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Abstract. We prove that for each countably infinite, regular space X such that
Cp(X) is a Zσ-space, the topology of Cp(X) is determined by the class F0(Cp(X)) of
spaces embeddable onto closed subsets of Cp(X). We show that Cp(X), whenever Borel,
is of an exact multiplicative class; it is homeomorphic to the absorbing set Ωα for the
multiplicative Borel class Mα if F0(Cp(X)) =Mα. For each ordinal α ≥ 2, we provide
an example Xα such that Cp(Xα) is homeomorphic to Ωα.

1. Introduction. For a countable, regular (T3) space X, let Cp(X) be
the space of all continuous real-valued functions on X with the topology of
pointwise convergence. Thus Cp(X) is a dense linear subspace of RX , the
latter space being identified with the countable product of lines.

In the paper we apply the method of absorbing sets [2] to the topological
classification of Cp(X) spaces. This subject was previously treated in several
papers (see [5], [12]–[14], [23] and references therein). The method applies to
spaces Cp(X) which are of the first category in RX , more precisely, to those
that are countable unions of Z-sets (briefly, Zσ-spaces). Let us recall that
the key notion of the absorbing set method is the strong C-universality for a
class C of spaces (see Section 2 for definitions). The uniqueness theorem for
absorbing sets states that two such function spaces Cp(X) and Cp(Y ) are
homeomorphic provided they are strongly C-universal and can be expressed
as countable unions of closed sets that are elements of C. In order to apply
the method, for a given space X, one must identify the class C and then
show the strong C-universality of Cp(X).
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The question of the strong universality of Cp(X) will be entirely re-
solved, for we shall prove that every space Cp(X) (not necessarily of the
first category in RX) is strongly universal for the class F0(Cp(X)) of spaces
homeomorphic to closed subsets of Cp(X). This is a consequence of the
strong F0(E)-universality of an arbitrary metric linear space E which is an
absolute retract and which admits R∞ as a factor, and the fact that (for
noncompact X) Cp(X) always has such a factor. Applying the uniqueness
theorem for absorbing sets, we conclude that for a Zσ-space Cp(X) its topol-
ogy is entirely determined by the class F0(Cp(X)). This means that two
Zσ-spaces Cp(X) and Cp(Y ) are homeomorphic if and only if each is homeo-
morphic to a closed subset of the other. It is remarkable that this result
can be applicable even if we are not able to explicitly determine the class
F0(Cp(X)). For example, we show that if X has exactly one accumulation
point and Cp(X) is a Zσ-space then (Cp(X))∞ is homeomorphic to a closed
subset of Cp(X), and therefore Cp(X) and (Cp(X))∞ are homeomorphic.

Subsequently, we apply the above general results to Borelian spaces
Cp(X). It has been proved in [14] that if X is nondiscrete and Cp(X)
is an absolute Fσδ-set, then Cp(X) is homeomorphic to Ω2 (where Ωα is the
absorbing set for the multiplicative Borel class Mα [2]). In view of this re-
sult, a conjecture was posed in [14] that for all α, every space Cp(X) of exact
multiplicative class α must be homeomorphic to Ωα. Since every Borelian
space Cp(X) is a Zσ-space, by applying our general theorems, the above
conjecture reduces to F0(Cp(X)) = Mα. Until now, it was not known that
for α ≥ 3 there are spaces Xα so that Cp(Xα) is homeomorphic to Ωα nor
that Cp(X) must always be of an exact multiplicative Borel class. We prove
these statements. In fact, for X with exactly one accumulation point, we
present two methods of constructing spaces Cp(X) of arbitrarily high Borel
complexity. Every such X can be regarded as a space NF induced by a filter
F on the set N of integers (cf. Section 2 for definition). The first method
provides, by transfinite induction, the spaces Cp(X) that are of even multi-
plicative classes; the basic obstacle to carrying out this construction for odd
ordinals is the nonexistence of filters of type Gδ. The second method, which
is a variation of the construction in [2], assigns to every subset A of the
Hilbert cube a filter FA such that Cp(NFA

) contains A as a closed subset.
For A = Ωα, α ≥ 2, the space Cp(NFA

) is homeomorphic to Ωα.
Actually, our techniques work for all pairs (RX , Cp(X)) and triples

(RX ,RX , Cp(X)). In particular, this allows us to give a complete classifica-
tion of the triples (RX ,RX , Cp(X)) for which Cp(X) is an absolute Fσδ-set.

2. Notations, definitions and auxiliary results. The symbol ∼=
means “homeomorphic to”. Maps are always continuous, and An designates
the product of n copies of A, whereas A∞ is the product of a countably
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infinite set of copies of A. The set of positive integers and the set of reals
are denoted by N and R, respectively. We let R = R∪ {−∞,∞}. I∞ is the
Hilbert cube [0, 1]∞ and 2∞ = {0, 1}∞.

Let X be a countable regular space. By 2X we denote the set of all
subsets of X. Identifying each subset of X with its characteristic function,
we consider 2X as the subspace {0, 1}X of RX . We denote by C loc

p (X) the
subspace of Cp(X) consisting of all locally constant functions.

Filters on a countable infinite set X are always assumed to contain the
Fréchet filter F0 consisting of all cofinite sets of X. Given a filter F on N,
we denote by NF the space N∪{∞} topologized by isolating the points of N
and using the family {A ∪ {∞} | A ∈ F} to be a neighborhood base at ∞.
We write

cF = {(xn) ∈ R∞ | ∀ε>0∃A∈F∀n∈A |xn| < ε} ,
sF = {(xn) ∈ R∞ | ∀ε>0∃A∈F∀n∈A xn = 0} .

It is known [23, Lemma 2.1] that Cp(NF ) is (linearly) homeomorphic to
cF ; one can easily adapt the proof of [23, Lemma 2.1] to show that (RNF ,
Cp(NF ), C loc

p (NF )) ∼= (R∞, cF , sF ).
If Y is a separable metrizable space, and α is a countable ordinal, we

write Aα(Y ) (resp., Mα(Y )) to denote the family of subsets of Y that are
Borel of additive (resp., multiplicative) class α. By Aα (resp., Mα) we de-
note the class of spaces that are absolute Borel of additive (resp., multiplica-
tive) class α. If A ∈ Aα\Mα (resp., Mα\Aα orAα∩Mα\

⋃
β<α(Aβ∩Mβ)),

then we say that A is of exact additive (resp., multiplicative or ambiguous)
class α. By Pn, n ≥ 0, we denote the nth projective class. Let C be a class
of spaces. We say that a pair (X,X0) is Wadge (Y, C)-complete if, for every
A ⊆ Y , A ∈ C, there exists a map ϕ : Y → X such that ϕ−1(X0) = A
(usually, C = Aα, Mα or Pn).

