for any o with ¢ € B, the
relation ¢(¢,x,y) is small in B

(i) If —big(s(¢)) is walid, then for any a with ¢ € By the relation
enl(s(p(c, z,y))) is small in B, .

Proof. (i) Let B E —big(é(z,z,y))(¢) and ¢ € B, be atoms in the
generated subalgebra. Set B, =: 2, and let M # () be a maximally homo-
geneous set for ¢(¢,z,y) in A, and (a,b)4 € P(A), i.e. (a,b)4 is an interval
in 2A. Take (a’,0)a < (a,b) s such that there is just one i € r, say ip, with
(0'\a') Cciand ¢;Na’ #0and &' Ne; # ¢;. We assume B (and also A and
P(w)) satisty

v € (a',b) QY 6 (2, 7,9) A Ty $(2, 5, 2)(€)
for otherwise (a/,b')a € Da(M, ¢(¢,z,y),1,0).

Since B £ —big(¢)(¢), we have (a/,0')a N M # (a/,0/) 4. We fix a d €
(a’',b')a \ M and an m € M such that A F —@(E, d,m) Vv ﬁqﬁ(g,m,d), say
A E —¢(e,d,m), and show that there is an (a”,b")4 < (a’,b') 4 such that
for any x € (a”,0")p(,) we have x € M or P(w) F —¢(C, z,m).

Then (i) will be proved, because such an (a”,b") 4 is in DA (M, $(¢, z,y),
1,0). Fix a set {A;_, Xw,i |w € W} of representatives for ¢.

CLAIM. dN ¢, # ciy \ M.

Proof. cb(,g,x,y) = \/weW /\i<r Xw.i(zi, T N zi,y N z), wlog. W =
{0,1,...,5 = 1}. Hence A F A, o Vie, “Xw,i(ci,d N c;;m N ¢;), say for
w=0,1,...,8 -1

AE \/ Xw,i(Ci,dNc;,mNe),
i<riio
and forw =¢",8"+1,...,5s—1
AE /\ Xw,i(Ciy d N ciym N ) A —Xawig (Cigs d N Cigy M N CGp)
i<riio
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We may assume s > 0 and s’ < s — 1, because otherwise (a’,b')4 €
Da(M, ¢(c,2,y),1,0). Since

thny(( /\ /\ Xuw,i(Ci,x N ey Ne;)

s'<w<s i<r,i#ig

r
A \/ Xw,io(cio7$mcioaymcio)) - gb(C,y,.’E)) )
s'<w<s

we have

QllZny(( /\ /\ Xw,i(Ciy T N ciyy Ne;)

s'<w<s i<r,i#ig

A ( V' Xuwio(Cior 7 Neig,y Neiy) V(2N ey = (—y) N,
s'<w<s

/\ Elx X’w,’io (Ci(wx m c’io? y m c’io) /\ Ely Xw,io (cioax m ci07y m C’Lo))))

= enl(8(e,z,1)))

By the assumptions on <Z>(2, x,y) and on ¢ there is just one 1-type of z N¢;,

over ¢;, consistent with gb(g,x,y) such that for every w € W the formula
Y Xw,io (Cig> T N €iy, Yy N ¢iy) is implied by this type. The same holds for the
1-type of y N¢;, over c;,, which coincides with the 1-type of z N¢;, over ¢;,,
and the formula 3z X 4, (¢ig, T N ¢iy, Yy N ¢iy). Since m N ¢, and d N ¢;, have
this 1-type, we get

A Jx \/ Xw,io (Cigs T N Cig, MmN Ciy)

s'<w<s

/\E'y \/ Xu),io(cz‘o,dmcimyﬁcio)'

s'<w<s

Note that A F wj)(g, d,m) and ¢ is equivalent to enl(¢). Therefore dN¢;, #
¢i, \ m and the claim is proved.
We now give (a”,b"”) 4 case by case.

Case 1: dNc¢;, # mNc;,. Then

2AE \/ ¢ (ciy, d N iy, m N ciy) -
i=0,1,2,4,8

Assume that 2 F ¢*(c;,, d N ey, mNey).

If i =0 ori =2, take an €’ such that 0 C ¢ C ¢;, N m N (—d), and
(@”,b")a = (d,b'\ e€)a. Ifi=1o0ri=8, take (a”,0")4 = (a’,d) a. Finally,
if 1 =4, take (a”’,0")a = (d, V') a.
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Then, in each subcase, for any z € (a”,b")p(,) we have
P(w) E tp(z, m/¢) = tp(d, m/c) and hence P(w) E =¢(c, z, m).
Case 2: dNc;, =mNc,.
Subcase 2.1:
A E!xy(qbou(cio,x N Cig, Y N Cig) AT \/ Xw,io (Cigr @ N Cig, Y N ci0)> .
s'<w<s

