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Abstract. A construction is presented for generating sentences that satisfy a re-
cursively enumerable set of interpretability properties. This construction is then used to
prove three previously announced results concerning the lattice of local interpretability
types of theories (also known as the Lattice of Chapters).

The purpose of this paper is to prove three theorems originally an-
nounced without proof in [MPS]. The theorems are presented as Corollar-
ies 10, 11, and 12 below; they state that no interval in the Lattice of Chapters
bounded by r.e. theories is complemented, that the chapter of any r.e. theory
is the meet of the chapters of finitely axiomatizable theories above it, and
that the meet of the chapters of an r.e. set of finitely axiomatizable theories
that all lie strictly above a given r.e. chapter is itself strictly above the given
chapter. (As an interesting consequence of the second result it follows that
there is a finitely axiomatizable theory T such that |ZF| < |T | < |GB|, and
as a consequence of the third it follows that for any r.e. set A of sentences
none of which has a finite model, there is a sentence τ , also having no finite
models, interpretable in every member of A.) The proofs of the corollar-
ies are all based on a general technique for constructing sentences having
very specific interpretability strengths. This general technique is given in
Theorem 4, which is the main technical result of the paper.

Although this paper can be read independently of [MPS], the reader is
encouraged to consult that work for further information and background on
the Lattice of Chapters. For present purposes, the following remarks (up
through Lemma 3) will serve as a brief introduction.

The collection of all first-order sentences can be partially ordered by the
relation of interpretability. This yields a naturally induced equivalence rela-
tion: two sentences are equivalent if each is interpretable in the other. The
equivalence classes are called chapters; the chapter containing a sentence



190 A. Stern

α is written as |α|. The chapters are ordered by interpretability of their
constituents, and this ordering forms a lattice. A sentence having a finite
model is interpretable by any sentence; the chapter consisting of all such
sentences is the minimum element of the lattice. Similarly, any sentence
is interpretable by an inconsistent sentence, so the chapter containing all
inconsistent sentences is the maximum element of the lattice.

The lattice described here is only a sublattice of LC (the Lattice of
Chapters). The full LC is a distributive algebraic lattice; it has chap-
ters containing every first-order theory, not just the finitely axiomatizable
ones. However, the results below concern individual sentences or, at most,
recursively enumerable theories. The additional chapters in LC can be ig-
nored.

The basic operations in LC are characterized by the next lemma.

Lemma 1 (Mycielski). For any sentences α and β, the meet of |α| and
|β| in LC is equal to |α ∨ β|. If α and β have no non-logical symbols in
common (not even equality), then the join of |α| and |β| in LC is equal to
|α ∧ β|.

The proof of Theorem 4 below will use a formalization of various syntac-
tic and semantic notions, in a manner inspired by Vaught [V]. To simplify
the exposition, only a minimal language will be treated.

Definition 2. The formula φ is called an R-formula if φ is built using
only the binary relation symbol R and the logical connectives ¬, ∨, and ∃.
If φ also happens to be a sentence, it is called an R-sentence.

Lemma 3 (Kraj́ıček). For any sentence α there is an R-sentence α′ in
the same chapter.

This lemma shows that for purposes of studying LC, it suffices to con-
centrate on R-sentences.

Some elementary concepts from lattice theory will be used. Recall that
a subset I of a lattice is called an ideal if I is closed downward and under
joins, i.e., if a, b ∈ I and c ≤ (a ∨ b) imply that c ∈ I. Dually, F is called a
filter if it is closed upward and under meets: a, b ∈ F and c ≥ (a∧ b) imply
c ∈ F . Note that because interpretability is an r.e. notion, for any sentence
a the filter generated by a (i.e., the set of sentences that can interpret a)
is r.e. Similarly, for any r.e. theory T , the ideal generated by T (the set of
sentences interpretable in T ) is also r.e.

The next theorem refers to indexed collections of sentences: an indexed
collection is just a binary relation I on sentences. For each index sentence
a, the set Ia is {b | (a, b) ∈ I}. An indexed collection of sentences is r.e. if it
is r.e. as a binary relation.
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Theorem 4. Let I and F be r.e. indexed collections of sentences such
that for any sentences α and β, if β has a finite model then β ∈ Iα and if
β is inconsistent then β ∈ Fα. Also suppose that for each α, α 6∈ Iα ∩ Fα.
Then the following are true.