A subset A of a metric space X is said to be locally homotopy negligible
in X if for every open subset U of X, the inclusion of U\A into U is a weak
homotopy equivalence. A closed subset A of X is a Z-set (resp., strong
Z-set) if, for every open cover U of X, there exists a map f : X → X that
is U-close to the identity and satisfies f(X) ∩ A = ∅ (resp., f(X) ∩ A = ∅).
It is known that the classes of Z-sets and strong Z-sets coincide in any X
which admits a completion X̂ homeomorphic to either R∞ or R∞ and such
that X̂\X is locally homotopy negligible in X̂ (see [2]). For a space X that
is an absolute neighborhood retract, a subset (resp., closed subset) A of X
is locally homotopy negligible (resp., a Z-set) if every map of In into X is
approximable by maps into X whose images miss A, n = 1, 2, . . . A space
which is a countable union of Z-sets is called a Zσ-space (see [25]). By a
Z-embedding we mean an embedding f : Y → X such that f(Y ) is a Z-set
in X.
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Let (K1, . . . ,Kk), k≥1, be a topological k-tuple (briefly, a k-tuple), i.e.,
K1⊇ . . . ⊇Kk. We say that a k-tuple (X1, . . . , Xk) is strongly (K1, . . . ,Kk)-
universal if, for every closed subset D of K1, every map f : K1 → X1

whose restriction to D is a Z-embedding and for which (f |D)−1(Xi) =
D ∩ Ki, i = 1, . . . , k, and every open cover U of X1, there exists a Z-
embedding g : K1 → X1 which is U-close to f and satisfies g|D = f |D and
g−1(Xi) = Ki for i = 1, . . . , k. If K is a class of k-tuples, then (X1, . . . , Xk)
is strongly K-universal provided it is strongly (K1, . . . ,Kk)-universal for
each (K1, . . . ,Kk) ∈ K.

A class K of k-tuples is said to be topological if it contains every homeo-
morph of an element of K. It is additive if, given a k-tuple (K1, . . . ,Kk) such
that K1 = K1

1 ∪K2
1 , K1

1 and K2
1 closed in K1, and such that each (Ki

1,K
i
1∩

K2, . . . ,K
i
1 ∩ Kk) belongs to K, (K1, . . . ,Kk) belongs to K. Finally, it is

called hereditary with respect to closed subsets if, for every (K1, . . . ,Kk) ∈ K
and every closed C ⊆ K1, (C,C ∩ K2, . . . , C ∩ Kk) ∈ K. If C1, . . . , Ck are
classes of spaces, we denote by (C1, . . . , Ck) the class consisting of all k-tuples
(K1, . . . ,Kk) such that Ki ∈ Ci for i = 1, . . . , k.

Let C be a class of (separable metrizable) spaces which is topological,
additive and hereditary with respect to closed subsets. A subset X of R∞
is called a C-absorbing set [2] in R∞ if it satisfies the following conditions:

(i) R∞\X is locally homotopy negligible in R∞,
(ii) X =

⋃∞
n=1 Zn, where each Zn is a Z-set in X and belongs to C,

(iii) X is strongly C-universal.

Here is a particular case of [2, Theorem 3.1] (which we will refer to as
the uniqueness theorem for absorbing sets).

2.1. Theorem. Any two C-absorbing sets in R∞ are homeomorphic.

The notion of C-absorbing set has its origin in research done by Ander-
son, Bessaga and Pe lczyński, Toruńczyk and West (see [1]). They mostly
considered absorbing sets in complete metric spaces M with C being a sub-
class of the class of all Z-sets in M . Then any two C-absorbing sets were
ambiently homeomorphic in M . The same can be achieved by using the
above strong universality for k-tuples; this concept was originated by Cauty
in [6].

It is routine to check that whenever a k-tuple (X1, . . . , Xk) is strongly
K-universal for some class K of k-tuples then, under some restrictions on
X1, it is also strongly universal with respect to the smallest class K̃ that is
topological, additive, hereditary with respect to closed subsets and contains
K. Specifically, this is true if X1

∼= R∞ or X1
∼= R∞ (or X1 is a Zσ-space

that is an absolute retract; see [15, p. 412]).
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2.2. Theorem. Let (Ai
1, A

i
2, . . . , A

i
k), i = 1, 2, be k-tuples in R∞. Sup-

pose Ai
1 ⊆

⋃∞
n=1X

i
n, i = 1, 2, where Xi

n are Z-sets in R∞.

(a) If each (k + 1)-tuple (R∞, Ai
1, . . . , A

i
k) is strongly (Xj

n ∩ R∞,
Xj

n ∩ A
j
1, . . . , X

j
n ∩ A

j
1)-universal for j = 1, 2 and n ≥ 1, then (R∞, A1

1, . . .
. . . , A1

k) ∼= (R∞, A2
1, . . . , A

2
k).

(b) If each (k + 2)-tuple (R∞,R∞, Ai
1, . . . , A

i
k) is strongly (Xj

n ∩ R∞,
Xj

n ∩ R∞, Xj
n ∩ A

j
1, . . . , X

j
n ∩ A

j
k)-universal for j = 1, 2 and n ≥ 1, then

(R∞,R∞, A1
1, . . . , A

1
k) ∼= (R∞,R∞, A2

1, . . . , A
2
k).

P r o o f. The proof employs a version of a standard back and forth ar-
gument. More specifically, to get (a) follow the version elaborated in [6,
Theorem 2.1] and use the remark made before the statement of the theo-
rem; part (b) needs some adjustments.

