
FUNDAMENTA
MATHEMATICAE
142 (1993)

On the LC1-spaces which are Cantor or arcwise homogeneous

by

H. Patkowska (Warszawa)

Abstract. A space X containing a Cantor set (an arc) is Cantor (arcwise) homoge-
neous iff for any two Cantor sets (arcs) A,B ⊂ X there is an autohomeomorphism h of
X such that h(A) = B. It is proved that a continuum (an arcwise connected continuum)
X such that either dimX = 1 or X ∈ LC1 is Cantor (arcwise) homogeneous iff X is a
closed manifold of dimension at most 2.

1. Introduction. In the paper [O–P] by K. Omiljanowski and the
present author the spaces which are Cantor or arcwise homogeneous have
been defined and the problem to describe all such spaces has been proposed.

In this paper we shall prove the following two theorems:

Theorem 1. Let X be a continuum such that either dim X = 1 or X ∈
LC1. Then X is Cantor homogeneous iff X is a closed manifold of dimension
at most 2.

Theorem 2. Let X be an arcwise connected continuum such that either
dim X = 1 or X ∈ LC1. Then X is arcwise homogeneous iff X is a closed
manifold of dimension at most 2.

Recall that a space X containing a Cantor set (an arc) is Cantor (arc-
wise) homogeneous iff for any two Cantor sets (arcs) A,B ⊂ X there is an
autohomeomorphism h of X mapping A onto B.

The strategy of the proof of Theorem 1 is the following: Of course it
suffices to prove the “only if” part of the theorem. So assume that X is
Cantor homogeneous. If dim X = 1 then X ∼= S1 by [O–P] (Prop. 2.3 and
Cor. 2.9). Thus we can assume that dim X ≥ 2 and X ∈ LC1. As in [O–P]
(Th. 2.7) we notice that

(∗) X has no locally disconnecting points.

A simple closed curve S ⊂ X will be called an NDC-curve if S does not
disconnect X and S is contractible in a proper subset of X. Assume that
X is not a 2-manifold. It follows that:
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(∗∗) X contains arbitrarily small NDC-curves.

Indeed, we infer from (∗) and from Young’s characterization of 2-mani-
folds (see [Y]) that X contains arbitrarily small simple closed curves which
do not disconnect X. Thus X ∈ LC1 implies (∗∗).

Now, to prove that there exists no Cantor homogeneous continuum X
with dim X ≥ 2, X ∈ LC1 and which is not a 2-manifold, we define tame and
wild Cantor sets similarly to the usual definition and we prove (in Sections
2 and 3) that any space X as above must contain Cantor sets of both kinds.

A Cantor set C ⊂ X will be called tame if each NDC-curve S ⊂ X \ C
is contractible in X \ C. Otherwise C will be called wild.

The strategy of the proof of Theorem 2 is similar to that of Theorem 1.
The proof is given in Section 4.

2. Construction of a tame Cantor set. The existence of a tame
Cantor set C ⊂ X follows from the strong n-homogeneity for all n of a
Cantor homogeneous continuum X � S1 (see [O–P], Th. 2.7) and from the
following

Lemma 1. Let X ∈ LC1 be a non-degenerate continuum which is strongly
n-homogeneous for all n = 1, 2, . . . Then there is a tame Cantor set C ⊂ X.

P r o o f. First notice that the assumptions of the lemma imply that
X satisfies the condition (∗) given before. Indeed, if X contains a locally
disconnecting point then by Whyburn’s theorem [Wh1] and by homogeneity
of X we have ordx X = 2 for every x ∈ X. This implies X ∼= S1, but S1 is
not strongly 3-homogeneous. It follows that:

(1) No subset of X which is the union of an NDC-curve and of a finite
set disconnects X.

Let S denote the subspace of the space XS1
(with the “sup” metric)

consisting of all homeomorphisms φ : S1 → φ(S1) ⊂ X such that φ(S1)
is an NDC-curve in X. We can assume that S is non-empty. Then S is
separable, and therefore there exists a sequence φ1, φ2, . . . dense in S such
that each φi occurs in it infinitely often. Let Si = φi(S1).