(1) There is a sentence α such that α 6∈ Iα ∪ Fα.
(2) If every Iα is an ideal , then there is a sentence α such that α 6∈ Fα

and for every β ∈ Iα, |β| < |α| (β is interpretable in α but not vice versa).
(3) Similarly , if every Fα is a filter , then there is a sentence α such that

α 6∈ Iα and |α| < |β| for every β ∈ Fα.
(4) If for every α, Iα is an ideal , Fα is a filter , and in addition β ∈ Iα,

γ ∈ Fα imply |β| ≤ |γ|, then there is a sentence α such that for all β ∈ Iα
and γ ∈ Fα, |β| < |α| < |γ|.

In most of the applications of this theorem, the sets Iα and Fα actually
will not vary with the index α but will simply be some fixed pair. However,
in at least one case the full generality is needed.

P r o o f. The construction of the required sentences involves several steps,
beginning with the introduction of Trachtenbrot’s arithmetic, TA. (In fact,
Trachtenbrot used TA in the proof of his theorem that the set of finitely
satisfiable sentences is recursively inseparable from the set of inconsistent
sentences (see [T]). Part (1) above directly implies that result.) TA is a
finitely axiomatizable theory of arithmetic much like Robinson’s Q. However,
it expresses the notions of successor, sum, and product by relations rather
than by functions, because its intended models are initial segments of the
natural numbers.

Definition 5. The language of TA contains the constant 0, binary re-
lations ≤ and Succ, and ternary relations Sum and Prod. Its axioms are as
follows:

≤ is a discrete linear ordering, 0 is the least element, and there may or
may not be a greatest element.

Succ(x, y) holds iff the successor of x under ≤ is y.
Sum and Prod represent partial functions:

Sum(x, y, z) ∧ Sum(x, y, z′) → z = z′ ,

Prod(x, y, z) ∧ Prod(x, y, z′) → z = z′ .

The inductive definitions of Sum and Prod:

Sum(x, 0, x) ,
Sum(x, y, z) ∧ Succ(y, y′) ∧ Succ(z, z′) → Sum(x, y′, z′) ,

Prod(x, 0, 0) ,
Prod(x, y, z) ∧ Succ(y, y′) ∧ Sum(z, x, z′) → Prod(x, y′, z′) .
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Lastly, two axioms that are needed to make TA categorical in all finite
powers:

Sum(x, y′, z′) ∧ Succ(y, y′) → ∃z ≤ z′ (Succ(z, z′) ∧ Sum(x, y, z)) ,
Prod(x, y′, z′) ∧ Succ(y, y′) → ∃z ≤ z′ (Sum(z, x, z′) ∧ Prod(x, y, z)) .

Certain facts about TA can be verified readily. For instance, every in-
finite model of TA contains an initial segment isomorphic to the natural
numbers, while every finite model is isomorphic to an initial segment of
the natural numbers. Unfortunately, because of these finite models a cer-
tain amount of care is needed in discussing theories based on TA. For any
number n, let “n exists” denote the sentence

∃y0, . . . , yn (y0 = 0 ∧ Succ(y0, y1) ∧ · · · ∧ Succ(yn−1, yn)) .

Then for any bounded formula ψ(x1, . . . , xk) and numbers n1 ≤ n, . . .
. . . , nk ≤ n, it is clear that if ψ(n1, . . . , nk) is true then TA ∧ “n exists” `
ψ(n1, . . . , nk).

The arithmetization of syntax can be carried out as usual in TA. The
Gödel number of the formula φ will be written as #φ, and φn will stand
for the formula whose Gödel number is n. For the most part the details
do not matter, but for simple handling of R-formulas the Gödel numbering
must obey some restrictions. In particular, if φ1 is a subformula of φ2, then
#φ1 must be ≤ #φ2. Also, the following relations must be expressible by
bounded formulas of TA:

Ratom(i, j, k) meaning that φi is the atomic formula R(xj , xk) ,

Neg(i, j) meaning that φi is ¬φj ,

Disj(i, j, k) meaning that φi is φj ∨ φk, and

Exist(i, j, k) meaning that φi is ∃xj φ
k .