Since R∞\R∞ is strongly M0-universal [1], for every compactum Z, the
(k + 2)-tuples in question are strongly (Z, ∅, . . . , ∅)-universal. Let K be the
smallest topological additive class which is hereditary with respect to closed
subsets and contains all (k + 2)-tuples of the form (Xj

n, X
j
n ∩ R∞, Xj

n ∩
Aj

1, . . . , X
j
n ∩ A

j
k) and (Z, ∅, ∅, . . . , ∅), where Z is a compactum. It follows

that the (k + 2)-tuples in question are strongly K-universal. To obtain (b)
it suffices to repeat the proof of [6, Theorem 2.1] replacing the pairs (Yn ∪
f2n(Xn+1), Yn∪f2n(Xn+1)) and (Xn+1∪f−1

2n+1(Yn+1), Xn+1∪f−1
2n+1(Yn+1))

therein by the (k + 2)-tuples Z2
n ∪ f2n(Z1

n+1) and Z1
n+1 ∪ f−1

2n+1(Z2
n+1),

respectively, where Zi
n are defined below. Let R∞\R∞ =

⋃∞
n=0Bn, where

B0 = ∅ and Bn are compacta. Set

Zi
n = (Xi

n ∪Bn, X
i
n ∩ R∞, Xi

n ∩Ai
1, . . . , X

i
n ∩Ai

k)

and observe that since Bn ∩ R∞ = ∅, Zi
n ∈ K.

Let (X1, . . . , Xk) be a k-tuple. We denote by F0(X1, . . . , Xk) the class of
all k-tuples homeomorphic to a k-tuple of the form (C,C ∩X2, . . . , C ∩Xk),
where C is a closed subset of X1. In particular, F0(X) is the class of spaces
that are homeomorphic to closed subsets of X.

2.3. Corollary. Let Ki = (R∞, Ai
1, . . . , A

i
k) and Li = (R∞,R∞, Ai

1, . . .
. . . , Ai

k), i = 1, 2, be tuples. Assume that

(i) each Ai
1 is a Zσ-space,

(ii) each R∞\Ai
1 is locally homotopy negligible in R∞,

(iii) each Ki (resp., Li) is strongly F0(Ki)-universal (resp., F0(Li)-
universal).

If F0(K1) = F0(K2) (resp., F0(L1) = F0(L2)), then K1 ∼= K2

(resp., L1 ∼= L2).
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P r o o f. By the Zσ-property, Ai
1 =

⋃∞
n=1 Z

i
n, where Zi

n are Z-sets in Ai
1.

Since R∞\Ai
1 is locally homotopy negligible in R∞, the closure Xi

n of Zi
n in

R∞ is a Z-set. Now, 2.2 is applicable.

Let Ωα and Λα be the absorbing sets in R∞ for the classes Mα and
Aα, respectively, constructed in [2]. The space Λ1 is {(xn) ∈ R∞ : (xn) is
bounded} and is commonly denoted by Σ. By [9, Proposition 4.1 and Re-
mark 4.8], (R∞, Ωα) (resp., (R∞,R∞, Ωα)) is strongly (M1,Mα)-universal
(resp., (M0,M1,Mα)-universal), α ≥ 2. From 2.3, it follows that the re-
spective strong universality characterizes (R∞, X) or triples (R∞,R∞, X)
such that X ∼= Ωα (the fact that R∞\X is locally homotopy negligible in
R∞ follows from the respective strong universality). Similarly, the strong
(M1,Aα)-universality (resp., (M0,M1,Aα)-universality) characterizes the
pairs (R∞, X) (resp., triples (R∞,R∞, X)) such that X ∼= Λα.

Let us recall that in [8], there have been constructed absorbing sets
Πn and Π ′

n for the class Pn, n ≥ 1, in a copy E of R∞ and Q of the
Hilbert cube, respectively. Moreover, the pairs (E,Πn) and (Q,Π ′

n) are
strongly (M1,Pn)- and (M0,Pn)-universal, respectively. Writing (R∞,Πn)
and (R∞,Πn) we will mean the above pairs (E,Πn) and (Q,Π ′

n), respec-
tively.

In Section 4 we shall need a particular case of the following fact.

2.4. Theorem. Let Z1 and Z2 be subsets of Σ such that each (Σ,Zi)
is strongly (M0, C)-universal for some class C. Assume each Zi is a count-
able union of closed sets that are elements of C. Then the quadruples
(R∞,R∞, Σ, Z1) and (R∞,R∞, Σ, Z2) are homeomorphic.

P r o o f. Let Zi =
⋃∞

n=1 Z
i
n, where Zi

n are closed in Zi and Zi
n ∈ C.

Write Σ =
⋃∞

k=1Bk, where Bk are compacta. Put Xi
n,k = Bk ∩ Zi

n, the
closure taken in R∞. Clearly, each quadruple (R∞,R∞, Σ, Zi) is strongly
(Xj

n,k, X
j
n,k, X

j
n,k, X

j
n,k ∩ Zj)-universal. To get the result apply 2.2(b).

3. Criteria of strong universality. The following result on the strong
universality of linear spaces E×R∞ plays a fundamental role in this paper.

3.1. Theorem. Let E be a separable metric linear space that is an ab-
solute retract and let E0 be a dense linear subspace of E. Then the pair
(E × R∞, E0 × R∞) is strongly F0(E × R∞, E0 × R∞)-universal.

P r o o f. Since R∞ is strongly F0(R∞)-universal we can assume that E
is infinite-dimensional. Let Ê be the linear completion of E. Endow Ê with
an F -norm | · |1 that is increasing on each ray emanating from the origin
(see [1, p. 285]). We consider R∞ as the product

∏∞
n=1Rn, where Rn = R
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for all n, and endow it with the F -norm

|x|2 =
∞∑

n=1

2−n |xn|
1 + |xn|

for x = (xn) ∈ R∞ .

Note that

(1) |x|2 ≤
1

n+ 1
if xk = 0 for k ≤ n .

We define an F -norm on Ê × R∞ by letting for y = (z, x) ∈ Ê × R∞,

|y| = |z|1 + |x|2 .

We identify Ê and R∞ with Ê×{0} and {0}×R∞ in Ê×R∞, respectively.
Let π : Ê ×R∞ → Ê be the projection. Each element y ∈ Ê ×R∞ is of the
form (y0, (yn)), where y0 = π(y) and yn is the projection of y onto Rn.

