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Abstract. Let P be a piecewise isometry with n ≥ 2 pieces between two subsets
of R

3, and let µ be Lebesgue measure on R
3. If the subsets are disjoint, then µ has a

total finitely additive extension µ̃ such that µ̃(Y ) ≤ n2 µ̃(X) whenever P (X) = Y . If the
subsets are separated by measurable sets, then µ has a total finitely additive extension µ̃
such that 2

n
µ̃(X) ≤ µ̃(Y ) ≤ n2 µ̃(X) whenever P (X) = Y .

More generally, let P be a piecewise µ-invariant map between two relativized algebras
Ba and Bb in a Boolean algebra B, and let µ be a measure on a subring R. If a and b are
disjoint then µ has an extension to a measure µ̃ on B such that µ̃(Y ) ≤ n2 µ̃(X) whenever
P (x) = y. If a and b are separated by elements of R, then µ has an extension to a measure
µ̃ on B such that 2

n
µ̃(x) ≤ µ̃(y) ≤ n2 µ̃(x) whenever P (x) = y.

Let P be an injective piecewise ε-contraction with n ≥ 2 pieces between two disjoint
subsets of R, and let µ be Lebesgue measure on R. There is a total finitely additive
extension µ̃ of µ such that µ̃(Y ) ≤ nε2 µ̃(X) whenever P (X) = Y .

Introduction. Let A and B be sets in R
3 and let P : A → B be a

piecewise isometry with n pieces. This means that P : A → B is a bijection
and there is a partition {A1, . . . , An} of A such that each restriction P ↾Ai is
an isometry. Let n ≥ 2. Laczkovich has shown that µ∗(B) ≤ n

2 µ∗(A) where
µ∗ and µ∗ are inner and outer Lebesgue measure respectively [L, Theorem 4].
See also [S]. For any subset X of A, the restriction P ↾X is again a piecewise
isometry with n pieces. Therefore,

(1) µ∗(Y ) ≤
n

2
µ∗(X) whenever P (X) = Y .

Let µ be Lebesgue measure on R
3. Horn and Tarski have shown that µ has a

finitely additive extension µ̃ defined on all subsets of R
3 [HT, Theorem 1.22].

Given a piecewise isometry P : A → B with n ≥ 2 pieces, we ask whether µ̃
may be chosen so as to support Inequality (1) in the sense that

(2) µ̃(Y ) ≤
n

2
µ̃(X) whenever P (X) = Y .

It follows from a theorem of Robinson that this will not always be possible
[R, p. 252]. For example, let n = 3. According to Robinson’s theorem, the
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deleted ball S = {v ∈ R
3 : 0 < ‖v‖ < 1} has a partition {S1, S2, S3, S4}

such that the congruences

S2
∼= S2 ∪ S3 ∪ S4 and S3

∼= S1 ∪ S2 ∪ S3

hold via rotations. Let f be a translation such that S and f(S) are disjoint.
Write T = f(S), and let {T1, T2, T3, T4} be the partition of T defined by
f(Si) = Ti for each i in {1, 2, 3, 4}. Let A = S2 ∪ S3 ∪ S4, let B = S2 ∪S3 ∪
S4∪T , and let P : A → B be defined so as to witness the three congruences

S2
∼= S2 ∪ S3 ∪ S4, S3

∼= T1 ∪ T2 ∪ T3, S4
∼= T4 .

If there is a measure µ̃ which satisfies (2), then

2µ(S) = µ(S ∪ T ) = µ̃(S1) + µ̃(S2 ∪ S3 ∪ S4) + µ̃(T1 ∪ T2 ∪ T3) + µ̃(T4)

≤ 1µ̃(S1) + 3
2 µ̃(S2) + 3

2 µ̃(S3) + 3
2 µ̃(S4) ≤

3
2 µ̃(S) .

This counterexample shows that in order to guarantee the existence of a
measure µ̃ which satisfies (2), some additional condition must be placed on
P . A sufficient condition is that A and B are disjoint (Example 1).

Observe that if P : A → B is a piecewise isometry with n ≥ 2 pieces,
then so is P−1 : B → A. Therefore, in addition to (1), we have

(3) µ∗(X) ≤
n

2
µ∗(Y ) whenever P (X) = Y .

Given a piecewise isometry with n ≥ 2 pieces, we now ask whether µ̃ may
be chosen so as to support both (1) and (3) in the sense that

(4)
2

n
µ̃(X) ≤ µ̃(Y ) ≤

n

2
µ̃(X) whenever P (X) = Y .