To find a tame Cantor set C ⊂ X we construct a sequence of closed balls
Qi1...ik

⊂ X, ij = 0, 1 for k = 1, 2, . . . , in the given metric of X such that:

(1)k If 〈i1, . . . , ik〉 6= 〈i′1, . . . , i′k〉, then Qi1...ik
and Qi′1...i′

k
are disjoint.

(2)k diam Qi1...ik
< 1/k.

(3)k+1 Qi1...ikik+1 ⊂ IntQi1...ik
for ik+1 = 0, 1.

(4)k+1 If Sk ⊂ X \Ak, where Ak =
⋃
{Qi1...ik

: ij = 0, 1 for j ≤ k}, then
Sk is contractible in X \Ak+1.

We construct such a sequence of balls by induction.
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Find any two balls Q0, Q1 satisfying (1)1 and (2)1 and assume inductively
that the balls Qi1...ij for j ≤ k have been constructed.

To construct the balls Qi1...ikik+1 for ij = 0, 1, j ≤ k + 1, we can assume
that Sk ⊂ X \Ak. Since Sk is contractible in a proper subset of X, there is
a map f of a disc D into X such that f |Ḋ : Ḋ → Sk is a homeomorphism
and f(D) 6= X. Choose some points qi1...ik

∈ IntQi1...ik
\Sk for ij = 0, 1,

j ≤ k and order them into a sequence p1, . . . , pl, where l = 2k. We will
construct by induction some maps g1, . . . , gl: D → X such that gi|Ḋ = f |Ḋ
and pj 6∈ gi(D) for j ≤ i.

To find g1, choose a point a ∈ X\f(D) and an arc I ⊂ X\Sk = X\f(Ḋ)
joining a to p1. Denote by J the subset of I consisting of those points x ∈ I
for which there is a map g : D → X such that g|Ḋ = f |Ḋ and x 6∈ g(D).
Then J is an open and non-empty subset of I, because a ∈ J . Observe that
J is also a closed subset of I. Indeed, let x0 ∈ Cl J . Since I ⊂ X \ Sk and
X ∈ LC1, there is an ε > 0 such that if h is an autohomeomorphism of
X which is ε-close to the identity and φ is a homeomorphism of S1 onto
Sk then φ and hφ : S1 → h(Sk) are homotopic in X \ I (cf. [Hu], p. 160).
Since X is homogeneous and x0 ∈ Cl J , we infer from the well-known Effros
theorem [E] that there are a y0 ∈ J and an autohomeomorphism h of X
which is ε-close to the identity and which maps x0 onto y0. Consequently,
there is a map g′ : D → X such that g′|Ḋ = f |Ḋ and x0 6∈ g′(D), which
proves that x0 ∈ J . Thus J = I contains p1, and therefore the desired map
g1 exists.

If 1 ≤ m < l and gm : D → X exists, we prove the existence of gm+1 in
a similar way. By (1) there is an arc I ⊂ X \ Sk joining a ∈ X \ gm(D) to
pm+1 and such that pi 6∈ I for i ≤ m. We consider the set J of those x ∈ I
for which there exists a map g : D → X such that g|Ḋ = gm|Ḋ = f |Ḋ and
none of the points p1, . . . , pm, x belongs to g(D). As before we prove that J
is non-empty and both open and closed in I. In the proof that J is closed
we use the strong (m + 1)-homogeneity of X and the Effros theorem for the
action of the group H(X) of autohomeomorphisms of X on the space

Fm+1(X) = {〈x1, . . . , xm+1〉 ∈ Xm+1 : xi 6= xj for i 6= j} .

This concludes the construction of the maps g1, . . . , gl and therefore there
is a map gl : D → X such that gl|Ḋ is a homeomorphism of Ḋ onto Sk and
some neighborhoods of the points p1, . . . , pl are disjoint from gl(D).

Now, it is easy to construct the balls Qi1...ik+1 for ij = 0, 1, j ≤ k + 1,
such that the conditions (1)k+1–(4)k+1 are satisfied. Having constructed
Qi1...ik

for all k = 1, 2, . . . , we can define the desired Cantor set:

C =
∞⋂

k=1

⋃
{Qi1...ik

: ij = 0, 1 for j ≤ k} .
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Notice now that:

(2) C is a tame Cantor set in X.