Of course, the Fixed-Point Lemma is crucial to the argument. For TA,
the lemma takes the following form.

Lemma 6 (Gödel, Trachtenbrot). Let θ(x) be a formula (possibly in a
larger language than that of TA). Then there is a sentence α and a bound
B ≥ #α such that

TA ` α↔ “B exists” ∧ θ(#α) .

P r o o f. As in the usual case, but with slight adjustments for the pecu-
liarities of TA. The Sn

m Theorem states that the function S1
1 which takes

#φ(x) and n to #φ(n) is recursive. Hence there is a bounded formula
S(x, y, z, w) of TA such that on the one hand, if z = #φ(n) then ∃w ≥ z
S(#φ, n, z, w) is true, and on the other hand, if z 6= #φ(n) then TA `
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∀w¬S(#φ, n, z, w). Now let U(x) be the generating formula

∃w ∃z ≤ w (S(x, x, z, w) ∧ θ(z)) ,
and take α to be U(#U). With the bound B chosen to be the least number
≥ #α such that S(#U,#U,#α,B) is true, the lemma’s conclusion is easy
to check.

On with the proof of Theorem 4. The sentences α referred to in the four
parts of the theorem will all share a common portion, called Γ , that has
been designed to facilitate the expression of certain syntactic and semantic
notions. The language of Γ consists of the language of TA; predicates N ,
M , V , Rfmla, and True; a binary function Var; and ternary relations Q and
Sat. The precise statement is given in Definition 7 below, but first here is
an explanation of what Γ means.

In models of Γ , the universe is partitioned by N , M , and V . The N
part is a model of TA, the M part is an arbitrary set, and the V part
consists of elements representing sequences of members of M , indexed by
members of N . These sequences are specified by Var: for v ∈ V and n ∈ N ,
the nth element of the v sequence is given by Var(v, n). M serves as the
universe for an indexed collection of binary relations Q: for n ∈ N , the
nth relation is given by Q(n, x, y), also written as Qn(x, y). Naturally,
Sat expresses the satisfaction relation on M : for n ∈ N , v ∈ V , and any
R-formula φ, Sat(n,#φ, v) (also written as Satn(#φ, v)) states that the
variable assignment v satisfies φ, using Qn as the R relation. The Rfmla
predicate indicates which members of N are Gödel numbers of R-formulas,
and True indicates which R-sentences are true.

Definition 7. Γ is the conjunction of statements (1)–(7):

(1) The universe = N ∪̇M ∪̇V .
(2) The axioms of TA, relativized to N .
(3) ∀v ∈ V ∀n ∈ N (Var(v, n) ∈M).
(4) ∀v ∈ V ∀n ∈ N ∀x ∈ M ∃w ∈ V (SUB(v, n, w) ∧ Var(w, n) = x),

where SUB(v, n, w) is an abbreviation for the formula ∀m ∈ N (m 6= n →
Var(v,m) = Var(w,m)).

(5) The axiom

Rfmla(f) ↔ f ∈ N ∧ (∃g, h ≤ f) [Ratom(f, g, h)
∨ (Neg(f, g) ∧ Rfmla(g))

∨ (Disj(f, g, h) ∧ Rfmla(g) ∧ Rfmla(h))

∨ (Exist(f, g, h) ∧ Rfmla(h))] ,

where Ratom, Neg, Disj, and Exist are the bounded formulas mentioned
earlier.
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(6) The axiom

Satn(f, v) ↔ Rfmla(f) ∧ n ∈ N ∧ v ∈ V ∧
∃g, h ≤ f [(Ratom(f, g, h) ∧Qn(Var(v, g),Var(v, h)))
∨ (Neg(f, g) ∧ ¬Satn(g, v))
∨ (Disj(f, g, h) ∧ (Satn(g, v) ∨ Satn(h, v)))
∨ (Exist(f, g, h) ∧ ∃w ∈ V (SUB(v, g, w) ∧ Satn(h,w)))] ,

where SUB is as in (4) above.
(7) True(f) ↔ Rfmla(f) ∧ ∀v ∈ V Satf (f, v).

Note that in (7), the subscript in Satf (f, v) is f itself. This effectively
treats R-sentences as though they are all in disjoint languages, since for
each φ, True(#φ) depends only on the structure with universe M and the
relation Q#φ.

