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On approximate inverse systems and resolutions
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S. Mard e š i ć (Zagreb)

Abstract. Recently, L. R. Rubin, T. Watanabe and the author have introduced
approximate inverse systems and approximate resolutions, a new tool designed to study
topological spaces. These systems differ from the usual inverse systems in that the bonding
maps paa′ are not subject to the commutativity requirement paa′pa′a′′ = paa′′ , a ≤ a′
≤ a′′. Instead, the mappings paa′pa′a′′ and paa′′ are allowed to differ in a way controlled
by coverings Ua, called meshes, which are associated with the members Xa of the system.
The purpose of this paper is to consider a more general and much simpler notion of
approximate system and approximate resolution, which does not require meshes. The
main result is a construction which associates with any approximate resolution in the
new sense an approximate resolution in the previous sense in such a way that previously
obtained results remain valid in the present more general setting.

1. Introduction. The technique of inverse limits is widely used in the
topology of compact spaces, but it is of little use in non-compact situations.
Having this in mind, in 1981 the author introduced resolutions [3] (see also
[6]), which can be viewed as special cases of inverse limits and behave in
the non-compact case just as inverse limits behave in the compact case. A
resolution of a space X consists of an inverse system of spaces and mappings
X = (Xa, paa′ , A) and of a system of mappings p : X → X which satisfy
conditions (R1) and (R2) stated below. In 1989 L. R. Rubin and the author
[5] introduced approximate inverse systems of compacta and their limits by
relaxing the usual commutativity requirement on the bonding mappings.
Both ideas were put together by T. Watanabe and the author in [7] to give
the notion of an approximate resolution of a space X. It consists of an
approximate inverse system X and of a system of mappings p : X → X
which satisfy conditions (R1) and (R2).

In describing these notions precisely, we use the following notation.
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Cov(X) is the set of all normal coverings of a topological space X. If
U ∈ Cov(X) and A ⊆ X, then st(A,U) denotes the union of all U ∈ U
such that U ∩ A 6= ∅. We denote by st(U) the covering formed by all sets
st(U,U), U ∈ U . We put stn+1(U) = st(stn(U)). If U ,V ∈ Cov(X) and V re-
fines U , we write V ≺ U . If st(V) refines U we say that V is a star-refinement
of U . If f, f ′ : Y → X are U-near mappings, we write (f, f ′) ≺ U .

An approximate inverse system was defined in [7] (see also [5]) as a
collection X = (Xa,Ua, paa′ , A), where (A,≤) is an unbounded directed set,
Xa, a ∈ A, is a topological space, Ua, a ∈ A, is a normal covering of Xa,
called the mesh of Xa and paa′ : Xa′ → Xa, a ≤ a′, are mappings, called
the bonding mappings. Three conditions were imposed:

(A1) (paa1pa1a2 , paa2) ≺ Ua, a ≤ a1 ≤ a2, paa = id.

(A2) For any a ∈ A and any U ∈ Cov(Xa), there exists an a′ ≥ a such
that (paa1pa1a2 , paa2) ≺ U , for a2 ≥ a1 ≥ a′.

(A3) For any a ∈ A and any U ∈ Cov(Xa), there exists an a′ ≥ a such
that Ua′′ ≺ (paa′′)−1(U), for each a′′ ≥ a′.

In this paper we refer to approximate systems defined as above as to
gauged approximate systems. The main purpose of the paper is to consider
the following more general and much simpler notion of an approximate sys-
tem, which does not use meshes and which was introduced by M. G. Char-
alambous for systems of uniform spaces [1].

Definition 1. An approximate inverse system is a collection X =
(Xa, paa′ , A), where (A,≤) is a directed preordered set, Xa, a ∈ A, is a
topological space and paa′ : Xa′ → Xa, a ≤ a′, are mappings such that
paa = id and condition (A2) is satisfied.

Other basic notions, defined in [7], include approximate mappings of a
space into an approximate system, the limit of an approximate system and
approximate resolutions of a space. These notions referred to gauged ap-
proximate systems, i.e. systems endowed with meshes, but made no explicit
use of meshes. Therefore, in the present paper we adopt these definitions
with no changes.

Definition 2. An approximate mapping f : Z → X of a space Z into
an approximate system is a collection of mappings fa : Z → Xa, a ∈ A,
such that the following condition holds:

(AS) For any a ∈ A and any U ∈ Cov(Xa), there exists an a′ ≥ a such
that (paa′′fa′′ , fa) ≺ U , for each a′′ ≥ a′.

Definition 3. A limit of an approximate system X is an approximate
mapping p : X → X of a spaceX which has the following universal property:
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(UL) For any approximate mapping f = (fa, a ∈ A) : Z → X of a space
Z, there exists a unique mapping φ : Z → X such that paφ = fa, for each
a ∈ A .

Note that this definition immediately implies uniqueness of limits (up to
natural homeomorphism).