The condition that A and B are disjoint is not strong enough to guarantee
the existence of a measure µ̃ which satisfies (4). Robinson’s theorem again
provides a counterexample. Let S , T and f be as above. Let U = f(T ) and
let {U1, U2, U3, U4} be the partition of U defined by f(Ti) = Ui for each i in
{1, 2, 3, 4}. Let A = S ∪ T3 ∪ T4, let B = T1 ∪ T2 ∪U , and let P : A → B be
defined so as to witness the three congruences

S1 ∪ T4
∼= T1 ∪ U4, S2 ∪ S3 ∪ S4

∼= T2, T3
∼= U1 ∪ U2 ∪ U3 .

(P agrees with f on S1 ∪ T4.) If there is a measure µ̃ which satisfies (4),
then

2µ(T ) = µ(S ∪ U) = µ̃(S1) + µ̃(S2 ∪ S3 ∪ S4) + µ̃(U1 ∪ U2 ∪ U3) + µ̃(U4)

≤ 3
2 µ̃(T1) + 3

2 µ̃(T2) + 3
2 µ̃(T3) + 3

2 µ̃(T4) = 3
2µ(T ) .

For the existence of a measure µ̃ which satisfies (4), a sufficient condition
on P is that A and B are separated by measurable sets (Example 1). This
means that there are disjoint measurable sets M and N such that A ⊂ M
and B ⊂ N .
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The main results of the present work are based on a proof of Horn and
Tarski’s measure extension theorem, which is presented by Wagon [W, Theo-
rem 10.7] and outlined earlier by Mycielski [M, Theorem 4.1]. The extension
theorem is proven in the context of Boolean algebras; a measure on a sub-
ring R of a Boolean algebra B is extended to a measure on the whole of B.
Theorems 1–3 below are also presented in this general context. Lemmas 1
and 2 in the next section are based on a proof of the max-flow min-cut
theorem of Ford and Fulkerson [FF] (see Wilson’s second proof [Wi, §29]).

Two problems in linear programming. Let I = {1, . . . ,m}, let
J = {1, . . . , n} and let A be a given subset of I × J . For each subset S of
I define N(S) = {j ∈ J : ∃i ∈ S, (i, j) ∈ A}, and for each subset T of J
define N(T ) = {i ∈ I : ∃j ∈ T, (i, j) ∈ A}. For each pair (i, j) in A, let xij

and yij be variables, and introduce for convenience variables wi and zj as
follows:

wi =
∑

j∈N({i})

xij (i ∈ I), zj =
∑

i∈N({j})

yij (j ∈ J) .

Let α and β be elements of (0,∞) with αβ ≥ 1, let k1, . . . , km, l1, . . . , ln be
elements of [0,∞], let D be a subset of I, and let E be a subset of J . Define
X = {i ∈ I : ki < ∞} and Y = {j ∈ J : lj < ∞}. Consider the following
problems in linear programming:

Problem 1.

maximize
∑

j∈E∩Y

zj

subject to wi ≤ ki (i ∈ I)

zj ≤ lj (j ∈ J)

yij ≤ αxij , xij ≥ 0, yij ≥ 0 ((i, j) ∈ A)

Problem 2.

maximize
∑

i∈D∩X

wi +
∑

j∈E∩Y

zj

subject to wi ≤ ki (i ∈ I)

zj ≤ lj (j ∈ J)

yij ≤ αxij , xij ≤ βyij , xij ≥ 0, yij ≥ 0 ((i, j) ∈ A)

These problems may be considered to be problems in only the real (finite)
variables {xij : i ∈ X, (i, j) ∈ A} ∪ {yij : j ∈ Y, (i, j) ∈ A} since only these
variables occur in the objective functions, and any feasible (respecting the
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given inequalities) assignment of real numbers to these variables may be
extended to a feasible assignment of all the variables by the following rule:

Rule 1. Let (i, j) be an element of A.
If i ∈ X, assume xij has been assigned a value.
If j ∈ Y , assume yij has been assigned a value.
If i ∈ X and j 6∈ Y , let yij = αxij .
If i 6∈ X and j ∈ Y , let xij = βyij .
If i 6∈ X and j 6∈ Y , let xij = ∞, and let yij = ∞.

The problems may be interpreted as problems of supply and demand.
There are m sources with supplies k1, . . . , km of some product and n desti-
nations with demands l1, . . . , ln. When (i, j) ∈ A, the ith source serves the
jth destination, xij is the amount supplied and yij is the amount received.
If the product were say electric back-scratchers, it would be practical to in-
sist on xij = yij , but in the present situation, the product is less rigid. The
product may be expanded or compressed at the discretion of the problem
solver but within the limits prescribed by α and β.

Lemma 1. If
∑

j∈T lj ≤ α
∑

i∈N(T ) ki for each subset T of E, then

Problem 1 has a feasible solution in which zj = lj for all j in E, and wi = ki

for all i in N(J).

Lemma 2. If
∑

i∈S ki ≤ β
∑

j∈N(S) lj for each subset S of D, and∑
j∈T lj ≤ α

∑
i∈N(T ) ki for each subset T of E, then Problem 2 has a

feasible solution in which wi = ki for all i in D, and zj = lj for all j in E.

