
FUNDAMENTA

MATHEMATICAE

142 (1993)

A triple intersection theorem for the varieties SO(n)/Pd
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Sinan S e r t ö z (Ankara)

Abstract. We study the Schubert calculus on the space of d-dimensional linear
subspaces of a smooth n-dimensional quadric lying in the projective space. Following
Hodge and Pedoe we develop the intersection theory of this space in a purely combinatorial
manner. We prove in particular that if a triple intersection of Schubert cells on this space
is nonempty then a certain combinatorial relation holds among the Schubert symbols
involved, similar to the classical one. We also show when these necessary conditions
are also sufficient to obtain a nontrivial intersection. Several examples are calculated to
illustrate the main results.

INTRODUCTION

The aim of the present paper is to establish Schubert calculus on a certain
class of homogeneous spaces. To be more precise, let Qn be a nonsingular
quadric hypersurface in P

n+1 and let G(d,Qn) be the set of d-dimensional
linear subspaces which lie on Qn. The orthogonal group O(n+2) acts tran-
sitively on G(d,Qn) in a natural way so that G(d,Qn) ≃ O(n + 2)/Pd+1,
where Pd+1 is the stabilizer of an arbitrary element in G(d,Qn). If d < [n/2],
then SO(n + 2), the special orthogonal group, operates on G(d,Qn) transi-
tively, and hence G(d,Qn) ≃ SO(n + 2)/SPd+1, where SPd+1 = SO(n + 2)
∩ Pd+1. These spaces G(d,Qn) are the objects we study in this paper.

These spaces, which are also described as A
(m)
s , the space of normalized

complex s-substructures of R
m, were studied by Dibağ [3], where they ap-

peared as fibers in certain global obstruction problems. He defined some
Schubert cells on them which form bases of the cohomology rings of the
space in question, and found that these Schubert cells have beautiful du-
ality properties. This discovery was our motivation to establish Schubert
symbolism on G(d,Qn).

G(d,Qn) is, by definition, a subvariety of G(d, Pn+1), the Grassmann
variety of d-dimensional linear subspaces in the complex projective space of
dimension n + 1. Our method here is to follow and generalize the classical
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treatment of Hodge and Pedoe in [7], where they develop the intersection
theory on Grassmannians in a purely combinatorial manner. Thus in this
paper we prove that if a triple intersection of Schubert cells on G(d,Qn) is
nonempty, then there follows a combinatorial relation, similar to the classical
one [7].

In the classical case, the combinatorial relation mentioned above implies
the nonempty triple intersection, which amounts to the Pieri formula and
the Giambelli formula. In our case, this does not hold in general because of
the strange behaviour of the linear subspaces of a quadric. Conditions for
this to hold are also discussed here.

Geometrically speaking, we are going to study the Schubert calculus on
the space of d-dimensional linear subspaces of a smooth quadric Qn lying
in the projective space P

n+1. This variety is denoted by G(d,Qn). It is
a 1

2
(d + 1)(2n − 3d)-dimensional subspace of G(d, Pn+1), the Grassmann

space of d-dimensional linear subspaces of the projective space P
n+1. The

correspondence between the spaces mentioned so far is as follows:

SO(n + 2)/Pd+1 = G(d,Qn) = A
(n+2)
d+1 .

Throughout the article we let n = 2m or n = 2m + 1 and d is al-
ways a positive integer less than or equal to m. In Section I we define
certain points of P

n+1 as the skeleton points of Qn. We define a flag us-
ing these skeleton points and interpret the definition of Schubert cells of
G(d,Qn) with respect to this flag. In Section II we quote the classical in-
tersection theorem of Hodge and Pedoe for comparison reasons. Section III
gives the proof of our intersection theorem for G(d,Qn). Since the geom-
etry of smooth quadrics varies depending on the parity of their dimension,
our arguments inevitably treat these two cases separately. In Section IV
we give explicit examples and discuss the converse of our triple intersection
theorem.

Note that Hiller and Boe in [6] treated the case n = 2m+1 and d = m and
gave a Pieri type formula. A Giambelli type formula in this case was given
by Pragacz in [9]. A simple and transparent proof of the main results of [6]
can be found in [11]. Finally, we refer the reader to the survey article [10]
for recent developments.

The special Schubert cycle σh, 0 < h ≤ n − d, is the set of [d]-planes
intersecting a given [n − d − h]-dimensional space lying on the quadric Qn.
The codimension of σh is h. For other definitions needed in the statement
of our main result see Section 3.

Main Theorem. For any two Schubert cycles Ωa0...ad
and Ωb0...bd

of

A
(n+2)
d+1 there exist integers λ0, . . . , λd+3 depending only on a0, . . . , ad,

b0, . . . , bd and the parity of n such that for any special Schubert cycle σh,
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0 < h ≤ n − d, if

(1) dimC Ωa0...ad
+ dimC Ωb0...bd

+ dimC σh = 2dimC A
(n+2)
d+1

and

(2) Ωa0...ad
Ωb0...bd

σh 6= 0

then

(3) (n − d) −
1

2
d(d + 1) + e ≤ h +

d+3∑

i=0

λi ≤ n − d ,

where e(Ωa0...ad
) is defined as the cardinality of the set {(ai, aj) | i < j and

ai + aj < n}, and e is e(Ωa0...ad
) + e(Ωb0...bd

).

The λi’s for the n = 2m case are given in Lemmas 6.1, 6.2 and in Section
6.3. The λi’s for the n = 2m + 1 case are given in Lemma 7.1. A partial
converse to this theorem is given in the last section (see Theorem 13).

We refer to conditions (2) and (3) as MT(2) and MT(3) respectively in
the forthcoming discussions.

Acknowledgements. I thank Prof. İ. Dibağ for suggesting the problem
and supplying material, and also for his encouragement at several stages.
I also thank Prof. P. Pragacz for his numerous comments and generous help.