Definition 4. An approximate resolution of a space X consists of an
approximate system X and of an approximate mapping p = (pa) : X → X
with the following properties:

(R1) For any polyhedron P , open covering V of P and mapping f : X →
P , there exists an a ∈ A such that for any a′ ≥ a there exists a mapping
g : Xa′ → P satisfying (gpa′ , f) ≺ V.

(R2) For any polyhedron P and open covering V of P , there exists a
V ′ ∈ Cov(P ) such that, for any a ∈ A and mappings g, g′ : Xa → P which
satisfy (gpa, g

′pa) ≺ V ′, there exists an a′ ≥ a such that (gpaa′′ , g′paa′′) ≺ V,
for each a′′ ≥ a.

In this paper we use boldface characters to denote approximate systems
and approximate resolutions in the sense of the above definitions, while
gauged approximate systems and gauged approximate resolutions are de-
noted by script characters.

R e m a r k 1. Obviously, every usual inverse system X is an approximate
inverse system in the sense of Definition 1 and every resolution p : X → X
is an approximate resolution in the sense of Definition 4.

Our main results show that theorems proved before for gauged approxi-
mate systems and gauged approximate resolutions also hold for approximate
systems and approximate resolutions in the sense of this paper. These re-
sults are derived by using a construction which assigns to any approximate
system X a closely related gauged approximate system X , called the induced
gauged approximate system. A statement proved valid for gauged systems
is valid for X , which implies its validity for X.

Following [5], M. G. Charalambous [1] recently developed a theory of ap-
proximate inverse systems of uniform spaces using only property (A2). This
was one of the reasons why the author attempted to clarify the relationship
between approximate systems satisfying only condition (A2) and gauged sys-
tems, i.e. systems satisfying conditions (A1)–(A3). Some of Charalambous’
results are closely related to some of ours (e.g., to our Theorem 11).

In [7], beside gauged approximate systems X and resolutions p : X → X
also approximate mappings f = (f, fb) : X → Y between such systems
were defined. Then an equivalence relation between approximate mappings
f = (f, fb) : X → Y was introduced, thus yielding equivalence classes of
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approximate mappings [f ]. Moreover, for cofinite resolutions consisting of
topologically complete spaces a composition of equivalence classes of approx-
imate mappings was defined. It was proved that in this way one obtains a
category denoted by APRES [7, Theorem 8.12]. Finally, it was shown that
the restriction APRESPOL of this category to systems which consist of
polyhedra is a category equivalent to the category of topologically complete
spaces and continuous mappings [7, Theorem 8.13].

It is natural to ask whether analogous results also hold for approximate
systems in the sense of the present paper, i.e. for systems satisfying only
condition (A2). These questions are studied in detail in a comprehensive
paper by V. Matijević and N. Uglešić [8]. They define approximate map-
pings f = (f, fb) : X → Y and their equivalence classes in a natural way.
However, when they tried to define composition of morphisms and prove
the key results for systems of polyhedra, they were forced to introduce an
additional condition on the systems, which itself implies that the systems
can be endowed with meshes in such a manner that they become systems
in the sense of [7]. After all, in [9] Watanabe introduced meshes in order to
be able to organize usual (commutative) resolutions and their approximate
mappings into a category. On the other hand, there are many problems
in topology where there is no need for mappings. This justifies studying
non-gauged systems even if one does not have a category.

2. The main construction. In this section we describe the main con-
struction and establish its basic properties, listed in the following theorem.

Theorem 1. Let X = (Xa, paa′ , A) be an approximate system. Then
there exist a gauged approximate system X = (Yb,Ub, qbb′ , B) and an in-
creasing function s : B → A with the following properties:

(i) B is antisymmetric, directed , unbounded and cofinite.
(ii) Yb = Xs(b), qbb′ = ps(b)s(b′), b, b

′ ∈ B, b ≤ b′.
(iii) s : B → A is surjective.

For any such gauged system X we say that it is induced by X.

P r o o f. In the proof we use some ideas from a recent paper by Vlasta
Matijević and the author [4]. The index set B is defined as the union of a
sequence of infinite, ordered, antisymmetric, cofinite sets ∅ ⊆ B0 ⊆ B1 ⊆ . . .
such that the restriction of the ordering of Bn to Bn−1 coincides with the
ordering of Bn−1. The ordering of B is the unique ordering whose restriction
to each Bn yields the ordering of Bn. In order to define s : B → A, we will
define a sequence of increasing functions sn : Bn → A such that sn extends
sn−1. Then s is the only function with s|Bn = sn, for all n. Clearly, s
defined in this way is an increasing function. Once s(b), s(b′) are defined,
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we define the spaces Yb and the mappings qbb′ by (ii). We must also define
an open covering Ub ∈ Cov(Yb), for each b ∈ B.