Proposition 4.1 in [25] assures that there exists a set Ẽ such that E ⊆
Ẽ ⊆ Ê, Ẽ is a Gδ-subset of Ê (hence, topologically complete) and Ẽ is an
absolute retract with Ẽ\E locally homotopy negligible in Ẽ. By [16] (see
Lemma 1 and Sec. 2 therein), both Ẽ and Ẽ × R∞ are copies of R∞. It
follows that every Z-set in E × R∞ is a strong Z-set.

Let T = {(xn) ∈ R∞ | xn 6= 0 for infinitely many n}. It is easy to
check that E × T and E × R∞\E0 × T are locally homotopy negligible in
E×R∞. Then, by [9, Proposition 2.1] applied to X = E×R∞, Y = E0×T ,
Y ′ = E × T , Z = E0 × R∞ and (K,L) = (K,K ∩ (E0 × R∞)) ∈ F0(E ×
R∞, E0 × R∞), it suffices to verify the following:

(∗) Given a closed subset K of X, an open subset U of K, an open subset
V of X, an open cover V = {Vj | j ∈ J } of V and a map f : K → X
satisfying f(U) ⊂ V ∩ Y and f(K\U) ⊂ X\V , there exists a closed
embedding g : U → V that is V-close to f |U and satisfies g(U) ⊂ Y ′

and g−1(V ∩ Y ) = U ∩ (E0 × R∞).

For each j ∈ J , find an open set V̂j ⊂ Ê ×R∞ such that V̂j ∩ (E ×R∞)
= Vj . Then V̂ =

⋃
j∈J V̂j is open in Ê × R∞, V̂ ∩ (E × R∞) = V and

V̂ = {V̂j | j ∈ J } is an open cover for V̂ . Pick a map ω : V̂ → (0, 1] such
that

(2) whenever y ∈ V̂ , y′ ∈ Ê × R∞ and |y − y′| < 4ω(y), then y, y′ ∈ V̂j

for some j ∈ J .

Lavrent’ev’s theorem guarantees the existence of a subset K̃ of Ẽ that
is a Gδ-subset of Ẽ (hence, K̃ is topologically complete), K ⊆ K̃, and such
that f admits a continuous extension f̃ : K̃ → Ẽ×R∞. We can assume that
K̃ ∩ (E × R∞) = K. Let Ṽ = V̂ ∩ Ẽ and Ũ = f̃−1(Ṽ ); hence Ũ ∩K = U .

We need the following lemma.
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3.2. Lemma. There exists a map Ψ = (Ψ0, (Ψn)) : Ẽ × R∞ × [1,∞] →
Ẽ × R∞ satisfying

(i) Ψ(Ẽ × R∞ × [1,∞)) ⊂ E0 × R∞,
(ii) Ψ(y,∞) = y for all y ∈ Ẽ × R∞,
(iii) Ψn(y, t) = 0 for t ≤ n− 1 and y ∈ Ẽ × R∞,
(iv) if limΨ(yi, ti) = y ∈ Ê × R∞, (yi, ti) ∈ Ẽ × R∞ × [1,∞), and

lim ti = ∞, then lim yi = y.

P r o o f. Since Ẽ\E is locally homotopy negligible in Ẽ and E\E0 is
locally homotopy negligible in E, Ẽ\E0 is locally homotopy negligible in
Ẽ. Since Ẽ is an absolute retract, by [25, Theorem 2.4] there exists ψ :
Ẽ × [1,∞] → Ẽ such that

(a) ψ(Ẽ × [1,∞)) ⊂ E0,
(b) ψ(x,∞) = x for every x ∈ Ẽ,
(c) |ψ(x, t)− x|1 < 1/t for all (x, t) ∈ Ẽ × [1,∞).

Define Ψ as follows: Ψ0 = ψ ◦ π and

Ψn(y, t) =

{
yn if n ≤ t,
syn if t = n− 1 + s, 0 ≤ s ≤ 1,
0 if t ≤ n− 1,

for y = (y0, (yn)) ∈ Ẽ × R∞. It is clear that Ψ satisfies (i)–(iii). The
condition (iv) is a consequence of (c) and the fact that Ψn(y, t) = yn for
n ≤ t.

We go back to the proof of 3.1. Applying (ii) and the continuity of Ψ we
can choose a map ε : Ṽ → (0, 1] with the properties

(3) |Ψ(y, (ε(y))−1)− y| < ω(y) ,
(4) ε(y) < ω(y) ,

for all y ∈ Ṽ .
Denote by τn the projection of R∞ onto

∏∞
k=n+1Rk. Since K̃ is topo-

logically complete, so is Ũ ⊂ K̃. Consequently, one can find a map χ =
(χn) : Ũ → R∞ such that

(5) τn ◦ χ is a closed embedding for n ≥ 1,
(6) for every c ∈ Ũ there are infinitely many indices k such that χk(c) 6= 0

(i.e., χ(c) ∈ T ).

Define Φ = (Φk) : Ũ × [1,∞) → R∞ by the formula

Φk(c, t) =

{
χk(c) if t ≤ k − 1,
(1− s)χk(c) if t = k − 1 + s, 0 ≤ s ≤ 1,
0 if t ≥ k.
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If n ≤ t < n + 1, then Φk(c, t) = 0 for k ≤ n; consequently, by (1),
|Φk(c, t)|2 ≤ 1/(n+ 1). It follows that

(7) |Φ(c, t)|2 < 1/t for (c, t) ∈ Ũ × [1,∞) .

Write ε̃(c) = ε(f̃(c)) for c ∈ Ũ . Let

α(c) = sup{t ∈ [0, 1] | |tπ(c)|1 < ε̃(c)} .
Then α(c) > 0 and the continuity of ε̃ implies the lower semicontinuity of
α. We can find [17, p. 428] a map λ : Ũ → [0, 1] satisfying 0 < λ(c) < α(c)
for all c ∈ Ũ . Using the fact that | · |1 is monotone on each ray emanating
from 0, we get

(8) |λ(c)π(c)|1 < ε̃(c) for all c ∈ Ũ .