I. FLAGS A AND B IN Qn AND SCHUBERT CELLS

1. Flags A and B in the n = 2m case. We first fix 2m + 2 skele-
ton points on Q2m in Section 1.1 and examine in Sections 1.2 and 1.3 the
dimensions of certain spaces constructed from skeleton points. Flags A and
B are then constructed in Section 1.4. Schubert cells will be constructed in
Section 3. They define homology cycles independent of the flags used, and
hence are independent of the skeleton points chosen; this follows from [3]
and [7].

1.1. We choose and fix 2m + 2 points p0, . . . , p2m+1 in Q2m, called the
skeleton points of Q2m, as follows:

(i) Choose p0 in Q2m arbitrarily.
(ii) Once p0, . . . , pk−1 in Q2m are chosen with k ≤ m, choose pk as

any point in Q2m which is not in the join of p0, . . . , pk−1 but in the
f-orthogonal of the join (f-orthogonal means orthogonal with respect to the
form Qc(z1, . . . , zn) = z2

1 + . . . + z2
n, see [3, pp. 501–502] for further details).

In the notation from [3] we have

pk ∈ {(p0 ∨ . . . ∨ pk−1)
⊥f − (p0 ∨ . . . ∨ pk−1)} ∩ Q2m,

where we have used the notation ⊥f to denote orthogonality with respect to
the above form (f-orthogonality).
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(iii) Once p0, . . . , pm ∈ Q2m are chosen, the remaining points are their
complex conjugates, ordered as follows:

p2m+1−i = c(pi), i = 0, . . . ,m ,

where c(·) is the complex conjugate.

1.2. Let I be a subset of Im = {0, 1, . . . ,m}. Define SI as the in-
tersection of Q2m with the join of all skeleton points pi with i in I, i.e.
SI = (

∨
i∈I pi) ∩ Q2m. Let I denote the set of all integers of the form

2m + 1 − i with i in I. Then we have the following lemma.

Lemma 1.2. If I and J are two nonempty , disjoint subsets of Im then:

(i) SI is a linear subspace of Q2m and dimC SI = #I − 1, where #I is

the cardinality of I.
(ii) SJ∪J̄ is a smooth subquadric of Q2m and dimC SJ∪J̄ = 2#J − 2.
(iii) SI∪J∪J̄ is the join of SI and SJ∪J̄ in Q2m, and dimC SI∪J∪J̄ =

2#J + #I − 2.

1.3. For any nonempty subset L of I2m+1 define SL as in 1.2. To find
the dimension of SL we construct two disjoint subsets I(L) and J(L) of Im

as follows:

I(L) = {i ∈ Im | either i ∈ L or 2m + 1 − i ∈ L, but not both},

J(L) = {i ∈ Im | i ∈ L and 2m + 1 − i ∈ L} .

The following lemma on the dimension of SL can now be proved using 1.2.

Lemma 1.3 (n = 2m).

dimC SL =

{
#L − 2 if J(L) 6= ∅,
#L − 1 if J(L) = ∅.

1.4. Flag A consists of a nested sequence of subvarieties

A0 ⊂ A1 ⊂ . . . ⊂ Am0
, Am1

⊂ Am+1 ⊂ . . . ⊂ A2m = Q2m

of Q2m such that Ai −Ai−1 is an open cell of dimension i [3, p. 503]. Using
the skeleton points introduced above we define a flag A where each Ai is
defined as follows:

(i) Ai = S{0,1,...,i} for i = 0, . . . ,m − 1.
(ii) Am0

= S{0,1,...,m} and Am1
= S{0,1,...,m−1,m+1}.

(iii) Am+i = S{0,1,...,m+1+i} for i = 1, . . . ,m.

Denote by V0 and V1 the two disjoint families of projective [m]-planes in
Q2m. We have arbitrarily labeled S{0,1,...,m} as an element of V0. Conse-
quently, S{0,1,...,m−1,m+1} must belong to V1 regardless of m being odd or
even. Together with a flag A we will consider its “dual” flag B:

B0 ⊂ B1 ⊂ . . . ⊂ Bm0
, Bm1

⊂ . . . ⊂ B2m = Q2m .
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For a discussion of dual flags on quadrics see [3, p. 512]. Assuming m is
even we define Bi as follows:

(i) Bi = S{2m+1,2m,...,2m+1−i} for i = 0, . . . ,m − 1.
(ii) Bm0

= S{2m+1,2m,...,m+2,m} and Bm1
= S{2m+1,2m,...,m+1}.

(iii) Bm+i = S{2m+1,2m,...,m−i} for i = 1, . . . ,m.

If, however, m is odd, then we redefine Bm0
and Bm1

as

Bm0
= S{2m+1,...,m+1} and Bm1

= S{2m+1,...,m+2,m} .

2. Flags A and B in the n = 2m + 1 case

2.1. The smooth quadric Q2m+1 in P
2m+2 can be realized as the inter-

section in P
2m+3 of Q2m+2 with a hyperplane H. With this in mind the

geometric meaning of the skeleton points of Q2m+1 as defined below can
be visualized as follows: construct a set of skeleton points p0, . . . , p2m+3 of
Q2m+2 in P

2m+3 as explained in 1.1. The hyperplane H is then defined by
identifying the coefficients of pm+1 with pm+2 in the join p0∨. . .∨p2m+3. The
skeleton points of Q2m+1 are then obtained by renumbering the remaining
points.

The skeleton points p0, . . . , p2m+2 of Q2m+1 are chosen in the following
manner:

(i) Choose p0 ∈ Q2m+1 arbitrarily.
(ii) For 0 < k < m, pk is any point in Q2m+1 which is in the f-orthogonal

of the join p0 ∨ . . . ∨ pk−1 but not in the join.
(iii) The complex conjugates of p0, . . . , pm are also skeleton points with

indices set as follows:

p2m+2−i = c(pi), i = 0, . . . ,m .