The next two lemmas express the key properties that Γ has with regard
to interpretability.

Lemma 8. Let J = {j1, . . . , jk} be a finite set of Gödel numbers of R-
sentences. Let B be any upper bound for J , let Γ J be the sentence

Γ ∧ “B exists” ∧ True(j1) ∧ · · · ∧ True(jk) ,

and let C be the join of the chapters |φj1 |, . . . , |φjk |. Then C ≥ |Γ J |.
Note that as a limiting case of this lemma, when J is empty the sentence

Γ J = (Γ ∧ “B exists”) has a finite model.

Lemma 9. Let J be as above, let Γ J be the sentence

Γ ∧ [(“j1 exists” ∧ True(j1)) ∨ · · · ∨ (“jk exists” ∧ True(jk))],

and let C be the meet of the chapters |φj1 |, . . . , |φjk |. Then C ≤ |Γ J |.
P r o o f o f L e m m a 8. Let φj be the result of replacing the occurrences

of R in φj with a new relation symbol Rj . Then the sentences φj (j ∈ J)
are all in disjoint languages, so by Lemma 1 the sentence

φJ = φj1 ∧ · · · ∧ φjk

belongs to the chapter C. Hence it will suffice to find an interpretation I of
Γ J in φJ .

Here is a recipe for cooking up I. The interpretation N I of N will just
be the set {0, . . . , B}. Since this is a finite set it is certainly definable in φJ ,
along with all the relations of TA on this set. M I will simply be the universe
of φJ , while V I will be the (B+1)-power of the universe. The function VarI

can be defined by cases: the value of VarI((a0, . . . , aB), n) will be an. It is
easy to check that so far this interpretation satisfies statements (1)–(4) in
Definition 7 and also guarantees that “B exists” is true.
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RfmlaI is likewise defined by cases: it holds precisely for those members
of N I which are Gödel numbers of R-formulas. The interpretation of Q is
very simple; in fact, QI

j can be taken to be Rj (for j 6∈ J there is no harm
in assuming that Rj is the universally false relation).

The definition of SatI
n(f, v) comes down to a rather complicated set of

cases depending on the values of both n and f . Basically, if f is the Gödel
number of the R-formula φf (x0, . . . , xm), then SatI

n(f, v) should hold iff
ψ(VarI(v, 0), . . . ,VarI(v,m)) is true, where ψ results from φf by replacing
R with Rn. It is left to the reader to check that this interpretation preserves
the proper semantics of the satisfaction relation and obeys statements (5)
and (6) in Definition 7. A crucial point in the induction is the fact that
the arithmetical formulas Ratom, Neg, Disj, and Exist are bounded and
therefore absolute.

Finally, the definition of TrueI is already provided by statement (7) in
Definition 7. Thus I does indeed constitute an interpretation of Γ . But
now it follows from the definition of SatI that if φj is any R-sentence with
j ≤ B, then TrueI(j) holds iff φj is true. In particular, since φJ proves φj

for each j ∈ J , the interpretation I makes all of Γ J true.

P r o o f o f L e m m a 9. Since Γ J is logically equivalent to the disjunc-
tion of the sentences Γ ∧ “j exists” ∧ True(j) for j ∈ J , Lemma 1 shows
that |Γ J | is equal to the meet of the chapters of these sentences. Hence it
suffices to prove the lemma just for the case k = 1, i.e., to show that φj is
interpretable in Γ ∧ “j exists” ∧ True(j).

The interpretation of φj is trivial: the universe is relativized to M and
R is interpreted as Qj . As in the previous proof, the induction conditions
for the Sat relation guarantee that the interpretation works properly.

At last the stage is set for the proof of Theorem 4. Let F and I be the
r.e. indexed collections of sentences mentioned in the theorem. Since they
are r.e., there are bounded formulas F (x, y, z) and I(x, y, z) of TA such that

b ∈ Fa iff F (#a,#b, n) holds for some n, and
b ∈ Ia iff I(#a,#b, n) holds for some n .

Furthermore, it is possible to choose these formulas so that

TA ` F (x, y, z) ∧ z ≤ z′ → F (x, y, z′) and
TA ` I(x, y, z) ∧ z ≤ z′ → I(x, y, z′) .