Indeed, let S ⊂ X \C be a simple closed curve such that S is contractible
in a proper subset of X. Since X ∈ LC1, it follows from the properties of
the sequence S1, S2, . . . that there is a k such that the curves S and Sk

are homotopic in X \ C, and Sk ⊂ X \ Ak, where Ak is defined in (4)k+1.
By (4)k+1, Sk is contractible in X \Ak+1 ⊂ X \ C, which implies that S is
contractible in X\C, and thus the proof of (2) and of the lemma is complete.

3. Construction of a wild Cantor set. The idea of this construction
is the following: It is well known that there exist a wild Cantor set A in
the Hilbert cube Q and a simple closed curve S ⊂ Q \ A such that S is
not contractible in Q \ A. We can assume that S is a polygonal curve and
therefore a Z-set in Q. The existence of a wild Cantor set C ⊂ X is a
consequence of the following Lemma 2 applied to any NDC-curve S0 ⊂ X.

Lemma 2. Let X be a continuum such that X � S1. Then for any simple
closed curve S0 ⊂ X there is an imbedding φ : X → Q such that φ(S0) = S
and A ⊂ φ(X).

The reader should compare this lemma with Theorem 5.2 in [L–W],
which inspired the author. Also, the author thanks H. Toruńczyk whose
remarks brought about a simplification of the proof of the lemma.

P r o o f o f t h e l e m m a. Let S0 ⊂ X and let φ0 : S0 → S be a fixed
homeomorphism. Consider the subspace A of the space QX consisting of
the maps f : X → Q such that f |S0 = φ0 and A ⊂ f(X). Then A is
complete as a closed subset of QX . Since X \ S0 contains a Cantor set and
Q ∈ AR, it follows that A is not empty. So to find the desired embedding
φ : X → Q using Baire’s theorem, it suffices to prove that:

(1) For every f ∈ A, ε > 0 and δ > 0 there is an ε-mapping g ∈ A which
is δ-close to f .

Now, given f ∈ A, ε > 0 and δ > 0, find a closed neighborhood M of
A in Q such that M ⊂ Q \ S and M has a finite number M1, . . . ,Mk of
components such that diam Mi < δ/2 for i ≤ k. Find a number 0 < δ′ < δ/2
such that for any x ∈ A the closed ball B(x, δ′) is contained in a component
Mi. Since f |S0 = φ0 : S0 → S is a homeomorphism onto a Z-set in Q, it
follows that there is a Z-imbedding g0 : X → Q such that d(f, g0) < δ′ and
g0|S0 = φ0 (see [M], p. 279). Since A ⊂ f(X) as f ∈ A, we infer that g0(X)
meets the interior of each component Mi of M .

Next, for each i ≤ k we construct a set Ci ⊂ Q such that:

(i) A ∩Mi ⊂ Ci ⊂ IntMi.
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(ii) Ci is the union of a finite number of disjoint compact AR-sets
Di1, . . . , Diji .

(iii) Int g−1
0 (Dis) 6= ∅ for s ≤ ji.

(iv) diam g−1
0 (Dis) < ε for s ≤ ji.

For this purpose find an arc L ⊂ Q containing the Cantor set A (cf.
[Wh2]). Let η > 0 be such that for any W ⊂ g0(X) with diam W < η we
have diam g−1

0 (W ) < ε. For each i ≤ k find a set

Li = Li1 ∪ . . . ∪ Liji ⊂ L ∩ IntMi

such that Li ⊃ A∩Mi and Lis for s ≤ ji are disjoint subarcs of L of diameter
less than η. If g−1

0 (Lis) 6= ∅, then we enlarge the arc Lis to an AR-set Dis

satisfying (iii) and (iv) by adding to it a small ball in Q. If g−1
0 (Lis) = ∅,

then we enlarge the arc Lis to Dis by adding the union of a small ball
(whose interior intersects g0(X)) and of an arc. Since g−1

0 (IntMi) 6= ∅, it is
clear that the construction can be done so that the conditions (i)–(iv) are
satisfied.

Now, we can define the desired ε-mapping g ∈ A satisfying (1) by mod-
ifying g0 only on the set

k⋃
i=1

g−1
0 (Ci) =

k⋃
i=1

⋃
{g−1

0 (Dis) : s ≤ ji} .