(iv) Choose pm+1 as any point in P
2m+2 which is f-orthogonal to p0 ∨

. . . ∨ pm ∨ pm+2 ∨ . . . ∨ p2m+2.

It is easy to see that pm+1 is not a point of the quadric and that the
points p0, . . . , p2m+2 span the whole space P

2m+2.

2.2. Let L be a subset of I2m+2 = {0, . . . , 2m + 2}. Define the subsets
I(L) and J(L) of Im as

I(L) = {i ∈ Im | either i ∈ L or 2m + 2 − i ∈ L, but not both} ,

J(L) = {i ∈ Im | i ∈ L and 2m + 2 − i ∈ L} .

Notice that neither of these sets can include m + 1.
We further define a constant that depends on L:

ε =
{

0 if m + 1 6∈ L,
1 if m + 1 ∈ L.

We use this constant to determine the dimension of SL:
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Lemma 2.2 (n = 2m + 1).

dimC SL =

{
#L − 2 if J(L) 6= ∅,
#L − 1 − ε if J(L) = ∅.

P r o o f. It can be shown that dimC SL = (#I(L)−1)+(2#J(L)−2)+1+ε
if J(L) 6= ∅, and dimC SL = #I(L) − 1 if J(L) = ∅. Combining these
equalities with the fact that #L = #I(L)+ 2#J(L)+ ε yields the lemma.

2.3. Flag A consists of a nested sequence

A0 ⊂ . . . ⊂ A2m+1 = Q2m+1

where

(i) Ai = S{0,...,i} for i = 0, . . . ,m,
(ii) Am+i = S{0,...,m+1+i} for i = 1, . . . ,m + 1.

In this case flag B is defined as

B0 ⊂ . . . ⊂ B2m+1 = Q2m+1

where

(i) Bi = S{2m+2,...,2m+2−i} for i = 0, . . . ,m,
(ii) Bm+i = S{2m+2,...,m+1−i} for i = 1, . . . ,m + 1.

3. Schubert cells on A
(n+2)
d+1 . A reference for the spaces A

(n)
s and

the Schubert cycles on them is [3]. Here we recall the basic definitions and

results. First note that for d < [n/2] we can realize A
(n+2)
d+1 as a (d + 1) ×

(n − 3
2d)-dimensional subvariety of G(d, Pn+1), the Grassmann variety of

[d]-planes in P
n+1. Any q ∈ A

(2m+2)
d+1 can hence be considered as a [d]-plane,

and using this interpretation we can define a sequence of subspaces in Q2m,

q0 ⊂ . . . ⊂ qm−1 ⊂ qm0
, qm1

⊂ qm+1 ⊂ . . . ⊂ q2m

where qi = q ∩ Ai if i = 0, 1, . . . , m̂, . . . , 2m and qmj
= q ∩ Amj

for j = 0
or 1. The (closed) Schubert cell corresponding to the integers 0 ≤ a0 <
. . . < ad ≤ n, with ai + aj 6= n for i < j, is defined as

Ωa0...ad
= {q ∈ A

(2m+2)
d+1 |dimC qai

≥ i} .

We do not lose any generality by using only those Ωa0...ad
’s for which ai +aj

6= n. This only avoids duplication (see [3, p. 506]).
The homology cycle represented by this cell, denoted by the same no-

tation, is independent of the skeleton points used in its definition. The
dimension of the cycle depends only on the Schubert symbol used:

dimC Ωa0...ad
= a0 + . . . + ad − d(d + 1) + e

where

e = #{(ai, aj) | i < j and ai + aj < n} .
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In the above notation the special Schubert cycle σh appearing in the
main theorem (see Introduction) can be expressed as

Ωn−d−h n−d+1...n for 0 < h ≤ n − 2d , and

Ω
n−d−h n−d...d̂+h...n

for n − 2d < h ≤ n − d ,

where d̂ + h means that d + h is to be omitted.

If n−d−h = m, then we necessarily need to distinguish between m0 and
m1, but in the triple intersection arguments we do not need this distinction
for the special Schubert cycles.

The Schubert cycles for the odd-dimensional case, A
(2m+1)
d+1 , are defined

similarly using the corresponding flag defined earlier.

II. DEFINITIONS AND RESULTS

FROM STANDARD INTERSECTION THEORY

The results of this section are classical (see for example [4], [7], [8]). We
include this section with the sole purpose of comparing the main theorem
of this paper with the classical triple intersection theorem on Grassmannian
manifolds.

4. Summary. Let 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn+1 = C
n+1 be a nested

sequence of vector subspaces of C
n+1 where dimC Vi = i for i = 0, . . . , n+1.

If we define Ai = P(Vi+1), the projectivization of Vi+1, for i = 0, . . . , n, then

A0 ⊂ A1 ⊂ . . . ⊂ An = P
n

is a cellular decomposition of P
n. The variety of projective [d]-planes in P

n

is denoted by G(d, Pn). The Schubert variety corresponding to the integers
0 ≤ a0 < . . . < ad ≤ n is defined as

Ωc
a0...ad

= {q ∈ G(d, Pn) | dimC(q ∩ Aai
) ≥ i, i = 0, . . . , d} .

Recall that the homology cycle represented by Ωc
a0...ad

is independent of the
flag chosen and

dimC Ωc
a0...ad

= a0 + . . . + ad − 1
2d(d + 1) .

The special Schubert cycle σc
h is defined to be the cycle Ωc

n−d−h n−d+1...n

and its codimension is h. Schubert cycles give a Z-basis of the cohomology
ring of G(d, Pn). As for the cohomology ring structure, we have equalities
of the form

Ωc
a0...ad

Ωc
b0...bd

=
∑

α(a, b, c)Ωc
c0 ...cd

where α(a, b, c) is an integer and the summation is over all Ωc
c0...cd

such that

dimC Ωc
c0...cd

= dimC Ωc
a0...ad

+ dimC Ωc
b0...bd

− dimC G(d, Pn) .
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One has

α(a, b, c) = Ωc
a0...ad

Ωc
b0...bd

Ωc
n+1−cd...n+1−c0

.