With this notation in place, the remainder of the proof just consists of
writing down appropriate choices for the sentence α and verifying that they
are correct.

P a r t (1). By means of the Fixed-Point Lemma, determine a sentence
α with Gödel number #α = a and a bound B ≥ a, such that α is provably
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equivalent to

Γ ∧ “B exists” ∧ ∃n [F (a, a, n) ∧ ¬I(a, a, n)] .

First, suppose for a contradiction that α ∈ Fα. Then there is some n0 ≥ B
satisfying F (a, a, n0). By assumption α 6∈ Fα ∩ Iα, hence α 6∈ Iα, and so
¬I(a, a, n0) holds. Since F and I are bounded formulas, TA ∧ “n0 exists”
proves ∃n [F (a, a, n) ∧ ¬I(a, a, n)], so by the limiting case of Lemma 8, α
has a finite model. But this implies α ∈ Iα, which is a contradiction. Thus
α cannot be in Fα.

Now suppose that α ∈ Iα. Then there is some n0 satisfying I(a, a, n0),
and clearly α implies Γ ∧ “B exists”∧∃n < n0 F (a, a, n). But α 6∈ Fα ∩ Iα,
hence α 6∈Fα, hence α has a provably inconsistent consequence, and hence α
is in Fα after all, another contradiction. Therefore α cannot be in Iα either.

P a r t (2). As before, find α equivalent to

Γ ∧ “B exists” ∧ ∃n [F (a, a, n) ∧ ¬I(a, a, n)
∧∀j ≤ n (Rfmla(j) ∧ I(a, j, n) → True(j))] .

By the same reasoning as in part (1), α 6∈ Iα.
Now suppose α ∈ Fα, and let n0 ≥ B satisfy F (a, a, n0). Let

J = {j ≤ n0 | Rfmla(j) ∧ I(a, j, n0)} = {j1, . . . , jk} ,
and set

Γ J = Γ ∧ “n0 exists” ∧ True(j1) ∧ · · · ∧ True(jk) .
Clearly Γ J logically implies α, so |α| ≤ |Γ J |. However, by Lemma 8, |Γ J | ≤
|φj1 | ∨ · · · ∨ |φjk |. Since each φj belongs to Iα and Iα is an ideal, it follows
that α ∈ Iα, a contradiction. Thus α 6∈ Fα.

It is also necessary to show that for any φ ∈ Iα, |φ| ≤ |α|. By Lemma 3,
there is some R-sentence φj such that |φ| = |φj |. By Lemma 9, |φj | ≤
|Γ ∧ “j exists” ∧ True(j)|, so it suffices to show that α proves “j exists” ∧
True(j). Since φj ∈ Iα, there is some n0 ≥ j satisfying I(a, j, n0), and since
α 6∈ Fα, F (a, a, n0) is false. It follows that TA ` ∀n [F (a, a, n) → (n ≥ n0

∧ I(a, j, n))], which yields the desired conclusion.

P a r t (3). As before, find α equivalent to

Γ ∧ “B exists” ∧ ∃n [(F (a, a, n) ∨ ∃j ≤ n (Rfmla(j) ∧ F (a, j, n) ∧ True(j)))
∧¬I(a, a, n)] .

By the same argument as in part (1), α 6∈ Fα.
Now suppose α ∈ Iα, and let n0 satisfy I(a, a, n0). Then α 6∈ Fα so

F (a, a, n) is provably false for all n ≤ n0, while I(a, a, n) is provably true
for all n ≥ n0. Let

J = {j ≤ n0 | Rfmla(j) ∧ F (a, j, n0)} = {j1, . . . , jk};
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then α implies

Γ ∧ [(“j1 exists” ∧ True(j1)) ∨ · · · ∨ (“jk exists” ∧ True(jk))] .

Hence by Lemma 9, |α| ≥ |φj1 | ∧ · · · ∧ |φjk |. However, each φj belongs to
Fα and Fα is a filter; this implies that α ∈ Fα, a contradiction.

To see that |φ| ≥ |α| for every φ ∈ Fα, find an R-sentence φj such that
|φ| = |φj | as before. There is some n ≥ j such that n ≥ B and F (a, j, n)
holds. By Lemma 8, |φj | ≥ |Γ ∧ “n exists”∧True(j)|, and since I(a, a, n) is
false, this sentence implies α.