Since ¢'2(¢;,,x Nciy,y MNei,) determines the L,,,-1-type of y N¢;, over ¢,
and m has the same one, we have
Q[|=EIa:(qulz(ciO,xﬂcio,mﬁcio)/\—| \/ XwJO(CZ‘O,ﬁﬁC,‘O,mmCiO)).
s'<w<s
There is an example d' for z with d' N¢;, € (/! N ¢y, Neiy)a, because
mNc, =dNc, € (a Neci,, b Neiy)a and hence within the given 1-type of
x N ¢;, over c;, the formula gbi(ci, x N¢i,mNe;) can be realized with some
xNei, € (a'Neiy, b'Negy)a fori = 0,1,2. We can argue with (d'Ne;, )U(d\ ¢, )
as with d in case 1 for ¢ = 0,1, 2.
Subcase 2.2:

2AE wa<¢012(cig7x N g,y Neiy) — \/ Xw,io (Cigs T N Cigy Yy N Cig)) .
s'<w<s
Again we have

thVa:y(( /\ /\ Xw,i(Cis N ey Ne)

s'<w<s i<r,i#io
A \/ Xw,i(Cioyl’mCimyﬂCio)) H(ﬁ(gvxay)) .
s'<w<s
Since
°? (zig, @ M 2ig, y N 24) — \/ Xw,i(Zio» T N Zigs Y N 2Zig) 5
s'<w<s

by the definition of enl we have

va<< /\ enl( /\ Xw,i(ziaxmziaymzi))

i<r,i#£ig s'<w<s
/\< \/ Xw’i(zio,xﬂzio,yﬂzio)\/(xﬂziozyﬂzio
s'<w<s

Az \/ Xw,io (Zig> T N Zig, Y N Ziy)
s'<w<s

ATy \/ Xw,io (Zig> T N Zig, y N Z,O)>>) — enl(¢(z, y))) .

s'<w<s
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In A we get
%mey(( /\ /\ enl(xw,i(ci,x Nei,yNei))

s'<w<s i<r,i#ig

A < \/ Xw,i(Cig, T N Cig, Yy N Cig) V (xﬂcio =yNc,
s'<w<s

A Jx \/ Xw,io (Cig, T N Cig, Yy N Ciy)
s'<w<s

/\Ely \/ Xw,io(cimxmcimymcio)))> - en1(¢(27w7y))> .
s'<w<s
As in the first subcase, we get
AE Tz \/ Xw.io (Cig, T N Cigym N C4p)
s'<w<s
A Jy \/ Xw,io (Cig, N Cig, Yy N Cig) Nd N ciy =mN ¢y -
s'<w<s
Putting things together yields A F enl(qb(g, d,m)) and hence 2 F

gb(g, d,m), a contradiction to the choice of d and m.

(ii) By 3.8, —big(s(¢)) — —big(enl(s(¢))), and, by 3.7, enl(enl(s(¢))) —
enl(s(¢)) is valid. Therefore (ii) follows from (i) applied to enl(s(¢)).

Lemma 3.9, the construction and the monotonicity of Q? yield:
THEOREM 3.10. For any special ¢,

B EVz ((“2 are the atoms in the generated subalgebra” A =big(s(¢))(2))
— ~Qizy 5(8(2,2,9))).

Finally, we show how to get Theorem 3.10 for ¢ instead of s(¢).

THEOREM 3.11. For any special ¢
B E Vz ((“Z are the atoms in the generated subalgebra’ A —big(¢)(Z))

Proof (by induction on card(R(¢))). If R(¢) = 0, then ¢(z,z,y) —
x =y, and hence B £ ~Q3xy ¢(c, z,y).

Now assume B £ Vz ((“2 are the atoms in the generated subalgebra”
A=big(¥)(2)) — ~Q3xy (2, z,y)) for all ¢ with R(y)) C R(¢). We show
B = Qryp(c, x,y) — big(p)(c) for any r-tuple ¢ that consists of atoms
in the generated subalgebra. Assume B F Q?zy gb(g, x,y) and let H be an

uncountable homogeneous set for qb(g, x,y) in B. By recursion on i < r we
define uncountable subsets H (Z), 0<i<r.
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Set HO) := H. Assume H® is defined. We distinguish two cases:

Case 1: {zNc¢ |z € HD} is uncountable. Then take HOTY C H®
such that H*1 is uncountable and for any z,y € HUtY if 2 # y then
xNe #£ynNc.

Case 2: {xNc¢;|z € HD} is countable. Then there is some x € H®)
such that {y € H® |z N¢; = yN¢;} is uncountable. Let H*Y be such a
set.

Fori ¢ R, {xN¢;|x € HD} is a singleton, and we are in case 2. Now
consider HO, HW  HO_ If for all i € R case 1 is true, then H()

shows B £ Q2xy s(¢(¢,z,y)). By 3.10, B E big(s(¢(c))). Since s(¢) — ¢,

B E big(4(c)). '
If there is some i € R with case 2 being true, fix such an i. Then H(+D

shows B F Qry (¢ Ax Nz = yﬂzi)(g,x,y). Take py =dpANxNz; =yNz.
Then v is also special. Since ¢ — ¢ and i € R(¢) \ R(v), we have R(y)) C
R(¢). By induction hypothesis, we conclude from B F Q?zy (¢ Az Nz =

y N 2)(¢, z,y) that B E big(1(¢)) and hence B E big(4(¢)).
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