The triple intersection theorem for G(d, Pn) decides on the value of α(a, b, c)
when c is the Schubert symbol for the dual of a special Schubert cycle. To
be precise, the theorem [7, Thm. III, p. 333] states that given Ωc

a0...ad
and

Ωc
b0...bd

there exist integers λc
0, . . . , λ

c
d+1 such that for any special Schubert

cycle σc
h, if

(1) dimC Ωc
a0...ad

+ dimC Ωc
b0...bd

+ dimC σc
h = 2dimC G(d, Pn)

and

(2) Ωc
a0...ad

Ωc
b0...bd

σc
h = 1

then

(3) h +

d∑

i=1

λc
i = n − d .

Conversely, if (1) and (3) hold, then (2) holds. Here the λc
i ’s are defined as

λc
i = max{0, n − ad−i − bi−1 − 1}, i = 1, . . . , d ,

λc
0 = n − ad ,

λc
d+1 = n − b0 .

III. TRIPLE INTERSECTION THEOREM FOR A
(n+2)
d+1

In Section 5 we give a general argument which explains the role λi’s
play in deriving the main theorem (MT). The values of λi’s for the case
n = 2m are determined in Section 6. The corresponding statements for the
n = 2m+1 case are listed without proof in Section 7. Finally, in Section 8 we
put all this together to establish the necessary conditions for having nonzero
triple intersections.

5. General arguments for the n = 2m case. We start with two
cycles Ωa0...ad

and Ωb0...bd
and we assume that the Schubert condition for

the former is expressed with respect to a flag A and that of the latter is
expressed with respect to the corresponding dual flag B. Our arguments are
independent of the choice of skeleton points used in the construction of the
flags.

The two Schubert cycles Ωa0...ad
and Ωb0...bd

are disjoint unless ad−i +
bi ≥ n for all i = 0, . . . , d, hence we assume this throughout. Any point of the
intersection Ωa0...ad

∩Ωb0...bd
represents a [d]-plane lying inside Aad−i

∨Bbi−1

for all i = 1, . . . , d. Clearly this plane also lies in Aad
and Bbd

, hence in the
intersection

Λ = Aad
∩ (Aad−1

∨ Bb0) ∩ . . . ∩ (Aa0
∨ Bbd−1

) ∩ Bbd
⊂ Qn .
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Recall that p0, . . . , pn+1 ∈ Qn denote the skeleton points described in Sec-
tion 1.1. Using them we define auxiliary subsets of In+1 = {0, 1, . . . , n + 1}:

L(0) = {r ∈ In+1 | pr ∈ Aad
} ,

L(i) = {r ∈ In+1 | pr ∈ Aad−i
∨ Bbi−1

} , i = 1, . . . , d ,

L(d + 1) = {r ∈ In+1 | pr ∈ Abd
} .

This is one of the key steps where we translate geometry into arithmetic.
Observe in particular that Aad

= SL(0), Aad−i
∨ Bbi−1

= SL(i) for i =
1, . . . , d, and Bbd

= SL(d+1). We can thus rewrite Λ as

Λ = SL(0) ∩ SL(1) ∩ . . . ∩ SL(d+1) .

Furthermore, if we let

L = L(0) ∩ L(1) ∩ . . . ∩ L(d + 1)

then clearly

Λ = SL .

It is the dimension of SL that we wish to calculate. For this we proceed as
follows: we first calculate the cardinality of L(0); then with the intersection
of each L(i) certain points of L(0) are left out, leaving us finally with only
the points of L. Thus we define λi’s as

λi = #(In+1 − L(i)) = n + 2 − #L(i), i = 0, . . . , d + 1 .

Note that each λi, i = 1, . . . , d, counts the number of skeleton points which
do not belong to the set Aad−i

∨ Bbi−1
. Moreover,

λ0 =

{
n − ad if ad > m,
n − ad + 1 if ad ≤ m,

λd+1 =

{
n − bd if bd > m,
n − bd + 1 if bd ≤ m.

Normally the sum of these λi’s should correctly count the number of points
left out while forming the intersection L(0) ∩ . . . ∩ L(d + 1), but due to the
geometric anomalies that occur in the middle dimension of smooth quadrics,
the point pm in the even-dimensional case can be counted twice. To correct
this oversight of λ0, . . . , λd+1 we introduce λd+2, which is −1 when a certain
combination of the Schubert conditions is present and 0 otherwise. We will
need one more correction factor λd+3 which will decide when a jump in
dimension occurs as observed in Lemmas 1.3 and 2.2.

6. Calculation of λi’s for the n = 2m case. We now give a lemma
with a table to calculate the λi’s using the ai’s and bi’s.

Lemma 6.1. When n = 2m the λi’s, i = 1, . . . , d, are as in the table

below :
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ad−i < m bi−1 ≤ m λi = n− ad−i − bi−1
bi−1 > m ad−i + bi−1 ≥ n λi = 0

ad−i + bi−1 < n λi = n− ad−i − bi−1 − 1

ad−i = mt bi−1 = mt m even λi = 1

m odd λi = 0

bi−1 = ms m even λi = 0

m odd λi = 1

ad−i > m bi−1 ≥ m λi = 0

Here s, t ∈ {0, 1} and s 6= t. To find the λi corresponding to the case
when ad−i > m and bi−1 ≤ m we must observe that λi is a symmetric func-
tion of ad−i and bi−1. (Note that λ0 and λd+1 were calculated in Section 5.)