In order to prove Lemmas 1 and 2, it suffices to prove the following
proposition:

Proposition 1. Let {xij , yij} be an optimal solution to Problem 2, ob-

tained by first finding an optimal solution in the real variables and then

extending to the other variables by Rule 1. If
∑

j∈T lj ≤ α
∑

i∈N(T ) ki for

each subset T of E , then zj = lj for all j in E.

P r o o f o f L em m a 1. Start by letting {xij , yij} be as in Proposition 1,
so zj = lj for all j in E, and wi ≤ ki for all i in I. Then for each i in N(J),
choose j such that (i, j) is in A and increase xij until wi = ki. This process
does not violate the constraint yij ≤ αxij .

P r o o f o f L e m m a 2. Let {xij , yij} be as in Proposition 1, so zj =
lj for all j in E. By the symmetry of Problem 2 and Rule 1, conclude
that wi = ki for all i in D, from Proposition 1 and the assumption that∑

i∈S ki ≤ β
∑

j∈N(S) lj for each subset S of D.

P r o o f o f P r o p o s i t i o n 1. Suppose zj < lj for some j in E. Without
loss of generality, assume 1 ∈ E and z1 < l1. Construct T as follows:
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C a s e 1: 1 6∈ Y (l1 = ∞). Let T = {1}. Suppose i ∈ N({1}). Since z1

is finite, so is yi1 by the definition of z1. Therefore i ∈ X, by Rule 1, which
means that ki is finite. This is true for all i in N({1}). Therefore

∑

j∈T

lj = l1 = ∞ > α
∑

i∈N(T )

ki .

C a s e 2: 1 ∈ Y (l1 < ∞). Construct T recursively as follows: Put 1
in T . If t ∈ T , (s, t) ∈ A, (s, u) ∈ A, and xsu > 0, then put u in T . We
establish some properties of T . Suppose t ∈ T . Then

(i) t ∈ E.
(ii) yst = αxst for all s in N({t}).
(iii) ws = ks < ∞ for all s in N({t}).

We argue that if one of these properties does not hold, then there is a
perturbation of the solution {xij , yij}, which is still feasible and for which the
value of the objective function in Problem 2 is larger. This then contradicts
maximality.

First suppose t = 1. Then (i) holds by assumption. Suppose s ∈ N({1}).
If ys1 < αxs1, increase the value of the objective function by ε as follows:
Let ε = min{l1 − z1, αxs1 − ys1}. Increase ys1 by ε. (All other variables
xij and yij are unchanged.) This proves (ii). Now assume ys1 = αxs1. If
ws < ks or if ks = ∞, increase the value of the objective function as follows:
Let ε = min{l1 − z1, α(ks − ws)}. Increase xs1 by ε/α and increase ys1 by
ε. This proves (iii).

Now let t be an element of T other than 1. Without loss of generality,
assume that t is in T because (1, 1), (1, 2), (2, 2), (2, 3), . . . , (t−1, t−1), (t−
1, t) are all elements of A, and x12, x23, . . . , xt−1,t are all positive. Assume
inductively that yij = αxij for all i in N({j}) when j is in {1, . . . , t − 1}.

Suppose s ∈ N({t}). Consider first the case when s = t − 1. If yt−1,t <
αxt−1,t, increase the value of the objective function as follows:

Let ε = min{l1 − z1; y12, y23, . . . , yt−2,t−1;αxt−1,t − yt−1,t}.
Increase y11, y22, . . . , yt−2,t−2, yt−1,t−1 (each) by ε.
Increase x11, x22, . . . , xt−2,t−2, xt−1,t−1 by ε/α.
Decrease x12, x23, . . . , xt−2,t−1, xt−1,t by ε/α.
Decrease y12, y23, . . . , yt−2,t−1 by ε.
This proves (ii) for the case s = t − 1.
Now assume yt−1,t = αxt−1,t. If t 6∈ E, increase the value of the objective

function as follows:
Let ε = min{l1 − z1, y12, y23, . . . , yt−2,t−1, yt−1,t}. Make all the adjust-

ments to xij and yij described as yet, and in addition, decrease yt−1,t by ε.
(This last adjustment does not decrease the value of the objective function.)
This proves (i).
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Suppose s ∈ N({t}) and s 6= t − 1. If yst < αxst, increase the value of
the objective function as follows:

Let ε = min{l1 − z1, y12, y23, . . . , yt−1,t, αxst − yst}. Make all the ad-
justments to xij and yij described as yet and in addition, increase yst by ε.
This completes the proof of (ii).

Now assume yst = αxst. If ws < ks, or if ks = ∞, increase the value of
the objective function as follows:

Let ε = min{l1 − z1, y12, y23, . . . , yt−2,t−1, yt−1,t, α(ks − ws)}. Make all
the adjustments to xij and yij described as yet and in addition, increase xst

by ε/α. This proves (iii).
We have established (i)–(iii) for all t in T .