P a r t (4). As before, find α equivalent to

Γ ∧ “B exists” ∧ ∃n [(F (a, a, n) ∨ ∃j ≤ n (Rfmla(j) ∧ F (a, j, n) ∧ True(j)))
∧¬I(a, a, n) ∧ ∀j ≤ n (Rfmla(j) ∧ I(a, j, n) → True(j))] .

Now the same argument as in part (2) shows that α 6∈ Fα, while the same
argument as in part (3) shows that α 6∈ Iα.

To see that |φ| ≥ |α| for every φ ∈ Fα, find an R-sentence φj0 such that
|φ| = |φj0 | as before. There is some n ≥ j0 such that n ≥ B and F (a, j0, n)
holds. Let

J = {j0} ∪ {j ≤ n | Rfmla(j) ∧ I(a, j, n)} = {j0, j1, . . . , jk}

and let
Γ J = Γ ∧ “n exists” ∧ True(j0) ∧ · · · ∧ True(jk) .

Then Γ J ` α, so it suffices to show that |φ| ≥ |Γ J |.
By Lemma 8, in fact it is only necessary to show that |φ|≥|φji | for each i.

For i = 0 this is true by the choice of j0, and for i > 0 it is true because
φji ∈ Iα and every member of Fα can interpret every member of Iα (by
assumption).

Finally, to see that |φ| ≤ |α| for every φ ∈ Iα, let φj0 be an R-sentence
with |φ| = |φj0 | and find n such that I(a, j0, n) holds. Let

J = {j0} ∪ {j ≤ n | Rfmla(j) ∧ F (a, j, n)} = {j0, j1, . . . , jk} .

It is then easy to check that α implies the sentence

Γ J = Γ ∧ [(“j0 exists” ∧ True(j0)) ∨ · · · ∨ (“jk exists” ∧ True(jk))] .

Hence by Lemma 9, |α| ≥ |φj0 | ∧ · · · ∧ |φjk |. Since φji ∈ Fα for i > 0, this
meet is equal to |φj0 |. This yields the desired result, and concludes the proof
of Theorem 4.

The three results originally announced in [MPS] are proved below as
corollaries of this theorem. But before giving the corollaries it is necessary
to explain that the notion of interpretability of theories used in LC is a local
one; that is, a theory S is interpretable in a theory T iff T can interpret
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β for every consequence β of S. Another way of putting it is to say that
|S| ≤ |T | iff |β| ≤ |T | for every sentence β such that |β| ≤ |S|.
Corollary 10 (Theorem 6.25 of [MPS]). If S and T are r.e. theories

such that |S| < |T |, then the interval [ |S|, |T | ] in LC is not complemented.

P r o o f. Since |T | � |S|, there is a consequence τ of T that is not
interpretable in S. Now for each sentence α, let Iα = {β | |α∨β| ≤ |S|} and
Fα = {γ | |γ| ≥ |τ |}. Since interpretability is an r.e. notion, these indexed
collections are r.e. Furthermore, using Lemma 1 and the distributivity of
LC, Iα is an ideal. Since all the other requirements of Theorem 4(2) are
also satisfied, there is a sentence α such that α 6∈ Fα and |α| > |β| for all
β ∈ Iα.

Let x = |α|∧|T |. Then it turns out that |S| < x < |T | and x has no lower
complement in this interval; i.e., there is no y such that |S| < y < |T | and
x∧y = |S|. To see that this is true, first note that Iα = {β | |α|∧ |β| ≤ |S|};
hence if |β| ≤ |S| then β ∈ Iα and so |β| < |α|. It follows that |S| ≤ |α| and
thus |S| ≤ x. However, α 6∈ Fα, so |α| � |τ |, so τ 6∈ Iα, so |α| ∧ |τ | � |S|,
so |α| ∧ |T | 6≤ |S|, and thus |S| < x. Clearly x ≤ |T |, and in fact x < |T |
because x � |τ |. Now suppose there is a lower complement y for x. Then
|S| ≥ (|α| ∧ |T |) ∧ y = |α| ∧ (|T | ∧ y) = |α| ∧ y, so for any sentence β such
that |β| ≤ y, this implies that β ∈ Iα and so |β| ≤ |α|. Therefore y ≤ |α|,
so y ≤ x and |S| = x ∧ y = y, a contradiction.