P r o o f. C a s e 1: ad−i < m, bi−1 ≤ m. We have L(i) = {0, 1, . . . , ad−i,
n + 1, n, . . . , n + 1 − bi−1} ∈ In+1. Assume for the time being that ad−i <
bi−1 < m. Then the skeleton points missing from SL(i) have indices ad−i+1,
ad−i +2, . . . , n− bi−1, and there are (n− bi−1)− (ad−i +1)+1 = λi of them.
Hence λi = n − ad−i − bi−1 as claimed. If bi−1 = m, then depending on
whether Bbi−1

is in V0 or in V1, the element m + 1 of L(i) will be replaced
by m, or vice versa depending on the parity of m. This changes L(i) but
not #L(i) and hence λi still has the same value. Finally, the argument is
symmetric in ad−i and bi−1, and the assumption that one is less than the
other is redundant.

C a s e 2: ad−i < m, bi−1 > m. If ad−i + bi−1 ≥ n, then L(i) = In+1

and λi = 0. If, however, ad−i + bi−1 < n, then L(i) = {0, 1, . . . , ad−i, n +
1, n, . . . , n − bi−1} and consequently λi = n − ad−i − bi−1 − 1.

C a s e 3: ad−i = m0, bi−1 = m0. If m is even, then L(i) = In+1−{m+1},
and if m is odd then L(i) = In+1. Hence λi is 1 or 0 accordingly.

C a s e 4: ad−i = m0, bi−1 = m1. Similar to case 3.
C a s e 5: ad−i > m, bi−1 ≥ m. In this case ad−i+bi−1 > n so L(i) = In+1

and λi is 0.

Lemma 6.2 (Calculation of λd+2 when n is even). Assume that there

exist two numbers ai, bj with i + j > d − 1, such that ai = mt, bj = ms

where t, s ∈ {0, 1}. Then, for even m,

λd+2 =

{
−1 if s = t,
0 if s 6= t,

and for odd m,

λd+2 =

{
0 if s = t,
−1 if s 6= t.

P r o o f. For general indices x and z let ad−x = mt and bz−1 = ms

where t, s ∈ {0, 1}. If x = z then the middle dimension complications
are already incorporated into the considerations leading to the calculation
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of λx. If, however, x 6= z then a complication will arise in the intersection
L(x) ∩ L(z), and we intend to correct this with λd+2.

First assume x > z; then bx−1 > bz−1 = m and λx will be zero since
ad−x + bx−1 ≥ n. Similarly ad−z > ad−x = m and λz is also zero. In this
case L(x)∩L(z) = In+1, and λx +λz correctly counts the number of missing
skeleton points.

Next assume that x < z; then ad−z < ad−x = m and bx−1 < bz−1 = m,
which in turn gives λz = m − ad−z and λx = m − bx−1 according to the
previous lemma. Assume now that m is even. When s 6= t the spaces Aad−x

and Bbz−1
do not have a point in common and again λx+λz correctly counts

the number of missing skeleton points from the intersection L(x) ∩ L(z).
However, if t = s, then the spaces Aad−x

and Bbz−1
share a point. Without

loss of generality assume that t is such that Aad−x
∩ Bbz−1

= pm+1. This
shows that the sets of skeleton points that are left out by L(x) and L(z) both
contain the point pm+1, i.e. λx and λz both count pm+1. Hence the number
of skeleton points left out by L(x) ∩ L(z) is λx + λz − 1. This correction
factor is λd+2. If m is odd we argue similarly. Thus when x < z we let
i = d − x and j = z − 1 to obtain the statement of the lemma.

6.3. We are now in a position to calculate dimC SL in terms of λi’s.
This is where we need the correction factor λd+3 which registers the shift in
dimension due to Lemma 1.3. First we observe that

#L = #L(0) − (λ1 + . . . + λd+2)

= (n + 2 − λ0) − (λ1 + . . . + λd+2) = n − (λ0 + . . . + λd+2) + 2 .

On the other hand,

dimC SL =

{
#L − 2 if J(L) 6= ∅,
#L − 1 if J(L) = ∅.

Therefore define λd+3 as

λd+3 =

{
0 if J(L) 6= ∅,
−1 if J(L) = ∅.

Then we finally have

dimC SL = n − (λ0 + . . . + λd+3) .

To calculate λd+3 we must observe that J(L) will be empty if either
{0, 1, . . . ,m} or {n + 1, n, . . . ,m + 1} is disjoint from L, i.e. if either of
these sets is ignored by the intersection L(0) ∩ L(1) ∩ . . . ∩ L(d + 1). We
therefore define an algorithm which checks if this is the case.

Algorithm. Define the following subintervals of Im:

I(0) =

{
Im if ad ≤ m,
{j ∈ Im | j < n − ad} if ad > m,
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I(d + 1) =

{
Im if bd ≤ m,
{j ∈ Im | j < n − bd} if bd > m.

For i = 1, . . . , d define I(i) as

I(i) =





{j ∈ Im | j > min{ad−i, bi−1}} if ad−i, bi−1 ≤ m,
{j ∈ Im | ad−i < j < n − bi−1} if ad−i < m < bi−1,
{j ∈ Im | bi−1 < j < n − ad−i} if ad−i > m > bi−1,
∅ otherwise.

Conclusion of the algorithm (n = 2m).

λd+3 =

{
−1 if

⋃d+1
i=0 I(i) = Im,

0 otherwise.

This completes the calculation of the λi’s in the n = 2m case.

7. The λi’s for the n = 2m + 1 case. In this section we give without
proof the corresponding statements for the case n = 2m+1. We also remind
that λ0 and λd+1 were calculated in Section 5 (regardless of the parity of n).

Lemma 7.1. When n = 2m + 1 the λi’s, i = 1, . . . , d, are as in the table

below :

ad−i < m bi−1 ≤ m λi = n− ad−i − bi−1
bi−1 > m ad−i + bi−1 ≥ n λi = 0

ad−i + bi−1 < n λi = n− ad−i − bi−1 − 1

ad−i = m bi−1 = m λi = 1

ad−i > m bi−1 > m λi = 0

Once again we remind that λi is a symmetric function of ad−i and bi−1.
We have λd+2 = 0 when n is odd: Recall that we need this correction

factor when Am and Bm share a point which the other λi’s fail to count.
But when n is odd, then Am is always disjoint from Bm, hence the other
λi’s do their job correctly.