Define g̃ : Ũ → Ê × R∞ by

g̃(c) = Ψ(f̃(c), ε−1) + λ(c)π(c) + Φ(c, ε−1) ,

where ε = ε̃(c). By (i), (iii) and (6), Ψ(f̃(c), ε−1) + Φ(c, ε−1) ∈ E0 × T .
As a consequence, g̃(c) belongs to Ê × T ; moreover, g̃(c) ∈ E × R∞ (resp.,
g̃(c) ∈ E0 × R∞) if and only if π(c) ∈ E (resp., π(c) ∈ E0). This yields
g̃−1(E × R∞) = g̃−1(E × T ) = Ũ ∩ (E × R∞) = U and g̃−1(E0 × T ) =
U ∩ (E0 × R∞). We claim that g = g̃|U is as required in (∗).

It follows from (7) and (8) that

(9) |g(c)− Ψ(f(c), (ε(f(c)))−1)| < 2ε(f(c)) for all c ∈ U .
Consequently, by (3) and (4), we have

(10) |g(c)− f(c)| < 2ε(f(c)) + ω(f(c)) < 3ω(f(c)) .

Using (2), we find j ∈ J such that g(c) and f(c) belong to V̂j ∩ (E×R∞) =
Vj . This shows that g is V-close to f |U and, in particular, the range of
g is V . Assume g(c) = g(c′) for some c, c′ ∈ U . Write ε = ε(f(c)) and
ε′ = ε(f(c′)). Since for each k,

Ψk(f(c), ε−1) + Φk(c, ε−1) = gk(c) = gk(c′)(11)
= Ψk(f(c′), ε′−1) + Φk(c′, ε′−1) ,

and for large k, Ψk(f(c), ε−1) = Ψk(f(c′), ε′−1) = 0, Φk(c, ε−1) = χk(c) and
Φk(c′, ε′−1) = χk(c′), it follows that χk(c) = χk(c′) for large k. By (5),
we infer that c = c′. Hence, g is injective. To prove that g : U → V is
a closed embedding it suffices to show that whenever lim g(ci) = y ∈ V
for some {ci} ⊂ U , then {ci} has a subsequence that converges in U . Set
εi = ε(f(ci)). We may assume that lim εi = ε0 ∈ [0, 1]. We claim ε0 > 0. In
fact, if ε0 = 0 then, by (9), limΨ(f(ci), ε−1

i ) = y. Then 3.2(iv) implies that
lim f(ci) = y. By the continuity of ε, lim εi = ε(y) > 0, a contradiction.
Let N be so large that ε−1

0 < N − 1. We can assume that ε−1
i < N − 1
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for all i. Since Ψk(f(ci), ε−1
i ) = 0 and Φk(ci, ε−1

i ) = χk(ci) for k ≥ N , we
have

gk(ci) = Ψk(f(ci), ε−1
i ) + Φk(ci, ε−1

i ) = χk(ci)
for k ≥ N . As {g(ci)} is convergent, so is {χk(ci)} for k ≥ N . By (5), there
exists c ∈ Ũ such that lim ci = c. Since g̃(c) = y ∈ E × R∞, we get c ∈ C.
Verification of (∗) is now complete.

Letting E = E0 in 3.1 we get

3.3. Corollary. For every separable metric linear space E that is an
absolute retract , the space E × R∞ is strongly F0(E × R∞)-universal.

It would be interesting to extend the criterion of 3.1 to some spaces E
that are not linear, e.g., to metric groups that are absolute retracts. Our
proof actually works for some convex sets.

3.4. R e m a r k. Let C be a convex subset of a separable metric linear
space E and let E0 be a linear subspace of E such that E0∩C=C0 is dense
in C. Assume that C is a Gδ-subset of E and C is an absolute retract. Then
the pair (C×R∞, C0×R∞) is strongly F0(C×R∞, C0×R∞)-universal. In
particular, for every convex subset C of E, C×R∞ is strongly F0(C×R∞)-
universal provided C is absolute retract and C is a Gδ-subset of E. For a
proof, follow that of 3.1. Replace Ẽ by C̃ with the same properties. Since C
is a Gδ-subset of E, we can additionally assume C̃∩E = C. Find λ satisfying
|λ(c)Ψ0(f̃(c), ε−1)|1 < ε̃(c). Define g̃(c) = (1−λ(c))Ψ0(f̃(c), ε−1)+λ(c)π(c)+
(Ψn)(f̃(c), ε−1) + Φ(c, ε−1). Then the restriction g̃|U will work.

Our next result concerns the strong universality of certain triples (R∞,
R∞, E).

3.5. Proposition. Let RN =
∏∞

k=1 RNk , where {Nk}∞k=1 is a partition of
N into nonempty sets. Let Ek be a dense linear subspace of RNk and write
E =

∏∞
k=1Ek. Assume there exist maps µk : RNk → RNk with µ−1

k (Ek)∩
RNk =Ek for k ≥ 1. Then (RN,RN, E) is strongly F0(RN,RN, E)-universal.

P r o o f. The proof is parallel to that of 3.1 and employs some of its
notations. Let T = {(xn) ∈ RN | xn 6= 0 for infinitely many n ∈ N}.
(Writing x = (xn) ∈ RN, xn denotes the nth coordinate of x in RN, n ∈ N;
writing x = (xk) ∈

∏∞
k=1 RNk , xk denotes the RNk -coordinate of x in the

product
∏∞

k=1 RNk .) Define µ : RN →
∏∞

k=1 RNk by letting µ = (µk).
Denote by µn(x), x ∈ RN, the nth coordinate of µ(x) in RN, n ∈ N. Since RN

is compact, there exists pn ∈ R, pn ≥ 1, with max{|µn(x)| | x ∈ RN} ≤ pn.
It follows that

(12)
∞∑

n=1

(2n+1pn)−1|µn(x)| ≤ 1
2

for all x ∈ RN .
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Endow RN with the metric

d(x, y) =
∞∑

n=1

(2n+1pn)−1 1
π
|arctanxn − arctan yn| ,

for x = (xn) and y = (yn) in RN. We have

(1)′ d(x, y) ≤ 1
n+ 1

if xp = yp for all p ≤ n .