In the case that S and T are finitely axiomatizable, it is possible to find
a sentence α such that |S| < |α| < |T | and |α| has neither an upper nor a
lower complement in this interval. Simply use part (4) of Theorem 4, with

Iα = {β | |β| ≤ |T | and |α| ∧ |β| ≤ |S|} and
Fα = {γ | |γ| ≥ |S| and |α| ∨ |γ| ≥ |T |} .

It is necessary to know that S and T are finitely axiomatizable for Fα to be
r.e., because this means for example that |γ| ≥ |S| iff σ is interpretable in
γ, where σ is an axiom for S. It is easy to check that Iα is an ideal, Fα is a
filter, and α 6∈ Iα ∪ Fα. Lastly, whenever β ∈ Iα and γ ∈ Fα it is true that

|β| = |β| ∧ |T | ≤ |β| ∧ (|α| ∨ |γ|)
= (|β| ∧ |α|) ∨ (|β| ∧ |γ|) ≤ |S| ∨ |γ| = |γ| .

By Theorem 4, there is a sentence α such that |β| < |α| < |γ| for all β ∈ Iα,
γ ∈ Fα. This implies that |S| < |α| < |T |. The same sort of argument as
above shows that |α| has no lower complement. If y is an upper complement
for |α|, then by compactness there is a sentence γ such that |S| ≤ |γ| ≤ y
and |α| ∨ |γ| = |T |, which implies that γ ∈ Fα and hence |α| < |γ|. This
means that |γ| = |α| ∨ |γ| = |T |, so y ≥ |T | and therefore is not an upper
complement after all.
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Corollary 11 (Theorem 6.26 of [MPS]). If S is an r.e. theory and τ
is a sentence not interpretable in S, then there is a sentence α such that
|S| < |α| and |τ | � |α|. Additionally , if |S| < |τ | then α can be chosen so
that |S| < |α| < |τ |.

P r o o f. Use part (2) of Theorem 4, with Iα = {β | |β| ≤ |S|} and
Fα = {γ | |τ | ≤ |γ|}. If |S| < |τ |, use part (4) of Theorem 4 with the same
Iα and Fα.

This corollary is not very interesting in itself, but it immediately implies
that for every r.e. theory S, |S| is the meet of {|α| | |S| < |α|}. Indeed, if
|S| were not equal to this meet there would have to be a sentence τ such
that |τ | 6≤ |S| and |τ | ≤ |α| for every |α| > |S|, contradicting the corollary.
Another interesting consequence concerns versions of set theory. GB set
theory is finitely axiomatizable, and ZF set theory is r.e. and interpretable
in GB but not vice versa. By the second part of the corollary, there is
a finitely axiomatizable theory T strictly intermediate between the two:
|ZF| < |T | < |GB|.

Corollary 12 (Theorem 6.28 of [MPS]). Let S be an r.e. theory and
let A be an r.e. collection of sentences such that for any finite A0 ⊆ A,
|S| <

∧
{|τ | | τ ∈ A0}. Then there is a sentence α such that |S| < |α| ≤∧

{|τ | | τ ∈ A}.

P r o o f. Use part (4) of Theorem 4, with Iα = {β | |β| ≤ |S|} and
Fα = {γ | ∃τ1, . . . , τn ∈ A (|τ1 ∨ · · · ∨ τn| ≤ |γ|)}. Then Iα and Fα are
r.e., and by Lemma 1, Fα is a filter (in fact, it is the filter generated by
A). For any β ∈ Iα and γ ∈ Fα there are τ1, . . . , τn ∈ A such that |β| ≤
|S| < |τ1| ∧ · · · ∧ |τn| ≤ |γ|. This shows the requirements of Theorem 4
are satisfied, and so there is a sentence α such that |S| ≤ |α| and |α| < |τ |
for every τ ∈ A. But |S| 6= |α| because otherwise α would be in Iα, so
|S| < |α| ≤

∧
{|τ | | τ ∈ A}.

As a consequence of this corollary, if A is an r.e. collection of sentences
none of which has a finite model, then there is a sentence α which also has
no finite models but is interpretable in every member of A.
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