The ordered set B has a special structure which we now describe. The
set Cn = Bn \Bn−1 is the set of all maximal elements of Bn; it is an infinite
set, for n ≥ 0. If i < j, ci ∈ Ci, cj ∈ Cj and ci < cj , i.e. ci ≤ cj and ci 6= cj ,
we require the existence of a chain ci < ci+1 < . . . < cj , where ck ∈ Ck,
i ≤ k ≤ j. Finally, we require that for any two elements cn−1, c

′
n−1 ∈ Cn−1,

there exists an element cn ∈ Cn such that cn−1 < cn and c′n−1 < cn. Clearly,
B constructed in this way is a cofinite unbounded directed ordered set.

We will also define, for each pair ci ∈ Ci, ci+1 ∈ Ci+1, ci < ci+1,
a covering Vcici+1 ∈ Cov(Yci). The sets Bn, the functions sn = s|Bn,
the coverings Ub, b ∈ Bn, and the coverings Vcici+1 , i + 1 ≤ n, will be
defined by induction on n. We require that these objects satisfy the following
conditions:

(1) (ps(b)s(b1)ps(b1)a′ , ps(b)a′) ≺ Ub,

b, b1 ∈ Bn, a
′ ∈ A, b ≤ b1, s(b1) ≤ a′ ,

(2) (ps(ci)a′pa′a′′ , ps(ci)a′′) ≺ Vcici+1 ,

i+ 1 ≤ n, a′, a′′ ∈ A, s(ci+1) ≤ a′ ≤ a′′ ,

(3) Ub′′ ≺ (ps(ci)s(b′′))
−1(Vcici+1), b′′ ∈ Bn, ci+1 ≤ b′′ .

Finally, we require that for any ci ∈ Ci, and any covering Vci
∈ Cov(Yci

),
there exists a ci+1 ∈ Ci+1 such that

(4) ci < ci+1, Vcici+1 = Vci , i+ 1 ≤ n .

We begin the induction by choosing for B0 = C0 any infinite set and for
s0 : B0 → A a surjective function. We consider B0 to be totally unordered.
For b ∈ B0, we take for Ub any normal covering of Yb. Let us now assume
that we have already defined all the data referring to integers ≤ n. In
the induction step to n + 1, we first define Cn+1 as the set of all ordered
quadruples

(5) cn+1 = (cn, c′n,Vcn ,Vc′n
) ,

where cn, c′n are different elements of Cn and Vcn ,Vc′n are arbitrary open
coverings of Ycn and Yc′n respectively. We then put

(6) Bn+1 = Bn ∪ Cn+1 .

The ordering on Bn+1 is defined so that it agrees with the ordering already
defined on Bn. The set Cn+1 ⊆ Bn+1 is considered to be totally unordered.
For cn+1 as in (5), we put cn < cn+1, c′n < cn+1 and consider cn and c′n to
be the only predecessors of cn+1 belonging to Cn. For b ∈ Bn−1, we put
b < cn+1 if and only if b < cn or b < c′n. Clearly, this defines an ordering on
Bn+1 which has all the desired properties.
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For cn+1 as in (5), we put

(7) Vcncn+1 = Vcn , Vc′ncn+1 = Vc′n .

Since Cn is infinite, for a given cn ∈ Cn, we can choose a c′n ∈ Cn which
differs from cn. Then (7) yields a cn+1 which satisfies (4).

Now we must extend s|Bn : Bn → A to s|Bn+1 : Bn+1 → A by defining
s(cn+1) ∈ A, for cn+1 ∈ Cn+1. First note that cn+1 has finitely many
predecessors b ∈ Bn, b < cn+1. Therefore, by (A2) applied to X, there
exists an a ∈ A such that a ≥ s(b), for b < cn+1, and

(8) (ps(b)a′pa′a′′ , ps(b)a′′) ≺ Ub, a′, a′′ ∈ A, a ≤ a′ ≤ a′′ .

For a given cn+1 ∈ Cn+1, there are only two elements cn ∈ Cn, cn < cn+1.
Therefore, using (A2) for X, one can achieve that

(9) (ps(cn)a′pa′a′′ , ps(cn)a′′) ≺ Vcncn+1 , a′, a′′ ∈ A, a ≤ a′ ≤ a′′.

Now define s(cn+1) = a. Formulas (8) and (9) show that (1) and (2) remain
valid also for n+1. Since each b′′ ∈ Bn has only finitely many predecessors,
it is possible to choose a sufficiently fine covering Ub′′ of Yb′′ so that (3)
remains valid also for n+ 1.