Namely, for each s ≤ ji we find a Cantor set Cis ⊂ Int g−1
0 (Dis) and a map

gis of Cis onto A∩Dis. Let g∗is : g−1
0 (Dis) → Dis be any map which is equal

to gis on Cis and to g0 on Bd g−1
0 (Dis) (recall that Dis ∈ AR).

It is clear from the construction that the map g obtained by modification
of g0 by means of g∗is’s, i ≤ k, s ≤ ji, belongs to A, and it is an ε-mapping
by (ii), (iv) and since g∗is maps g−1

0 (Dis) into Dis.
Observe that d(g0, g) < δ/2, because if g(x) 6= g0(x) then g(x) and g0(x)

belong to the same component Mi of M and diam Mi < δ/2. Consequently,
d(f, g) < δ, because d(f, g0) < δ′ < δ/2. Thus the proof of (1) and of the
lemma is complete.

4. Proof of Theorem 2. Of course it suffices to prove the “only
if” part of the theorem. First assume that X is an arcwise connected and
arcwise homogeneous continuum such that dim X = 1. It follows from
Proposition 3.3 in [O–P] that X is locally connected and homogeneous and
therefore we infer from Anderson’s theorem [A] that either X ∼= S1 or
X ∼= M3

1 . Since the universal curve M3
1 is not arcwise homogeneous we

conclude that X ∼= S1.
Thus we can assume that X is an arcwise homogeneous continuum such

that dim X > 1, X ∈ LC1 and X is not a 2-manifold and we shall find a
contradiction.
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In the same way as in the Introduction we define NDC-curves in X, and
using Proposition 3.3 in [O–P] analogously to the case of Cantor sets we
observe that:

(∗) X contains arbitrarily small NDC-curves.

Next, we define tame and wild arcs in X as for Cantor sets, but—as
noticed by the referee—not equivalently to the usual definition.

Observe that the space X must contain a wild arc. Indeed, applying
Lemma 2 to any NDC-curve S0 ⊂ X we obtain a Cantor set C ⊂ X \ S0

such that S0 is not contractible in X \ C. By Whyburn’s Theorem [Wh2]
and Proposition 3.3 in [O–P] there is an arc I ⊂ X \S0 containing C. Thus
I is a wild arc in X.

To obtain a contradiction proving Theorem 2 we shall prove the following

Lemma 3. There is no arcwise homogeneous continuum X ∈ LC1 con-
taining a wild arc.

P r o o f. On the contrary, assume that X ∈ LC1 is an arcwise homo-
geneous continuum containing a wild arc J . For any arc I = pq ⊂ X and
x ∈ I \ {p} let Ix denote the subarc of I with end-points p and x. We shall
first prove that:

(1) There are an arc I = pq ⊂ X and an NDC-curve S ⊂ X \ I such that
S is not contractible in X \ I but S is contractible in S \ Ix for every
x ∈ I

◦
.

For this purpose consider the wild arc J = pr ⊂ X and let S ⊂ X \J be
an NDC -curve such that S is not contractible in X \ J . We shall first show
that there is a subarc Jx of J such that S is contractible in X \ Jx.

Indeed, since S is an NDC-curve, there is a map f of a disc D into X such
that f |Ḋ : Ḋ → S is a homeomorphism and f(D) 6= X. Let a ∈ X \ f(D).
Find an arc K ⊂ X \ S joining a to p. Denote by K ′ the set of points
y ∈ K such that there is a map g : D → X satisfying g|Ḋ = f |Ḋ and
y 6∈ g(D). As in the proof of Lemma 1 we notice that K ′ is a non-empty
and both open and closed subset of K. In the proof that K ′ is closed we
use the assumptions that X ∈ LC1 and X is homogeneous (as it is arcwise
connected and arcwise homogeneous). Thus we can apply the Effros theorem
[E] which implies that any point y ∈ K ′ can be mapped to a point z ∈ K ′

by an autohomeomorphism of X which is sufficiently close to the identity,
and therefore y ∈ K ′. Consequently, K ⊂ K ′, whence we infer that p ∈ K ′.
Thus there is a subarc Jx of J such that S is contractible in X \ Jx.

Now, since S is not contractible in X \J , there exists the least q ∈ J \{p}
(in the ordering of J from p to r) such that S is not contractible in X \ Jq.
Consequently, the arc I = Jq satisfies (1).
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It follows from the arcwise homogeneity of X that:

(2) For every arc I = pq ⊂ X there is an NDC-curve S ⊂ X \ I such that
the condition described in (1) is satisfied.