S u b c a s e 1:
∑

j∈T lj = ∞. By (iii), ki < ∞ for each i in N(T ).
Therefore

∑
i∈T lj = ∞ > α

∑
i∈N(T ) ki.

S u b c a s e 2:
∑

j∈T lj < ∞. Then
∑

j∈T

lj >
∑

j∈T

zj (since z1 < l1)

=
∑

j∈T

∑

i∈N({j})

yij (by the definition of zj)

= α
∑

j∈T

∑

i∈N({j})

xij (by (ii))

= α
∑

i∈N(T )

∑

j∈N({i})

xij (by the definition of T )

= α
∑

i∈N(T )

wi (by the definition of wi)

= α
∑

i∈N(T )

ki (by (iii)) .

This completes the proof of Proposition 1.

Laczkovich’s inequality in the context of a Boolean algebra.

We develop a version of Inequality (1) in the context of a Boolean algebra
(Lemma 3).

Let R be a subring of a Boolean algebra B. Let µ be a measure on
R. This means that µ : R → [0,∞] is a function such that µ(0) = 0, and
µ(r1 ∨ r2) = µ(r1)+µ(r2) whenever r1 and r2 are disjoint (r1 ∧ r2 = 0). For
each element b of B define

µ∗(b) = inf{µ(r) : b ≤ r and r ∈ R} and

µ∗(b) = sup{µ(r) : r ≤ b and r ∈ R} .
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Proposition 2. Let y1, . . . , yn be elements of B. If y1∨ . . .∨yn = s ∈ R,
then

2µ(s) ≤

n∑

i=1

(µ∗(yi) + µ∗(yi)) .

P r o o f. If µ(s) = ∞, there is some i such that µ∗(yi) = ∞, so assume
µ(s) < ∞. Let ε > 0 be given. For each i in {1, . . . , n} choose an element
qi of R such that yi ≤ qi ≤ s and µ(qi) ≤ µ∗(yi)+ ε. If q is an element of R,
write q1 and q0 for the element q and its complement q′ respectively. For
each i in {1, . . . , n} let

pi = qk1

1 ∧ . . . ∧ qkn

n

where ki = 1 and kj = 0 for j 6= i. Note that pi ≤ yi, so µ(pi) ≤ µ∗(yi).
Consider a general n-tuple (k1, . . . , kn) of zeros and ones. If (k1, . . . , kn) has
a single one in the ith place, we may write

2µ(qk1

1 ∧ . . . ∧ qkn

n ) = µ(qk1

1 ∧ . . . ∧ qkn

n ) + µ(pi)

by adding the same quantity to both sides in the definition of pi. If at least
two of the ki’s are ones, then

2µ(qk1

1 ∧ . . . ∧ qkn

n ) ≤ (k1 + . . . + kn)µ(qk1

1 ∧ . . . ∧ qkn

n ) .

Summing over all n-tuples except (0, . . . , 0) we obtain

2µ(s) = 2µ(q1 ∨ . . . ∨ qn) =
∑

2µ(qk1

1 ∧ . . . ∧ qkn

n )

≤
∑

(k1 + . . . + kn)µ(qk1

1 ∧ . . . ∧ qkn

n ) +

n∑

i=1

µ(pi)

=

n∑

i=1

µ(qi) +

n∑

i=1

µ(pi) ≤

n∑

i=1

(µ∗(yi) + ε) +

n∑

i=1

µ∗(yi) .

Since this is true for all ε, the result follows.

Proposition 3. Let x1, . . . , xn be pairwise disjoint elements of R. If

x1 ∨ . . . ∨ xn ≤ r ∈ R, then

µ∗(x1) +

n∑

i=2

µ∗(xi) ≤ µ(r) .

P r o o f. If µ(r) = ∞, there is nothing to prove, so assume µ(r) < ∞.
Let ε > 0 be given. For each i in {2, . . . , n}, choose an element pi of R such
that pi ≤ xi and µ∗(xi) ≤ µ(pi) + ε. Let q = r − (p2 ∨ . . . ∨ pn). Note that
x1 ≤ q, so µ∗(x1) ≤ µ(q). Therefore

µ∗(x1) +
n∑

i=2

µ∗(xi) ≤ µ(q) +
n∑

i=2

(µ(pi) + ε) = µ(r) + (n − 1)ε .

Since this is true for all ε, the result follows.
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A bijection g from one subset of B to another is said to be an isomor-

phism if it preserves Boolean operations. An isomorphism g : B → B is
µ-invariant if for all x in B, either x and g(x) both lie in R and have the
same measure, or neither x nor g(x) lie in R. Note that if g is µ-invariant
and g(x) = y, then µ∗(y) = µ∗(x) and µ∗(y) = µ∗(x).