It is now easy to verify that X is a gauged approximate system. Indeed,
condition (A1) follows from (1) by putting a′ = s(b2), because b ≤ b1 ≤ b2
implies s(b1) ≤ s(b2) = a′, ps(b)s(b1) = qbb1 , ps(b1)a′ = qb1b2 , ps(b)a′ = qbb2 .
In order to verify condition (A2), consider any b = ci ∈ Ci ⊆ B and any
covering U ∈ Cov(Yci). By (4), there exists a ci+1 ∈ Ci+1 such that ci <
ci+1 and Vcici+1 = U . Then (2) shows that (A2) holds for b′ = ci+1. Indeed,
b < b′ and b′ ≤ b1 ≤ b2 imply s(b′) ≤ a′ = s(b1) ≤ a′′ = s(b2). Moreover,
ps(ci)a′ = qbb1 , pa′a′′ = qb1b2 , ps(ci)a′′ = qbb2 . In order to verify condition
(A3), consider b ∈ B and any covering U ∈ Cov(Yb). As above, choose
ci+1 ∈ Ci+1 so that b = ci < ci+1 and Vcici+1 = U . Then, for b′ = ci+1 and
b′′ ∈ B, b′′ ≥ b′, (3) applies and yields (A3), as desired. Condition (iii) is
satisfied, because already s|B0 = s0 is a surjection onto A.

R e m a r k 2. In Theorem 1 assertion (iii) can be strengthened to

(iii)′ For any a ∈ A and W ∈ Cov(Xa), there exists an element b ∈ B
such that a = s(b) and W = Ub.

In order to obtain also condition (iii)′, it suffices to change the initial
step in the above construction, i.e. to modify the definition of B0, s0 and
Ub, for b ∈ B0. We take an infinite set D and a surjection t : D → A. Then
B0 is the set of all pairs b = (d,W), where d ∈ D and W ∈ Cov(Xt(d)).
As before, we consider B0 as totally unordered and we define s0 by putting
s0(d,W) = t(d). Finally, for b = (d,W), we put Ub = W. For any a ∈ A
and W ∈ Cov(Xa), there exists a d ∈ D such that t(d) = a. Therefore, for
b = (d,W), we have s0(b) = a and Ub = W, as required by (iii)′.
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3. Approximate mappings and limits. In this section we show how
an approximate mapping f : Z → X induces an approximate mapping g :
Z → X and vice versa. It follows that an approximate mapping p : X → X
is a limit if and only if the induced approximate mapping q : X → X is a
limit.

Theorem 2. Let X be an approximate system and X an induced gauged
system (see Theorem 1). Let f = (fa) : Z → X be an approximate mapping.
Then the mappings gb = fs(b) : Z → Yb, b ∈ B, form an approximate
mapping g = (gb) : Z → X , said to be induced by f.

P r o o f. We must show that g satisfies condition (AS). Consider any
b ∈ B and U ∈ Cov(Yb). Put a = s(b) and note that Yb = Xs(b). Since f
has property (AS), there exists an a′ ≥ a such that (fa, paa′′fa′′) ≺ U , for
each a′′ ≥ a′. By Theorem 1(iii), there exists a b∗ ∈ B such that s(b∗) = a′.
By directedness of B, there exists a b′ ≥ b, b∗. Therefore, b′′ ≥ b′ implies
a′′ = s(b′′) ≥ s(b′) ≥ s(b∗) = a′, and we obtain the desired conclusion
(gb, qbb′′gb′′) = (fs(b), ps(b)s(b′′)fs(b′′)) ≺ U , for each b′′ ≥ b′.

Theorem 3. Let X be an approximate system and X an induced gauged
approximate system (see Theorem 1). Let g = (gb) : Z → X be an approx-
imate mapping and let t : A → B be a function such that st = id. Then
the mappings fa = gt(a) : Z → Xa, a ∈ A, form an approximate mapping
f = (fa) : Z → X, said to be induced by g.

P r o o f. Note that t is not assumed to be increasing, which makes the
proof more difficult. We must verify condition (AS) for the collection of
mappings (fa). Consider any a ∈ A and U ∈ Cov(Xa). Choose a star-
refinement V of U . Applying (A2) to p, we obtain an a′ ≥ a such that

(1) (paa1pa1a2 , paa2) ≺ V, a2 ≥ a1 ≥ a′ .

We will show that a′ has the property required by (AS) for (fa), i.e.

(2) (fa, paa′′fa′′) ≺ U , ∀a′′ ≥ a′ .

Indeed, let a′′ ≥ a′. Put b = t(a), b′′ = t(a′′), V ′′ = (paa′′)−1(V). By
(AS) for g, there exists a b∗ ≥ b, b′′ such that

(gb, qbb∗gb∗) ≺ V ,(3)
(gb′′ , qb′′b∗gb∗) ≺ V ′′ .(4)

Note that s(b) = st(a) = a and put a∗ = s(b∗). Then qbb∗ = paa∗ . Moreover,
gb = gt(a) = fa. Therefore, (3) becomes

(5) (fa, paa∗gb∗) ≺ V .