Now, let S denote the subspace of the space XS1
(with the “sup” metric)

consisting of all homeomorphisms φ : S1 → φ(S1) ⊂ X such that φ(S1)
is an NDC-curve in X. Let φ1, φ2, . . . be a sequence dense in X and let
Si = φi(S1) for i = 1, 2, . . .

Choose any arc I = pq ⊂ X. Observe that:

(3) For any x ∈ I \ {p} there is an i(x) = 1, 2, . . . such that the arc Ix

and the curve Si(x) satisfy the condition described in (1).

Indeed, if S ⊂ X \ Ix is an NDC-curve satisfying that condition then
there exists a curve Si ⊂ X \ Ix so close to S that S is homotopic to Si in
X \ Ix. It follows that Si satisfies (3).

Now observe that if x, y ∈ I \ {p} and x 6= y then i(x) 6= i(y). Indeed,
assume that x precedes y in the ordering of I from p to q and i(x) = i(y).
Then Si(x) ⊂ X\Iy ⊂ X\Ix would be both contractible and non-contractible
in X \ Iy, which is impossible. Thus (3) yields a contradiction, which proves
the lemma.

5. Final remarks. The author does not know whether the assumption
that X ∈ LC1 (when dim X ≥ 2) is essential to Theorems 1 and 2, and not
only to the presented proofs.

It follows from Lemma 2 that any continuum X ∈ LC1 such that X � S1

satisfies the condition: For every simple closed curve S0 ⊂ X there is a
Cantor set A ⊂ X \S0 which is wild with respect to S0 in the sense that S0

is not contractible in X \ A. It would be of interest to know whether there
exists a (homogeneous) continuum X ∈ LC1 such that for each Cantor set
C ⊂ X there is a simple closed curve S ⊂ X \ C which is not contractible
in X \ C. Since for X � S1, n-homogeneity implies strong n-homogeneity
(cf. [U]), it follows from Lemma 1 that X cannot be n-homogeneous for all
n = 1, 2, . . .

Observe that our proof of Theorem 2 does not yield a construction of
a tame arc in X, in contrast to the proof of Lemma 1 which does give a
construction of a tame Cantor set. It would be interesting to have such a
construction of a tame arc for instance in a homogeneous continuum X ∈
LC1 of dimension at least 2.

Other problems concern arcwise homogeneous continua X which are not
arcwise connected but such that for any x ∈ X there is an arc I ⊂ X
containing x. Such a continuum must be homogeneous and a solenoid is an
example (cf. [O–P]). It would be of interest to know whether it is the only
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example of dimension 1. When dim X > 1, must X be a bundle space over
a 2-manifold with fiber being a Cantor set?

References

[A] R. D. Anderson, A characterization of the universal curve and a proof of its
homogeneity , Ann. of Math. 67 (1958), 313-324.

[E] E. G. Ef f ros, Transformation groups and C∞-algebras, ibid. 81 (1965), 38-55.
[Hu] S.-T. Hu, Theory of Retracts, Wayne St. Univ. Press, Detroit 1965.
[L–W] J. Lamoreaux and D. G. Wright, Rigid sets in the Hilbert cube, Topology

Appl. 22 (1986), 85–96.
[M] J. van Mi l l, Infinite-Dimensional Topology , North-Holland, 1989.
[O–P] K. Omi l janowski and H. Patkowska, On the continua which are Cantor

homogeneous or arcwise homogeneous, Colloq. Math. 58 (1990), 201–212.
[U] G. S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212

(1975), 393–400.
[Wh1] G. T. Whyburn, Local separating points of continua, Monatsh. Math. Phys. 36

(1929), 305–314.
[Wh2] —, Concerning the proposition that every closed, compact and totally disconnected

set of points is a subset of an arc, Fund. Math. 18 (1932), 47–60.
[Y] G. S. Young, Characterizations of 2-manifolds, Duke Math. J. 14 (1947), 979–

990.

DEPARTMENT OF MATHEMATICS

WARSAW UNIVERSITY

BANACHA 2

02-097 WARSZAWA, POLAND

Received 21 January 1992;
in revised form 3 June 1992 and 21 September 1992