We will assume that {1, . . . , n} ⊂ N1 ∪ . . . ∪Nn for every n.
Using [9, Proposition 2.1] and the compactness of RN it suffices to verify

the following modification of the condition (∗) from the proof of 3.1:

(∗)′ Given a closed subset K of RN, an open subset U of K, an open
subset V of RN, an open cover V of V and a map f : K → RN

satisfying f(U) ⊂ V and f(K\U) ⊂ RN\V , there exists an injective
map g : U → V that is V-close to f |U and satisfies g(U) ⊂ T ,
g−1(T ∩ RN) = U ∩ RN and g−1(T ∩ E) = U ∩ E.

We will make use of an analogue of 3.2.

3.6. Lemma. There exists a map Ψ = (Ψk) : RN × [1,∞] →
∏∞

k=1 RNk =
RN satisfying

(i) Ψ(RN × [1,∞)) ⊂ E,
(ii) Ψ(y,∞) = y for all y ∈ RN,
(iii) Ψk(y, t) = 0 for all t ≤ k − 1 and y ∈ RN.

P r o o f. By [25, Theorem 2.4], for each k there exists ψk : RNk×[1,∞] →
RNk satisfying

(a) ψk(RNk × [1,∞)) ⊂ Ek,
(b) ψk(x,∞) = x for all x ∈ RNk .

Define Ψ by letting

Ψk(y, t) =

ψk(yk, t) if k ≤ t,
sψk(yk, t) if t = k − 1 + s, 0 ≤ s ≤ 1,
0 if t ≤ k − 1,

for y = (yk) ∈
∏∞

k=1 RNk .

Since Ek is nontrivial, there exist 0 6= vk ∈ Ek and nk ∈ Nk so that
the nkth coordinate of vk is 1 (use linearity of Ek). Let RNk

0 = {(xi) ∈
RNk | xnk

= 0}. We will identify the pairs (RNk
0 × Rvk, (RNk ∩ Ek)× Rvk)

and (RNk , Ek) via the isomorphism T (y, tvk) = y + tvk. Observe that T
extends to an injective map T̃ : RNk

0 × Rvk → RNk . Identifying RNk
0 with

RNk
0 ×{0} and Rvk with {0}×Rvk in RNk

0 ×Rvk we will write y+tvk instead
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of T̃ (y, tvk) for y ∈ RNk
0 and t ∈ R. Note that for every y ∈ RNk

0 the map

(13) t→ y + tvk , t ∈ R , is an embedding.

Let µ0
k : RNk → RNk = RNk

0 × Rvk be the RNk
0 -component of µk, i.e.,

(µ0
k(y))i = (µk(y))i − (µk(y))nk

, for every i ∈ Nk and y ∈ RNk . For y =
(yk) ∈

∏∞
k=1 RNk , define π : RN → RN by letting

π(y) = (µ0
k(yk)) .

Let (hs) : R → R be a homotopy such that h0 = id, h1(t) = 0 for t ∈ R and

(14) hs(t) ∈ R for all t ∈ R and s > 0 .

Let {Pn}∞n=1 be a partition of the set of odd positive integers into infinite
sets. For each k ∈ N and x = (xn) ∈ RN, we let χk(x) = 1 if k is even and
χk(x) = xn if k ∈ Pn, n ≥ 1. Next, for x ∈ RN, 1 ≤ t <∞ and k ∈ N, let

Φk(x, t) =

χk(x) if t ≤ k − 1,
hs(χk(x)) if t = k − 1 + s, 0 ≤ s ≤ 1,
0 if t ≥ k,

and put

Φ(x, t) = (Φk(x, t)vk) ∈
∞∏

k=1

Rvk ⊂
∞∏

k=1

RNk .

Choose ω : V → (0, 1] and ε : V → (0, 1] as in the proof of 3.1. We let

g(c) = Ψ(f(c), ε−1) + ε · π(c) + Φ(c, ε−1) , ε = ε(f(c)) ,

for c ∈ U ; addition is the coordinatewise addition in
∏∞

k=1 RNk defined
above.

Fix c ∈ U with n ≤ ε−1 < n + 1. Since Φk(c, t) = 0, for k ≤ n, by (1)′

and the choice of ε, we have

d(g(c), f(c))
≤ d(Ψ(f(c), ε−1) + ε · π(c) + Φ(c, ε−1), Ψ(f(c), ε−1) + Φ(c, ε−1))

+ d(Ψ(f(c), ε−1) + Φ(c, ε−1), f(c))

≤ d(Ψ(f(c), ε−1) + ε·π(c) + Φ(c, ε−1), Ψ(f(c), ε−1) + Φ(c, ε−1)) + 2ε(f(c))

≤ d(Ψ(f(c), ε−1) + ε · π(c), Ψ(f(c), ε−1)) +
1

2npn
+ 2ε(f(c))

≤ d(Ψ(f(c), ε−1) + ε · π(c), Ψ(f(c), ε−1)) + 3ε(f(c)) .

Using |arctan(x+ y)− arctanx| ≤ |y| and (12) we see that

d(Ψ(f(c), ε−1) + ε · π(c), Ψ(f(c), ε−1))

≤
∞∑

n=1

(2n+1pn)−1ε(f(c)) · |µn(c)| ≤ ε(f(c)) .
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We conclude that d(g(c), f(c)) < 4ε(f(c)). As in 3.1, it follows that g is
V-close to f |U and the range of g is V . By 3.6(iii), the nkth coordinate of
g(c) equals χk(c) for k ≥ ε−1+1. Using the properties of χ and (13), we infer
that g is injective, g(U\RN) ⊂ RN\RN and g(U) ⊂ T . By 3.6(i) and (14), if
c ∈ U ∩RN, then g(c) ∈ RN. Since for c ∈ U ∩RN, Ψ(f(c), ε−1)+Φ(c, ε−1) ∈
E, we infer that g(c) ∈ E if and only if π(c) ∈ E. The last happens exactly
when c ∈ E.

3.7. R e m a r k. If, in 3.1, E′ is any linear space such that E0 ⊆ E′ ⊆ E,
then g−1(V ∩ (E′ ×R∞)) = U ∩ (E′ ×R∞). This permits one to generalize
Theorem 3.1 to systems of the form (E ×R∞, Ek ×R∞, . . . , E1×R∞, E0×
R∞), where E0 ⊆ E1 ⊆ . . . ⊆ Ek are linear spaces. Also Proposition 3.5
is true for (RN,RN, Em, . . . , E1, E), where each Ei =

∏∞
k=1E

i
k and Ek ⊆

E1
k ⊆ . . . ⊆ Em

k ⊆ RNk are linear spaces such that µ−1
k (Ei

k) ∩ RNk = Ei
k.