Now note that s(b′′) = st(a′′) = a′′ and therefore qb′′b∗ = pa′′a∗ . Moreover,
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fa′′ = gt(a′′) = gb′′ . Consequently, application of paa′′ to (4) yields

(6) (paa′′fa′′ , paa′′pa′′a∗gb∗) ≺ V .

Next, note that b∗ ≥ b′′ implies a∗ = s(b∗) ≥ s(b′′) = a′′. Since a′′ ≥ a′, (1)
yields

(7) (paa′′pa′′a∗ , paa∗) ≺ V .

Therefore, one has also

(8) (paa′′pa′′a∗gb∗ , paa∗gb∗) ≺ V .

Since st(V) ≺ U , (5), (6) and (8) yield the desired relation (2).

We now apply Theorems 2 and 3 to limits.

Theorem 4. Let X be an approximate system and let X be an induced
gauged system (see Theorem 1). Let p = (pa) : X → X be an approximate
mapping and let q = (qb) : X → X be an induced approximate mapping (see
Theorem 2). If p is a limit and all Xa are Tikhonov spaces, then q is a
limit. Conversely , if q is a limit , then also p is a limit.

P r o o f. First assume that p is a limit and recall that q is given by qb =
ps(b). We must show that for any approximate mapping g = (gb) : Z → X ,
there is a unique mapping φ : Z → X such that

(9) qbφ = gb, ∀b ∈ B .

By Theorem 3, g induces an approximate mapping f = (fa) : Z → X, where
fa = gt(a) and t : A→ B is a function such that st = id. Now the definition
of an approximate mapping yields a mapping φ : Z → X such that

(10) paφ = fa, ∀a ∈ A .

From (10), we derive

(11) qbφ = gts(b), ∀b ∈ B ,

because qbφ = ps(b)φ = fs(b) = gts(b). In order to obtain the desired equal-
ity (9), it suffices to show that gb = gts(b), for each b ∈ B. Since Yb = Xs(b)

is a Tikhonov space, it suffices to show that, for each normal covering U of
Yb, one has

(12) (gb, gts(b)) ≺ U .

However, this is an easy consequence of (AS) for g. Indeed, if V is a star-
refinement of U , we can find a b′ ≥ b, ts(b) such that

(13) (gb, qbb′gb′) ≺ V, (gts(b), qts(b)b′gb′) ≺ V .

Now note that qts(b)b′ = ps(b)s(b′) = qbb′ , because sts = s. Therefore, (12)
follows from (13). It remains to show uniqueness of φ. Assume that we
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also have a mapping ψ : Z → X with the property qbψ = gb, b ∈ B. Then
fa = gt(a) = qt(a)ψ = pst(a)ψ = paψ, for all a ∈ A. Consequently, ψ = φ.

To prove the converse we do not need the assumption that the spaces
are Tikhonov. We assume that q is a limit and need to prove that also p is a
limit. We must prove that for any approximate mapping f = (fa) : Z → X,
there is a unique mapping φ : Z → X which satisfies (10). Consider the
induced approximate mapping g : Z → X given by the mappings gb = fs(b)

(see Theorem 2). Since q is a limit, there exists a unique mapping φ : Z → X
such that qbφ = gb, for all b ∈ B. Since s : B → A is onto, each a ∈ A
admits a b ∈ B such that a = s(b). Therefore, paφ = ps(b)φ = qbφ =
gb = fs(b) = fa, a ∈ A. Now assume that ψ : Z → X is another mapping
satisfying paψ = fa, for all a ∈ A. Then for any b ∈ B and a = s(b) one has
qbψ = ps(b)ψ = paψ = fa = fs(b) = gb. By the uniqueness of φ, we conclude
that ψ = φ.

Corollary 1. Every approximate system of Tikhonov spaces X has a
limit p : X → X, X = lim X, which is unique up to natural homeomor-
phism.

Corollary 2. If X is a usual inverse system of Tikhonov spaces, then
limits in the usual sense and in the sense of Definition 3 coincide.

Both corollaries are immediate consequences of Theorem 4 and the cor-
responding results for gauged approximate systems [7, Theorem 1.14 and
Remark 1.15].

Theorem 5. The limit of an approximate system X of topologically com-
plete spaces is topologically complete.

P r o o f. Applying Theorem 4 to a limit p : X → X, we conclude that
the induced approximate mapping p : X → X is also a limit. Since all the
members of X are topologically complete spaces Yb = Xs(a) and the cor-
responding result holds for gauged approximate systems [7, Theorem 1.17],
we conclude that X is topologically complete.

Similarly, using [7, Theorem 4.1], one obtains the following result.

Theorem 6. The limit of an approximate system X of (non-empty)
compact Hausdorff spaces is a (non-empty) compact Hausdorff space.