λd+3 when n is odd is calculated using the same algorithm as before
except that we need the following modification.

Conclusion of the algorithm (n = 2m + 1).

λd+3 =

{
−1 if

⋃d+1
i=0 I(i) = Im, and m + 1 6∈ L,

0 otherwise.

8. Completion of the proof of the main theorem. We will describe
the inequalities of the main theorem for the case n = 2m. The arguments
for the n = 2m + 1 case follow very closely the proof given here using this
time the λi’s defined for the odd-dimensional case, and we leave it to the
reader.
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8.1. We have shown that all the [d]-spaces that are represented by points
of Ωa0...ad

∩Ωb0...bd
lie in the n−(λ0+. . .+λd+3)-dimensional subvariety SL of

Q2m. These [d]-spaces also belong to σh if they intersect a certain [n−d−h]-
dimensional space in Q2m which belongs to a flag used in the description of
σh. Generically this intersection is empty if (n − d − h) + (n −

∑
λi) < n,

i.e. for nonempty intersection we must have h + (λ0 + . . . + λd+3) ≤ n − d.
This proves the second inequality of the main theorem.

8.2. We rewrite the dimension condition (1) of the main theorem and
rearrange it to obtain

(∗) ad + bd +

d∑

i=1

(ad−i + bi−1 + 1) − d − (d + 1)(n + 1
2d) + e = h

where e is as given in the statement of the theorem. Recall that ad = n−λ0

and bd = n − λd+1. For ad−i + bi−1 + 1, i = 1, . . . , d, we have four cases to
consider. We list these cases first and then examine them:

C a s e 1: ad−i + bi−1 + 1 = n − λi if either “ad−i < m, bi−1 > m and
ad−i + bi−1 < n” or “ad−i > m, bi−1 < m and ad−i + bi−1 < n”.

C a s e 2: ad−i + bi−1 + 1 = n− λi + 1 if either “ad−i < m, bi−1 ≤ m” or
“ad−i ≤ m, bi−1 < m”.

C a s e 3: ad−i+bi−1+1 = n−λi+2 if ad−i = bi−1 = mt, t = 0 or 1, when
m is even. When m is odd the same expression for λi holds if ad−i = mt,
bi−1 = ms, t, s ∈ {0, 1} and s 6= t.

C a s e 4: ad−i + bi−1 + 1 ≥ n − λi + 1 if ad−i + bi−1 ≥ n.

We now examine these cases. If case 1 holds for all i = 1, . . . , d, then
no ai or bj is m so λd+2 = 0. Since either ad−i or bi−1 is greater than m,
the interval I(i) does not contain the integer m, for i = 1, . . . , d. Hence
λd+3 = 0, and

(∗∗) ad + bd +

d∑

i=1

(ad−i + bi−1 + 1)

≥ n − λ0 + n − λd+1 +
d∑

i=1

(n − λi) − λd+2 − λd+3 .

If case 2 holds only once, and the rest is case 1, then there is a single
occurrence of m among a0, . . . , ad, b0, . . . , bd, and hence λd+2 = 0. Assume
either ad−k or bk−1 is ≤ m. Then

ad−k + bk−1 + 1 = n − λk − λd+3,

hence (∗∗) holds.
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If case 3 holds, say when i = k, then

ad−k + bk−1 + 1 = n − λk + 2 ≥ n − λk − λd+2 − λd+3,

hence (∗∗) holds.

If case 4 holds at least once and the rest is case 1, we can have at most
one occurrence of m, so λd+2 = 0. If case 4 holds for i = k,

ad−k + bk−1 + 1 ≥ n − λk + 1 ≥ n − λk − λd+3

and (∗∗) holds. In any other combination of cases from 1 to 4 the inequality
(∗∗) is easily seen to hold. Substituting (∗∗) into (∗) we obtain

(n − d) − 1
2d(d + 1) + e ≤ h +

d+3∑

i=0

λi ,

which completes the proof.

IV. EXAMPLES

In this section we use the notation G(d,Qn) to denote the subvariety
of the Grassmannian manifold consisting of the [d]-planes in the smooth
quadric Qn. Due to the representation theorem of Dibağ [3, p. 501] we have

A
(n)
d ≃ G(d − 1, Qn−2). The notation for Schubert varieties is explained in

Section 3.

N o t e. In the following intersection-product tables Schubert cycles ap-
pearing in the intersection are given without multiplicities, e.g. in Table 1,
Ω14 ·Ω204 is given as Ω121

, Ω03 and Ω14 ·Ω203 is given as Ω021
, meaning that

Ω14 · Ω204 = c1Ω121
+ c2Ω03 and Ω14 · Ω203 = c3Ω021

, where c1, c2 and c3

are nonzero integers which we omit. For example, in the products involving
special Schubert varieties, the multiplicities in the examples below are 1, 2
or 4 as Pragacz (private communication) points out.

9. Cohomology ring structure of A
(6)
2 ≃ G(1, Q4). We give the

homology intersection structure. The 0-dimensional cycle Ω01 and the 5-
dimensional cycle Ω34 are dual, Ω01Ω34 = 1; and we omit them in Table 1.
The numbers in the rightmost column are homological dimension.