In particular, we have

3.8. Corollary. Let En be a separable metric linear space which is an
absolute retract and let En

0 ⊆ En
1 ⊆ . . . ⊆ En

k ⊆ En be linear spaces such
that {0} 6= En

0 is dense in En, n = 1, 2, . . . Then
∏∞

n=1(En, E
n
k , . . . , E

n
1 , E

n
0 )

is strongly F0(
∏∞

n=1(En, E
n
k , . . . , E

n
1 , E

n
0 ))-universal.

P r o o f. Pick a nonzero vector vn ∈ En
0 . By a result of Michael (see [1,

p. 87]), (En, E
n
k , . . . , E

n
1 , E

n
0 ) is homeomorphic to (Fn, F

n
k , . . . , F

n
1 , F

n
0 ) ×

Rvn, where Fn
i = En

i /Rvk are linear subspaces of the quotient space Fn =
En/Rvn. Hence, the product

∏∞
n=1(En, E

n
k , . . . , E

n
1 , E

n
0 ) is homeomorphic

to
∏∞

n=1(Fn, F
n
k , . . . , F

n
1 , F

n
0 )× R∞ and 3.7 is applicable.

4. Application to Cp(X). Here is our application of the results of
Section 3 to Cp(X).

4.1. Proposition. Let X be a countable regular noncompact space. Let
S be one of the following k-tuples, 1 ≤ k ≤ 4: Cp(X), C loc

p (X), (Cp(X),
C loc

p (X)), (RX , Cp(X)), (RX , C loc
p (X)), (RX , Cp(X), C loc

p (X)), (RX ,RX ,

Cp(X)), (RX ,RX , C loc
p (X)) and (RX ,RX , Cp(X), C loc

p (X)). Then S is
strongly F0(S)-universal.

4.2. Lemma. We have X =
⋃∞

k=1 Vk, where each Vk is nonempty and
clopen, and Vi ∩ Vj = ∅ for i 6= j. In particular ,

(RX ,RX , Cp(X), C loc
p (X)) =

∞∏
k=1

(RVk ,RVk , Cp(Vk), C loc
p (Vk)) .

P r o o f. Since X is countable, it is Lindelöf and hence normal. Being
Lindelöf and noncompact, X is not countably compact; hence it contains a
closed discrete infinite set A. Enumerate A as {ak}∞k=1. Since A is discrete
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and X is normal, there exists a map λ : X → R such that λ(ak) = k, k ≥ 1.
Using the fact that X is countable, we pick αk ∈ (k, k + 1)\λ(X). Put
α0 = −∞ and set Vk = λ−1

k ((αk−1, αk)).

P r o o f o f 4.1. When S does not contain RX we apply 4.2 and 3.8. If S
contains RX , we apply 3.5 (see also 3.7) with RNk = RVk , Ek = C loc

p (Vk) and
E′k = Cp(Vk), where Vk are those of Lemma 4.2. The map µk : RVk → RVk

is given by

µk(f)(x) = arctan(f(x)) , x ∈ Vk .

It is easy to see that µ−1
k (Cp(Vk))∩RVk = Cp(Vk) and µ−1(C loc

p (Vk))∩RVk =
C loc

p (Vk).

If Cp(X) in Proposition 4.1 is a Zσ-space (e.g., Cp(X) is analytic [14,
Corollary 3.6]), then it is an F0(Cp(X))-absorbing set in R∞. Thus, in this
case we can say that the topology of Cp(X) is completely determined by the
class F0(Cp(X)). Below we show that, in such a case, F0(RX , Cp(X)) not
only determines the topology of the pair (RX , Cp(X)) but also that of the
triple (RX ,RX , Cp(X)).

4.3. Theorem. Let X and Y be countable regular noncompact spaces
such that Cp(X) and Cp(Y ) are Zσ-spaces. Then

(a) Cp(X) is homeomorphic to Cp(Y ) iff F0(Cp(X)) = F0(Cp(Y )),
(b) the following conditions are equivalent :

(i) (RX ,RX , Cp(X)) ∼= (RY ,RY , Cp(Y )),
(ii) (RX , Cp(X)) ∼= (RY , Cp(Y )),
(iii) F0(RX , Cp(X)) = F0(RY , Cp(Y )).

4.4. R e m a r k. Theorem 4.3 remains true for arbitrary countable regular
spaces X and Y . In fact, if X is compact then it is metrizable (combine
Theorems 3.1.21 and 4.2.8 in [17]). By results of [5], [13], Cp(X) is homeo-
morphic to Ω2. Now, (a) follows from [14]. As observed in Remark 6.8, if
X is compact and F0(X,Cp(X)) = F0(Y,Cp(Y )), then Y is also compact
and (RX ,RX , Cp(X)) ∼= (RY ,RY , Cp(Y )).

The proof of Theorem 4.3 is a direct consequence of 4.1, 2.3 and the fact
below.

4.5. Proposition. Let X and Y be countable regular noncompact spaces.
If F0(RX , Cp(X)) = F0(RY , Cp(Y )) then F0(RX ,RX , Cp(X))=F0(RY ,RY ,
Cp(Y )).

Define µ : RY → RY by µ(f)(y) = arctan(f(y)). If h is an embedding of
(RY , Cp(Y )) into (RX , Cp(X)) then ϕ = h ◦ µ satisfies ϕ−1(Cp(X))∩RY =
Cp(Y ). Hence, our proposition is a consequence of the following lemma.
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4.6. Lemma. Let X be a countable regular noncompact space and A ⊆
R∞. If there exists ϕ : R∞ → RX with ϕ−1(Cp(X)) ∩ R∞ = A, then
(R∞,R∞, A) ∈ F0(RX ,RX , Cp(X)).