4. Approximate resolutions. All results in this section will be derived
from the following theorem.

Theorem 7. Let p = (pa) : X → X be an approximate mapping and
let q = (qb) : X → X be an induced approximate mapping (see Theorem 2).
Then p is a resolution if and only if q is a gauged approximate resolution.
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T. Watanabe proved the analogous result for (commutative) resolutions
and approximate resolutions in his sense [9, Proposition 3.7]. Note that his
approximate resolutions are commutative and therefore a very special case
of our approximate resolutions.

We precede the proof by introducing and analyzing a formally weaker,
but equivalent, form of properties (R1) and (R2) for an approximate map-
ping p : X → X.

(R1)∗ For any polyhedron P , open covering V of P and mapping f : X →
P , there exist an a ∈ A and a mapping g : Xa → P satisfying (gpa, f) ≺ V.

(R2)∗ For any polyhedron P and open covering V of P , there exists a
V ′ ∈ Cov(P ) such that, for any a ∈ A and mappings g, g′ : Xa → P which
satisfy (gpa, g

′pa) ≺ V ′, there exists an a′ ≥ a such that (gpaa′ , g′paa′) ≺ V.

Lemma 1. For an approximate mapping p : X → X, (R1)∗ is equivalent
to (R1) and (R2)∗ is equivalent to (R2).

The proof of this statement for gauged systems, given in [7, Remark 2.6],
applies to the present more general situation because it uses only properties
(A2) and (AS), which are still valid.

P r o o f o f T h e o r e m 7. First assume that p is a resolution. We must
show that q satisfies conditions (R1) and (R2). Let P be a polyhedron,
V ∈ Cov(P ) and let f : X → P be a mapping. Since p satisfies (R1), there
exists an a ∈ A such that, for any a′ ≥ a, there is a mapping g : Xa′ → P
such that (f, gpa′) ≺ V. Since s : B → A is onto, there is a b ∈ B such that
s(b) = a. If b′ ∈ B, b′ ≥ b, then a′ = s(b′) ≥ s(b) = a. Therefore, (f, gqb′) =
(f, gps(b′)) = (f, gpa′) ≺ V, as required by (R1). In order to verify (R2), for
P and V, choose V ′ ∈ Cov(P ) by (R2) applied to p. Consider a b ∈ B and
mappings g, g′ : Yb → P such that (gqb, g′qb) ≺ V ′, i.e. (gps(b), g

′ps(b)) ≺ V ′.
By the choice of V ′, there exists an a′ ∈ A, a′ ≥ s(b), such that

(1) (gps(b)a′′ , g′ps(b)a′′) ≺ V, ∀a′′ ∈ A, a′′ ≥ a′ .

Since s : B → A is onto, there exists an element b∗ ∈ B such that s(b∗) = a′.
By the directedness of B, there exists a b′ ∈ B such that b′ ≥ b, b∗. Now
assume that b′′ ∈ B and b′′ ≥ b′. Then a′′ = s(b′′) ≥ s(b′) ≥ s(b∗) = a′.
Therefore, (1) becomes

(2) (gqbb′′ , g
′qbb′′) ≺ V, ∀b′′ ≥ b′ ,

which is the desired condition (R2).
We now assume that q is a resolution and must show that p has prop-

erties (R1) and (R2). In view of Lemma 1, it suffices to show that p has
properties (R1)∗ and (R2)∗. Let P be a polyhedron, V ∈ Cov(P ) a covering
and f : X → P a mapping. By (R1)∗ for q, there exist a b ∈ B and a map-
ping g : Yb → P such that (f, gqb) ≺ V. Putting a = s(b), we have Xa = Yb,
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pa = qb and therefore, g : Xa → P has the property required by (R1)∗

for p.
In order to verify condition (R2)∗ for p, consider again a polyhedron P

and a covering V ∈ Cov(P ). Choose V ′ ∈ Cov(P ) by applying (R2)∗ to
q. We claim that V ′ satisfies (R2)∗ also for p. Indeed, let a ∈ A and let
g, g′ : Xa → P be mappings such that (gpa, g

′pa) ≺ V ′. Choose b ∈ B so
that s(b) = a. Then, by the choice of V ′, there exists a b′ ≥ b such that
(gqbb′ , g

′qbb′) ≺ V. Clearly, a′ = s(b′) has the property required by (R1)∗

for p.

Theorem 8. Let p : X → X be an approximate resolution. If all the
spaces Xa, a ∈ A, are Tikhonov spaces and X is topologically complete (i.e.
admits a complete uniform structure), then p is a limit.

P r o o f. By Theorem 7, the induced approximate mapping q : X → X
is a gauged approximate resolution. By Theorem 1(ii), the members of X
are Tikhonov spaces. Therefore, by [7, Theorem 3.1], q is a limit. Now,
Theorem 4 yields the desired conclusion that also p is a limit.

Theorem 8 explains the assertion made in the Introduction that approx-
imate resolutions can be viewed as a special case of inverse limits. The
converse does not hold even for limits of inverse sequences of metric spaces
(see, e.g. [6, I, 6.3, Remark 4] or [7, Example 3.2]).