Definition 1. Let R be a subring of a Boolean algebra B. Let µ be a
measure on R. Let a and b be elements of B, and let Ba = {x ∈ B : x ≤ a}
and Bb = {x ∈ B : x ≤ b} be the corresponding relativized algebras. We say
that an isomorphism P : Ba → Bb is piecewise µ-invariant with n pieces if
P is defined piecewise by µ-invariant isomorphisms g1, . . . , gn. This means
that there are elements x1, . . . , xn, y1, . . . , yn of B such that x1, . . . , xn are
pairwise disjoint, y1, . . . , yn are pairwise disjoint, x1 ∨ . . . ∨ xn = a, y1 ∨ . . .
∨ yn = b, and for each i in {1, . . . , n}, gi(xi) = yi and P (z) = gi(z) for all
z ≤ xi.

Lemma 3. Let R be a subring of a Boolean algebra B. Let µ be a measure

on R. Let a and b be elements of B. Let P : Ba → Bb be a piecewise µ-

invariant isomorphism with n ≥ 2 pieces. Then µ(s) ≤ n
2 µ(r) whenever

P−1(s) ≤ r, r ∈ R, and s ∈ R.

It is understood here that s ≤ b, but it is not necessarily true that r ≤ a.

P r o o f o f L em m a 3. Let P be as above and suppose P−1(s) ≤ r,
r ∈ R, and s ∈ R. Then there are elements x1, . . . , xn, y1, . . . , yn of B
and µ-invariant isomorphisms gi : B → B such that x1, . . . , xn are pairwise
disjoint, x1 ∨ . . . ∨ xn ≤ r, y1 ∨ . . . ∨ yn = s, and gi(xi) = yi for each i in
{1, . . . , n}. For each i in {1, . . . , n} we have µ∗(yi) = µ∗(xi), and µ∗(yi) =
µ∗(xi). If µ(r) = ∞, there is nothing to prove, so assume µ(r) < ∞. Each
difference µ∗(xi)−µ∗(xi) is then defined. Without loss of generality, assume
µ∗(x1) − µ∗(x1) ≥ µ∗(xi) − µ∗(xi) for all i in {2, . . . , n}. Then

2µ(s) ≤

n∑

i=1

(µ∗(yi) + µ∗(yi)) (Proposition 2)

=

n∑

i=1

(µ∗(xi) + µ∗(xi)) =

n∑

i=1

(µ∗(xi) − µ∗(xi)) + 2

n∑

i=1

µ∗(xi)

≤ (µ∗(x1) − µ∗(x1)) + n
n∑

i=1

µ∗(xi) = nµ∗(x1) + n
n∑

i=2

µ∗(xi)

≤ nµ(r) (Proposition 3) .

This completes the proof of Lemma 3.

Inequality (1) is in fact a special case of a more general inequality proven
by Laczkovich in order to deal with piecewise Lipschitz functions (see [L,
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Theorem 4]). A version of the more general inequality can also be formulated
in the context of a Boolean algebra, but the Lipschitz conditions are replaced
by measure-theoretic conditions:

Let R be a subring of a Boolean algebra B. Let µ be a measure on R.

Let a and b be elements of B. For each i in {1, . . . , n}, let εi be an element

of (0,∞) and let gi : B → B be an isomorphism with the property that for

all z in B, either z and gi(z) both lie in R and satisfy µ(gi(z)) ≤ εiµ(z),
or neither z nor gi(z) lie in R. Let P : Ba → Bb be defined piecewise by

g1, . . . , gn. Then µ(s) ≤ Mµ(r) whenever P−1(s) ≤ r, r ∈ R, and s ∈ R,
where

M = max

{
1

2

n∑

i=1

εi, ε1, ε2, . . . , εn

}
.

P r o o f. For each i in {1, . . . , n} we have µ∗(yi) ≤ εiµ
∗(xi) and µ∗(yi) ≤

εiµ∗(xi). Assume µ∗(x1) − µ∗(x1) ≥ µ∗(xi) − µ∗(xi) for all i in {2, . . . , n}.
Then

n∑

i=1

(µ∗(yi) + µ∗(yi)) ≤
n∑

i=1

εi(µ
∗(xi) − µ∗(xi)) + 2

n∑

i=1

εiµ∗(xi)

≤
( n∑

i=1

εi

)
(µ∗(x1) − µ∗(x1)) + 2ε1µ∗(x1) + 2ε2µ∗(x2) + 2εnµ∗(xn)

≤ 2M
(
µ∗(x1) +

n∑

i=2

µ∗(xi)
)

,

and Propositions 2 and 3 are applied as in the proof of Lemma 3.