10. Cohomology ring structure of A
(6)
3 ≃ G(2, Q4). A

(6)
3 consists of

two isomorphic connected components V0, V1, say. The dimension of each
component is 3 and planes from different components do not generically
intersect (see [5, p. 735]). For example, Ω1204Ω0203 = 1 but Ω1204Ω0213 = 0.
In general Ωa0a1a2

Ωb0b1b2 = 0 if both 20 and 21 appear in the set of indices
{a0, . . . , b2}. For this reason we give in Table 2 the homology intersection
table for one of the components only. The table for the other component
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T a b l e 1. Intersection products for A
(6)
2

Ω203 Ω213 Ω14 Ω204 Ω214 dim

Ω020 0 0 0 1 0 1

Ω021 0 0 0 0 1 1

Ω120 1 0 0 Ω020 0 2

Ω121 0 1 0 0 Ω021 2

Ω03 0 0 1 Ω021 Ω020 2

Ω203 0 Ω020 ,Ω021 Ω021 Ω121 Ω121 ,Ω03 3

Ω213 Ω020 ,Ω021 0 Ω020 Ω120 ,Ω03 Ω120 3

Ω14 Ω021 Ω020 Ω020 ,Ω021 Ω121 ,Ω03 Ω120 ,Ω03 3

Ω204 Ω121 Ω120 ,Ω03 Ω121 ,Ω03 Ω203 Ω14 4

Ω214 Ω121 ,Ω03 Ω120 Ω120 ,Ω03 Ω14 Ω213 4

T a b l e 2. Intersection products for A
(6)
3

Ω012 Ω023 Ω124 Ω234 dim

Ω012 0 0 0 1 0

Ω023 0 0 1 Ω023 1

Ω124 0 1 Ω023 Ω124 2

Ω234 1 Ω023 Ω124 Ω234 3

is identical. All the 2’s appearing in the table are either all 20, for the
component V0, or all 21, for the component V1, hence we omit this labeling.

11. Cohomology ring structure of A
(7)
2 ≃ G(1, Q5). The Hasse dia-

gram for the Schubert cycles of A
(7)
2 is given in Table 4 with the dimensions

given in the right hand column. Intersection products are given in Table 3.

T a b l e 3. Intersection products for A
(7)
2

Ω15 Ω24 Ω25 Ω34 Ω35 dim

Ω02 0 0 0 0 1 1

Ω03 0 0 1 0 Ω02 2

Ω12 0 0 0 1 Ω02 2

Ω04 1 0 Ω02 0 Ω03 3

Ω13 0 1 Ω02 Ω02 Ω03,Ω12 3

Ω15 Ω02 Ω02 Ω03,Ω12 Ω03 Ω04,Ω15 4

Ω24 Ω02 Ω02 Ω03,Ω12 Ω03,Ω12 Ω04,Ω13 4

Ω25 Ω03,Ω12 Ω03,Ω12 Ω04,Ω13 Ω04,Ω13 Ω15,Ω24 5

Ω34 Ω03 Ω03,Ω12 Ω04,Ω13 Ω13 Ω24 5

Ω35 Ω04,Ω13 Ω04,Ω13 Ω15,Ω24 Ω24 Ω25,Ω34 6
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T a b l e 4. Hasse diagram for A
(7)
2

Ω45 7

Ω35 6

Ω25 Ω34 5

Ω15 Ω24 4

Ω04 Ω13 3

Ω03 Ω12 2

Ω02 1

Ω01 0

12. Examples of triple intersections. We verify the necessity of the
condition (3) in MT by some examples.

1. Ω14Ω14Ω204 6= ∅ in A
(6)
2 ≃ G(1, Q4); e = 0, h = 1, n = 4, d = 1,

m = 2. Then

a1 = 4 λ0 = n − a1 = 0 Section 5
a0 = 1 b0 = 1 λ1 = n − a0 − b0 = 2 Lemma 6.1

b1 = 4 λ2 = n − b1 = 0 Section 5
λ3 = 0 Lemma 6.2
λ4 = 0 Algorithm 6.3

In this case MT(3) holds with 2 ≤ 3 ≤ 3, showing among other things that

the upper bound of h +
∑d+3

i=0 λi cannot be improved.

2. Ω124Ω023Ω234 6= ∅ in one component of A
(6)
3 ≃ G(2, Q4); e = 1+2+0,

h = 0, n = 4, d = 2, m = 2. Then

a2 = 4 λ0 = n − a2 = 0 Section 5
a1 = 2 b0 = 0 λ1 = n − a1 − b0 = 2 Lemma 6.1
a0 = 1 b1 = 2 λ2 = n − a0 − b1 = 1 Lemma 6.1

b2 = 3 λ3 = n − b2 = 1 Section 5
λ4 = −1 Lemma 6.2
λ5 = −1 Algorithm 6.3
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Hence MT(3) is satisfied as 2 ≤ 2 ≤ 2, showing also that the lower bound
cannot be improved either. Note also that if Ω124 and Ω023 are taken in

different components of A
(6)
3 then λ4 = 0 and (3) of MT is not satisfied,

implying that the above intersection is zero, which also follows from the
fact that [2]-planes of different families in Q4 do not generically intersect.
Hence A2s

and B2t
cannot have a line in common for a generic choice of

flags.

3. Ω34Ω34Ω15 = 0 in A
(7)
2 ≃ G(1, Q5); e = 0, h = 3, n = 5, d = 1,

m = 2. Then

a1 = 4 λ0 = n − a1 = 1 Section 5
a0 = 3 b0 = 3 λ1 = 0 Lemma 7.1

b1 = 4 λ2 = n − b1 = 1 Section 5
λ3 = 0 Section 7
λ4 = 0 Algorithm 7

Here h +
∑4

i=0 λi = 5 6≤ n − d. In this example the algebra predicts that
the cycles will not intersect, and indeed we can check from Table 4 that
(Ω34Ω34)Ω15 = Ω13Ω15 = 0.

4. We show that MT(3) is not sufficient: consider Ω121
Ω214Ω204 = 0 in

A
(6)
2 ≃ G(1, Q4). Then e = 1 + 0 + 0, h = 1, n = 4, d = 1, m = 2 and

a1 = 21 λ0 = n − a1 + 1 = 3 Section 5
a0 = 1 b0 = 21 λ1 = n − a0 − b0 = 1 Lemma 6.1

b1 = 4 λ2 = n − b1 = 0 Section 5
λ3 = −1 Lemma 6.2
λ4 = −1 Algorithm 6.3

In this case MT(3) is satisfied with equality holding on both sides, 3 ≤ 3 ≤ 3,
hence MT(3) alone is not sufficient for MT(2).