The next theorem shows that in the compact situation approximate res-
olutions coincide with limits.

Theorem 9. Let p : X → X be an approximate mapping and let all Xa,
a ∈ A, be compact Hausdorff spaces. If p is an approximate resolution and
X is topologically complete, e.g. if it is paracompact , then p is a limit and
X is compact. Conversely , if p is a limit , then X is a compact Hausdorff
space and p is an approximate resolution.

P r o o f. The first assertion follows from Theorems 8 and 6. For the
second assertion, consider the induced approximate mapping q : X → X .
By Theorem 4, q is a limit. By [7, Theorem 4.2], q is a gauged approxi-
mate resolution. Consequently, Theorem 7 proves that p is an approximate
resolution.

R e m a r k 3. In the analogue of the first assertion for gauged resolutions
[7, Theorem 4.21], the assumption that X is topologically complete was
erroneously omitted. That such a condition is indeed needed follows from
this result of I. Lončar [2, Theorem 3.14]. A normal space X is countably
compact if and only if it admits a resolution p : X → X all of whose
members Xa are metric compacta. E.g. the long line {α | α < ω1} is a
countably compact normal space and therefore admits a resolution formed
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by metric compacta. On the other hand, it cannot be a limit of compact
spaces because it is not compact.

5. Characterizing approximate resolutions. In [7, Theorem 2.8],
gauged approximate resolutions were characterized as approximate map-
pings p : X → X having the following two properties:

(B1) For any U ∈ Cov(X), there exists an a ∈ A such that for any a′ ≥ a
there exists a W ∈ Cov(Xa′) for which (pa′)−1(W) ≺ U .

(B2) For any a ∈ A and W ∈ Cov(Xa), there exists an a′ ≥ a such that
paa′′(Xa′′) ⊆ st(pa(X),W), for each a′′ ≥ a′.

Properties (B1) and (B2) are usually easier to verify than properties
(R1) and (R2). Therefore, the following theorem is useful.

Theorem 10. An approximate mapping p : X → X is an approximate
resolution if and only if it has properties (B1) and (B2).

We precede the proof by introducing formally weaker, but equivalent
versions of the above properties.

(B1)∗ For any U ∈ Cov(X), there exist an a ∈ A and a W ∈ Cov(Xa)
such that p−1

a (W) ≺ U .

(B2)∗ For any a ∈ A and W ∈ Cov(Xa), there exists an a′ ≥ a such that
paa′(Xa′) ⊆ st(pa(X),W).

Notice that the same properties (B1)∗ and (B2)∗ appear in [7]. On the
contrary, properties denoted in [7] by (B1) and (B2) involve meshes and
therefore differ from the present properties (B1) and (B2).

Lemma 2. For an approximate mapping p : X → X, (B1)∗ is equivalent
to (B1) and (B2)∗ is equivalent to (B2).

In the proof we need this simple fact.

Lemma 3. Let f, g : X → Y be mappings and let U ∈ Cov(X), V,W ∈
Cov(Y ). If f−1(V) ≺ U , st(W) ≺ V and (f, g) ≺ W, then g−1(W) ≺ U .

P r o o f o f L e m m a 2. That (B1) implies (B1)∗ and (B2) implies (B2)∗

is obvious. Now assume that p = (pa) has property (B1)∗. Then for a given
U ∈ Cov(X), there exist an a∗ ∈ A and a V ∈ Cov(Xa∗) such that p−1

a∗ (V) ≺
U . Choose a W ′ ∈ Cov(Xa∗) such that st(W ′) ≺ V. By (AS), there exists
an a ≥ a∗ such that for any a′ ≥ a one has (pa∗ , pa∗a′pa′) ≺ W ′. Then
Lemma 3, applied to p∗a, pa∗a′pa′ , yields (pa∗a′pa′)−1 = (pa′)−1(pa∗a′)−1(W ′)
≺ U . Therefore, if we put W = (pa∗a′)−1(W ′) ∈ Cov(Xa′), we obtain the
desired conclusion (pa′)−1(W) ≺ U .
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To show that (B2)∗ implies (B2), consider an a ∈ A and a V ∈ Cov(Xa).
Choose a W so fine that st2(W) refines V. By (A2) and (AS), there exists
an a∗ ≥ a such that

(paa1pa1a2 , paa2) ≺ W, a∗ ≤ a1 ≤ a2 ,(1)
(paa1pa1 , pa) ≺ W, a∗ ≤ a1 .(2)

Put W∗ = (paa∗)−1(W). Now apply (B2)∗ to a∗ and W∗. One obtains an
element a′ ≥ a∗ such that

(3) pa∗a′(Xa′) ⊆ st(pa∗(X),W∗) .

Note that this inclusion implies

(4) paa∗pa∗a′(Xa′) ⊆ st(paa∗pa∗(X),W) .