Main results

Theorem 1. Let R be a subring of a Boolean algebra B. Let µ be a

measure on R. Let a and b be disjoint elements of B. Let P : Ba → Bb

be an isomorphism. Let α be an element of (0,∞). The following are

equivalent :

(1) µ has an extension to a measure µ̃ on B such that µ̃(y) ≤ αµ̃(x)
whenever P (x) = y.

(2) µ∗(y) ≤ αµ∗(x) whenever P (x) = y.

(3) µ(s) ≤ αµ(r) whenever P−1(s) ≤ r, r ∈ R and s ∈ R.

The point of this theorem is the implication (3)⇒(1). For the other
implications, the assumption that a and b are disjoint is not necessary.

P r o o f o f T h e o r e m 1. (1)⇒(2). µ∗(y) ≤ µ̃(y) ≤ αµ̃(x) ≤ αµ∗(x).

(2)⇒(3). µ(s) = µ∗(s) ≤ αµ∗(P−1(s)) ≤ αµ∗(r) = αµ(r).
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(3)⇒(2). Fix x and y such that P (x) = y ≤ b, and consider all elements
r and s of R such that s ≤ y and x ≤ r. Then sup{µ(s)} ≤ inf{αµ(r)}.

(3)⇒(1). Let F = {C ⊂ B : C is a finite subalgebra of B, a ∈ C, b ∈ C,
and x ∈ C ⇔ y ∈ C whenever P (x) = y}. Since a and b are disjoint and P
is an isomorphism, every finite subset of B is a subset of some set C in F .

For each C ∈ F , define M(C) to be the set of all functions ν : B → [0,∞]
satisfying the following conditions:

(i) ν is finitely additive on C.
(ii) ν agrees with µ on R ∩ C.
(iii) ν(y) ≤ αν(x) whenever P (x) = y, x ∈ C and y ∈ C.

S t e p 1. If C1, . . . , Ck are elements of F , then
⋂k

i=1 M(Ci) is not

empty .

P r o o f. Since
⋃k

i=1 Ci is a finite subset of B, it is a subset of some C in

F . Since M(C) ⊂
⋂k

i=1 M(Ci), it suffices to show that M(C) is not empty.
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Let r1, . . . , rm, s1, . . . , sn, t1, . . . , tp be all the atoms of R ∩ C named so
as to satisfy

ri ∧ a 6= 0 (i ∈ I = {1, . . . ,m}) ,

sj ∧ a = 0, sj ∧ b 6= 0 (j ∈ J = {1, . . . , n}) ,

tk ∧ a = 0, tk ∧ b = 0 (k ∈ K = {1, . . . , p}) .

Each atom of R ∩C is a join of atoms of C. The structure of an element C
of F can be represented by a figure such as Figure 1. The small discs are
the atoms of C. The element a is the join of the atoms marked “+” and
the element b is the join of the atoms marked “−”. Atoms of C are grouped
together and labelled accordingly when their join is an atom of R ∩C. The
connecting arcs indicate the action of P .

Let A = {(i, j) ⊂ I × J : c ≤ ri, d ≤ sj and P (c) = d, for some
atoms c, d of C}. Let E = {j ∈ J : sj ≤ b}. In Figure 1, for example,
A = {(2, 1), (2, 2), (4, 2)} and E = {2}.
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For each i in I, let ki = µ(ri), and for each j in J , let lj = µ(sj). Suppose
T ⊂ E. Then P−1(

∨
j∈T sj) ≤

∨
i∈N(T ) ri. Therefore

∑

j∈T

lj = µ
( ∨

j∈T

sj

)
≤ αµ

( ∨

i∈N(T )

ri

)
= α

∑

i∈N(t)

ki .

Therefore, by Lemma 1, Problem 1 has a feasible solution {xij , yij} with
wi = ki for all i in N(J) and zj = lj for all j in E.

For each pair (i, j) in A, choose atoms c and d of C such that c ≤ ri,
d ≤ sj and P (c) = d, and define ν(c) = xij and ν(d) = yij. For each i in
I \N(J), choose an atom c of C such that c ≤ ri∧a, and define ν(c) = µ(ri).
For each j in J \E, choose an atom d of C such that d ≤ sj ∧ b′, and define
ν(d) = lj − zj . (If lj = ∞, define ν(d) = ∞.) For each k in K, choose an
atom c of C such that c ≤ tk, and define ν(c) = µ(tk). For each atom c of
C on which ν is not yet defined, define ν(c) = 0. Define ν on the nonatomic
elements of C by additivity. Define ν arbitrarily on B \ C.

The function ν satisfies condition (i) by definition. For condition (ii), it
suffices to observe that for each atom r of R ∩ C, we have

∑
ν(c) = µ(r),

where the sum is taken over all atoms c of C such that c ≤ r. For condition
(iii), it suffices to observe that ν(d) ≤ αν(c) whenever P (c) = d and c and
d are atoms of C. Then if P (x) = y, for nonatomic elements x and y of C,
we have

ν(y) =
∑

ν(P (c)) ≤ α
∑

ν(c) = αν(x) ,

where the sums are taken over all atoms c of C such that c ≤ x.