13. Sufficiency of MT(3). We start this section by analyzing the last
example of the previous section. Using the notation of Section 5, all the lines
in Q4 which simultaneously belong to the Schubert cells Ω121

and Ω214 lie
in the space SL where L = {0, 1, 3}. SL is hence a [2]-plane which belongs
to V1. We want these lines also to belong to the Schubert cell Ω204, i.e. we
want to know if there is a line in SL which intersects a [20]-plane, an element
of V0. Since in Q4 elements of V1 do not generically intersect elements of V0

there is no such line in SL. This explains why MT(3) alone is not sufficient
for MT(2). But in this particular example there is some relief (!): using the
commutativity of intersection we can write Ω121

Ω214Ω204 = Ω121
Ω204Ω214,

and we try our main theorem on this new order of intersection:

Ω121
Ω204Ω214 = 0 in A

(6)
2 ≃ G(1, Q4); e = 1, h = 1, n = 4, d = 1,
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m = 2. Then

a1 = 21 λ0 = n − a1 + 1 = 3 Section 5
a0 = 1 b0 = 20 λ1 = n − a0 − b0 = 1 Lemma 6.1

b1 = 4 λ2 = n − b1 = 0 Section 5
λ3 = 0 Lemma 6.2
λ4 = −1 Algorithm 6.3

Here h +
∑4

i=0 λi = 4 6≤ n − d = 3. Hence the algebra tells us that the
intersection is zero.

The key questions for the sufficiency of MT(3) are the following:

(i) Is SL big enough to intersect a generic [n − d − h]-plane? (This is
the condition imposed by σh.)

(ii) Is SL big enough to contain a [d]-plane at all?

The first of these questions gives rise to the familiar necessary condition for
MT(3):

(∗) h +

4∑

i=0

λi ≤ n − d .

This condition is also sufficient for an affirmative answer to (i) when n is odd,

or when h +
∑4

i=0 λi 6= m in case n = 2m. While SL is sufficiently large to
intersect a generic [n−d−h]-plane, it may not be large enough to contain any
[d]-plane. And even if it does contain some [d]-planes we may not conclude
that any of these [d]-planes also satisfies the given Schubert conditions.

However, if dimSL < m, when n = 2m, then SL is an [n −
∑d+3

i=0 λi]-plane,
and the inequality (∗) guarantees that SL intersects a generic [n − d − h]-
plane in Q2m. If furthermore SL is large enough to contain a [d]-plane, i.e. if

dimSL = n−
∑d+3

i=0 λi ≥ d, then we can conclude that Ωa0...ad
Ωb0...bd

σh 6= ∅.
We collect these arguments in the following theorem. Assume here that

Ωa0...ad
, Ωb0...bd

and σh are as given in the statement of the main theorem.

Theorem 13. The condition MT(3) is sufficient for having a nontrivial

triple intersection, Ωa0...ad
Ωb0...bd

σh 6= 0, if one of the following conditions

holds:

(i) λd+3 = −1 and
∑d+3

i=0 λi > m when n = 2m, or

(ii) λd+3 = −1 when n = 2m + 1.

Note that when λd+3 = −1 then J(L) = ∅ and in that case SL is an

[n −
∑d+3

i=0 λi]-plane. In the even-dimensional case we want to exclude the

case when
∑d+3

i=0 λi = m since the cases m = m0 or m = m1 are different (see

Section 3). If, for example, λd+3 = −1, n−
∑d+3

i=0 λi = ms and n−d−h = mt,
then MT(3) is sufficient for MT(2) when
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(i) s = t and m is even, or
(ii) s 6= t and m is odd.

When n is odd on the other hand, we do not have such middle dimension
complications and λd+3 = −1 is enough to assure the sufficiency of MT(3).

Now applying Theorem 13 to Example 4 of Section 12, we find that
MT(3) holds, λd+3 = −1 but

∑d+3
i=0 λi 6> m, so as Theorem 13 above pre-

dicts, MT(2) does not hold.
It is important to observe that λd+3 = −1 is not a necessary condition

for MT(2). Hence if MT(3) holds but λd+3 = 0, then we can conclude
nothing about the triple intersection. Compare the following two examples
for this purpose. In Example 1 of Section 12, MT(3) holds, λd+3 = 0 but
MT(2) also holds. In G(1, Q6) on the other hand, if we consider Ω04Ω45Ω46

we see that MT(3) holds, and λd+3 = 0, but this intersection is zero, i.e.
MT(2) does not hold.

These two examples show us that when λd+3 = 0 the inequalities of
MT(3) do not necessarily imply MT(2). However, when λd+3 = −1 and∑d+3

i=0 λi > m then MT(3) safely implies MT(2), as it does in the following
example.

In A
(8)
2 ≃ G(1, Q6) consider Ω130

Ω45Ω46. Then e = 1, h = 1, n = 6,
d = 1, m = 3 and

a1 = 30 λ0 = n − a1 + 1 = 4 Section 5
a0 = 1 b0 = 4 λ1 = n − a0 − b0 − 1 = 0 Lemma 6.1

b1 = 5 λ2 = n − b1 = 1 Section 5
λ3 = 0 Lemma 6.2
λ4 = −1 Algorithm 6.3

Here MT(3) holds with 5 ≤ 5 ≤ 5. We also have
∑d+3

i=0 λi = 4 > 3 = m
and λ4 = −1. From these algebraic considerations we conclude that
Ω130

Ω45Ω46 6= 0.
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[7] W. V. D. Hodge and D. Pedoe,Methods of Algebraic Geometry, Vol. II, Cambridge
University Press, 1968.

[8] S. Kle iman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972),
1061–1082.

[9] P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in:
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