If a′′ ≥ a′ and xa′′ ∈ Xa′′ , (2) yields a set W1 ∈ W such that

paa′pa′a′′(xa′′), pa′′(xa′′) ∈W1 .

For xa′ = pa′a′′(xa′′) ∈ Xa′ , (1) yields a W2 ∈ W such that

paa∗pa∗a′(xa′), paa′(xa′) ∈W2 .

Since pa∗a′(xa′) ∈ pa∗a′Xa′ , (4) yields an x ∈ X and a W3 ∈ W such that

paa∗pa∗a′(xa′), paa∗pa∗(x) ∈W3 .

Finally, (2) yields a W4 ∈ W such that

paa∗pa∗(x), pa(x) ∈W4 ∈ W .

Since st2(W) refines V, there is a V ∈ V such that W1 ∪ . . . ∪ W4 ⊆ V .
Therefore,

paa′′(xa′′) ∈ st(pa(x),V) ⊆ st(pa(X),V) .
We have thus proved the desired relation

paa′′(Xa′′) ⊆ st(pa(X),V) .

In the proof of Theorem 10 we also need the following lemma.

Lemma 4. Let p : X → X be an approximate mapping and let q : X → X
be an induced approximate mapping. Then p has properties (B1), (B2) if
and only if q has properties (B1), (B2) in the sense of [7].

P r o o f. First assume that p has property (B1). Then, for U ∈ Cov(X),
there is an a ∈ A and a V ∈ Cov(Xa) such that (pa)−1(V) ≺ U . By
Theorem 1(iii), there is an element b ∈ B such that a = s(b). Therefore,
qb = pa and we obtain

(5) (qb)−1(V) ≺ U ,
which is (B1)∗ for q. By [7, Remark 2.9], this implies (B1) for q (in the
sense of [7]).
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If p has property (B2), then for any b ∈ B and U ∈ Cov(Yb), we have
a = s(b) ∈ A and Yb = Xa. Applying (B2) to a and U ∈ Cov(Xa), we
obtain an a′ ≥ a such that

(6) paa′′(Xa′′) ⊆ st(pa(X),U), ∀a′′ ≥ a′ .

Since s : B → A is onto, there exists a b∗ ∈ B such that s(b∗) = a′. Now
choose for b′ any element of B such that b′ ≥ b, b∗. If b′′ ≥ b′, we see
that a′′ = s(b′′) ≥ a′ and thus qbb′′ = paa′′ , qb′′ = pa′′ . Therefore, (6)
becomes

(7) qbb′′(Yb′′) ⊆ st(qb(X),U), ∀b′′ ≥ b′ .

This establishes property (B2)∗∗∗ of [7], which is equivalent to (B2) of [7]
(see [7, Remark 2.10]).

Now assume that q has properties (B1) and (B2) of [7]. By Lemma 2,
it suffices to prove that p has properties (B1)∗ and (B2)∗. If U ∈ Cov(X),
(B1)∗ for q (which is equivalent to (B1) of [7] by [7, Remark 2.9]) yields a
b ∈ B and a V ∈ Cov(Yb) which satisfy (5). However, this yields the anal-
ogous relation for a = s(b), which is property (B1)∗ for p. Now let a ∈ A,
V ∈ Cov(Xa). Choose b ∈ B so that s(b) = a. Then (B2)∗ for q (which
is equivalent to (B2) of [7] by [7, Remark 2.10]) yields a b′ ≥ b such that
qbb′(Yb′) ⊆ st(qb(X),V). Putting a′ = s(b′), one obtains condition (B2)∗

for p.

P r o o f o f T h e o r e m 10. Let q : X → X be an induced approximate
mapping. If p is an approximate resolution, then q is a gauged approximate
resolution (Theorem 4). Therefore, [7, Theorem 2.8] shows that q has prop-
erties (B1) and (B2). Now Lemma 4 yields the desired conclusion that also
p has these properties. Conversely, if p has properties (B1), (B2), then so
does q, because of Lemma 4. Therefore, by [7, Theorem 2.8], q is a gauged
approximate resolution. Now Theorem 7 yields the desired conclusion that
p is an approximate resolution.

Theorem 11. A topological space has covering dimension dimX ≤ n if
and only if X admits an approximate resolution p : X → X consisting of
polyhedra Xa of dimension dimXa ≤ n.

P r o o f. That the condition is necessary follows immediately from prop-
erty (B1). The sufficiency was proved by T. Watanabe [10], who produced
a gauged approximate resolution with the desired properties.

In a similar way one can see that recent results on ℘-like spaces [4] also
hold for approximate resolutions as defined in the present paper.



Approximate inverse systems and resolutions 255

References

[1] M. G. Chara lambous, Approximate inverse systems of uniform spaces and an
application of inverse systems, Comment. Math. Univ. Carolin. 32 (1991), 551–565.
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