S t e p 2. M(C) is a closed subset of [0,∞]B for each C in F .

P r o o f. Each condition on ν defines a closed subset of [0,∞]B .

S t e p 3. The set [0,∞]B is compact by Tikhonov’s theorem. Therefore,
by Steps 1 and 2, the intersection

⋂
{M(C) : C ∈ F} is not empty. Let µ̃

be any element of
⋂
{M(C) : C ∈ F}. For any C in F , and hence for any

finite subset C of B, the function µ̃ agrees with some measure ν satisfying
conditions (i)–(iii).

Definition 2. Let R be a subring of a Boolean algebra B. Two
elements a and b of B are said to be separated by elements of R if there are
elements r and s of R such that a ≤ r, b ≤ s, and r ∧ s = 0.

Theorem 2. Let R be a subring of a Boolean algebra B. Let µ be a

measure on R. Let a and b be elements of B which are separated by elements

of R. Let P : Ba → Bb be an isomorphism. Let α and β be elements of

(0,∞) with αβ ≥ 1. The following are equivalent :

(1) µ has an extension to a measure µ̃ on B such that 1
β
µ̃(x) ≤ µ̃(y) ≤

αµ̃(x) whenever P (x) = y.
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(2) µ∗(y) ≤ αµ∗(x) and µ∗(x) ≤ βµ∗(y) whenever P (x) = y.

(3) µ(s) ≤ αµ(r) whenever P−1(s) ≤ r, r ∈ R and s ∈ R, and µ(r) ≤
βµ(s) whenever P (r) ≤ s, r ∈ R and s ∈ R.

P r o o f. (3)⇒(1). The proof is similar to that of Theorem 1. We indi-
cate only the definition of M(C) and the construction of an element ν of
M(C). Let F be as in Theorem 1, but assume also that each C contains
the separating elements. For each C in F , define M(C) to be the set of all
functions ν satisfying the following conditions:

(i) ν is finitely additive on C.

(ii) ν agrees with µ on R ∩ C.

(iii) 1
β
ν(x) ≤ ν(y) ≤ αν(x) whenever P (x) = y, x ∈ C and y ∈ C.

We show that M(C) is not empty. Let r1, . . . , rm, s1, . . . , sn, t1, . . . , tp
be all the atoms of R ∩ C named so as to satisfy

ri ∧ a 6= 0 (i ∈ I = {1, . . . ,m}) ,

sj ∧ b 6= 0 (j ∈ J = {1, . . . , n}) ,

tk ∧ a = 0, tk ∧ b = 0 (k ∈ K = {1, . . . , p}) .

Since C contains the separating elements, there is no ambiguity here, that
is, there is no atom r of R∩C such that both r∧a 6= 0 and r∧ b 6= 0. As in
the proof of Theorem 1, let A = {(i, j) ⊂ I×J : c ≤ ri, d ≤ sj and P (c) = d,
for some atoms c, d of C}, for each i in I, let ki = µ(ri), and for each j in
J , let lj = µ(sj). Let D = {i ∈ I : ri ≤ a} and let E = {j ∈ J : sj ≤ b}.

If S ⊂ D, then P (
∨

i∈S ri) ≤
∨

j∈N(S) sj , and therefore
∑

i∈S ki ≤

β
∑

j∈N(S) lj . Similarly if T ⊂ E, then P−1(
∨

j∈T sj) ≤
∨

i∈N(T ) ri, and

therefore
∑

j∈T lj ≤ α
∑

i∈N(T ) ki. By Lemma 2, Problem 2 has a feasible

solution {xij , yij} with wi = ki for all i in D, and zj = lj for all j in E.

For each pair (i, j) in A, choose atoms c and d of C such that c ≤ ri,
d ≤ sj and P (c) = d, and define ν(c) = xij and ν(d) = yij. For each i in
I \D, choose an atom c of C such that c ≤ ri∧a′, and define ν(c) = ki −wi.
(If ki = ∞, define ν(c) = ∞.) For each j in J \ E, choose an atom d of C
such that d ≤ sj ∧ b′, and define ν(d) = lj − zj . For each k in K, choose an
atom c of C such that c ≤ tk, and define ν(c) = µ(tk). For each atom c of
C on which ν is not yet defined, define ν(c) = 0. Define ν on the nonatomic
elements of C by additivity. Define ν arbitrarily on B \ C.

We now obtain the measure extension theorem for a piecewise invariant
map.

Theorem 3. Let R be a subring of a Boolean algebra B. Let µ be a mea-

sure on R. Let a and b be elements of B. Let P : Ba → Bb be a piecewise
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µ-invariant map with n ≥ 2 pieces. If a and b are disjoint then µ has an

extension to a measure µ̃ on B such that µ̃(y) ≤ n
2 µ̃(x) whenever P (x) = y.

If a and b are separated by elements of R then µ has an extension to a

measure µ̃ on B such that 2
n
µ̃(x) ≤ µ̃(y) ≤ n

2 µ̃(x) whenever P (x) = y.

P r o o f. By Lemma 3 we have µ(s) ≤ n
2
µ(r) whenever P−1(s) ≤ r,

r ∈ R, and s ∈ R. By Lemma 3 applied to P−1 we have µ(r) ≤ n
2
µ(s)

whenever P (r) = s, r ∈ R, and s ∈ R. Let α = β = n/2 and apply
Theorems 1 and 2.

Applications

Example 1. Let A and B be bounded sets in R
3 with nonempty in-

teriors. Banach and Tarski have shown that for some finite n, there exists
a piecewise isometry P : A → B with n pieces [BT, Theorem 24]. More
generally, let P : A → B be a piecewise isometry with n pieces between
any subsets A and B of R

3. Assume n ≥ 2 and let µ be Lebesgue measure
on R

3. Let B = P(R3) and let R be the subring of Lebesgue measurable
sets. (At this point it is possible to apply Theorem 3, but it is worth noting
that we can avoid Lemma 3.) By Laczkovich’s inequality in R

3, we have
µ∗(Y ) ≤ n

2 µ∗(X) and µ∗(X) ≤ n
2 µ∗(Y ) whenever P (X) = Y .

If A and B are disjoint then by Theorem 1 with α = n/2 there is a total
(defined on all subsets) finitely additive extension µ̃ of µ such that

(2) µ̃(Y ) ≤
n

2
µ̃(X) whenever P (X) = Y .

If A and B are separated by measurable sets then by Theorem 2 with
α = β = n/2 there is a total finitely additive extension µ̃ of µ such that

(4)
2

n
µ̃(X) ≤ µ̃(Y ) ≤

n

2
µ̃(X) whenever P (X) = Y .

For any n ≥ 2 it is possible to choose A, B and P such that µ(B) = n
2 µ(A)

(see [S]). In this case Inequality (2) becomes an equality. For example, in
Robinson’s duplication of the deleted ball with four pieces [R, p. 254], µ̃
may be chosen so that roughly speaking, each piece and each part of each
piece is exactly doubled (in µ̃ measure), assuming that the original deleted
ball and the two copies are pairwise disjoint.

Example 2. Let A and B be bounded sets in R
2 with nonempty interi-

ors. Let G be the group generated by SL2(R) ∪ T where T is the group of
translations on R

2. Then there is a bijection P : A → B defined piecewise
by n elements of G, for some n (see [Wg, Theorem 7.3]). Assume n ≥ 2 and
let µ be Lebesgue measure on R

2. P is piecewise µ-invariant with n pieces.
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Apply Theorem 3 with B = P(R2). If A and B are disjoint then there is
a total finitely additive extension µ̃ of µ which satisfies Inequality (2). If A
and B are separated by measurable sets then there is a total finitely additive
extension µ̃ of µ which satisfies Inequality (4).

Example 3. Let A and B be bounded sets in R with nonempty interiors.
Let G be the group of bijections g : R → R such that g and g−1 are
both Lebesgue measurable and preserve Lebesgue measure µ. There is a
bijection P : A → B defined piecewise by n elements of G, for some n
(see [Wg, Theorem 7.9]). Assume n ≥ 2. P is piecewise µ-invariant with
n pieces. Apply Theorem 3 with B = P(R). For example, let A = [0, 1)
and let B = [1, 3). By incorporating Robinson’s four piece decomposition
into Wagon’s proof (7.9) we see that there is a bijection P : A → B defined
piecewise by four elements of G. By Theorem 3 there is a total finitely
additive extension µ̃ of µ such that µ̃(Y ) = 2µ̃(X) whenever P (X) = Y .

Example 4. Let A and B be bounded sets in R with nonempty interiors.
Let S be the set of functions g : Ig → R where Ig is an interval containing A,
and g is an ε-contraction with respect to Ig. This means that |g(x)−g(y)| ≤
ε|x−y| for all x and y in Ig. There is a bijection P : A → B defined piecewise
by n elements of S, for some n (see [Wg, Theorem 7.12]). Assume n ≥ 2 and
let µ be Lebesgue measure on R. By Laczkovich’s Inequality for Lipschitz
functions, µ∗(Y ) ≤ nε

2 µ∗(X) whenever P (X) = Y [L, Theorem 4]. If A and
B are disjoint, then by Theorem 1 with B = P(R) there is a total finitely
additive extension µ̃ of µ such that µ̃(Y ) ≤ nε

2 µ̃(X) whenever P (X) = Y .
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