P r o o f. Let {Vk}∞k=1 be a decomposition of X into pairwise disjoint
nonempty clopen sets (Lemma 4.2). Fix xk in each Vk. For q = (qk) ∈ R∞,
define g(q) ∈ RX by letting g(q)(x) = ϕ(q)(x) − ϕ(q)(xk) + qk for x ∈ Vk,
k ≥ 1. It is clear that g is an injective map of R∞ into RX such that
g−1(RX) = R∞ and g−1(Cp(X)) = A.

4.7. R e m a r k. Proposition 4.5, Lemma 4.6 and Theorem 4.3 remain
true for C loc

p (X). Analogous results apply to (RX , Cp(X), C loc
p (X)).

Fix x0 ∈ X. Let RX
0 = {f ∈ RX | f(x0) = 0}. If S = (E1, . . . , Ek),

1 ≤ k ≤ 4, is one of the k-tuples from 4.1, we denote by S0 the k-tuple
(E1, . . . , Ek) ∩ RX

0 = (E1 ∩ RX
0 , . . . , E

k ∩ RX
0 ).

4.8. Proposition. Let X be a countable regular noncompact space. If
S is one of the k-tuples from 4.1, 1 ≤ k ≤ 4, then S0 is strongly F0(S)-
universal.

P r o o f. Pick a decomposition {Vk}∞k=1 of X given by 4.2 and assume
x0 ∈ V1. We have

(∗) (RX ,RX , Cp(X), C loc
p (X)) ∩ RX

0

= (RV1 ,RV1 , Cp(V1), C loc
p (V1)) ∩ RV1

0 ×
∞∏

k=2

(RVk ,RVk , Cp(Vk), C loc
p (Vk)) .

Identifying RV1
0 with RV1\{x0}, we see that the argument from the proof of

4.1 works.

Let X = NF and x0 = ∞, where F is a filter on N different from
the Fréchet filter. Proposition 4.8 implies that each of the following tuples
T : cF , sF , (cF , sF ), (R∞, cF ), (R∞, sF ), (R∞, cF , sF ), (R∞,R∞, cF ),
(R∞,R∞, sF ) and (R∞,R∞, cF , sF ) is strongly F0(T )-universal. Since for
the Fréchet filter F0, cF0 is homeomorphic to Ω2 ([5], [13]), in particular, we
conclude that cF is strongly F0(cF )-universal for arbitrary F . This provides
an affirmative answer to the first part of question 6.2 in [15].

4.9. R e m a r k. Let F be a filter on N different from the Fréchet filter.
Then Lemma 4.6 applies to cF , sF and (cF , sF ).

Our second application of Section 3 concerns spaces Cp(X), where X =
NF . We start with the following fact that allows us to replace Cp(NF ) and
C loc

p (NF ) by cF and sF , respectively.
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4.10. Lemma. For every filter F on N different from the Fréchet filter ,
F0(RNF ,RNF , Cp(NF ), C loc

p (NF )) = F0(R∞,R∞, cF , sF ). If , additionally ,
cF is a Zσ-space, then (RNF ,RNF , Cp(NF ), C loc

p (NF )) ∼= (R∞,R∞, cF , sF ).

P r o o f. Evidently, we have (R∞,R∞, cF , sF ) ∈ F0(RNF ,RNF , Cp(NF ),
C loc

p (NF )). To show that (RNF ,RNF , Cp(NF ), C loc
p (NF )) ∈ F0(R∞,R∞,

cF , sF ) define ϕ : RNF → R∞ by

ϕ(f)(n) = arctan(f(n))− arctan(f(∞))

for f ∈ RNF and apply 4.9 (note that ϕ−1(cF ) ∩ RNF = Cp(NF ) and
ϕ−1(sF ) ∩ RNF = C loc

p (NF )). The first part of our lemma follows. If cF
is a Zσ-space then Cp(NF ) ∼= cF ×R is also a Zσ-space and the second part
of 4.10 follows from 4.1, 4.8 and 2.3.

4.11. Lemma. For every filter F on N different from the Fréchet filter ,
we have F0(R∞,R∞, cF ) = F0((R∞)∞, (R∞)∞, c∞F ).

P r o o f. It is obvious that (R∞,R∞, cF ) ∈ F0((R∞)∞, (R∞)∞, c∞F ).
Now, it suffices to show that ((R∞)∞, (R∞)∞, c∞F ) ∈ F0(R∞,R∞, cF ). For
x = (x(j))∞j=1 ∈ (R∞)∞, we let

ζn(x) =
∞∑

j=1

2−j |xn(j)|
1 + |xn(j)|

,

where x(j) = (xn(j)) ∈ R∞. The map ζ = (ζn) : (R∞)∞ → R∞ satisfies
ζ−1(cF ) = c∞F . Define a map χ : (R∞)∞ → (R∞)∞ by letting χ((xn(j))) =
(arctan(xn(j))). Finally, let ϕ = ζ ◦χ and observe that ϕ−1(cF )∩ (R∞)∞ =
c∞F . Now, 4.10 is applicable.

The following result which, in particular, provides a partial answer to
the second part of question 6.12 in [15] (and generalizes [14, Theorem 8.8])
follows directly from 3.5, 4.8 and 2.3.

4.12. Theorem. Let F be a filter on N which is different from the Fréchet
filter and such that cF is a Zσ-space. Then (R∞,R∞, cF ) is homeomorphic
to ((R∞)∞, (R∞)∞, c∞F ).

4.13. R e m a r k. For a filter F on N the following conditions are equiva-
lent:

(i) cF is a Zσ-space,
(ii) cF is a first category subset of R∞,
(iii) F is a first category subset of 2N,
(iv) F belongs to the σ-algebra generated by the open subsets and the

first category subsets of 2N.

This follows from [22, Theorem 5.1] and [14, Lemmas 2.2, 2.3 and Propo-
sition 3.3]. Note that if F is analytic or coanalytic, then (iv) holds.
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4.14. R e m a r k. Theorem 4.12 is false for the Fréchet filter F0; though
cF0 is homeomorphic to c∞F0

. In fact, (R∞, cF0) = (R∞, c0) is not home-
omorphic to (R∞, Ω2) ([9], [12]) but one can show that ((R∞)∞, c∞0 ) is
homeomorphic to (R∞, Ω2).

5. Determining the Borel class of Cp(X). It is known that for every
filter on N the space cF (and hence, Cp(NF )), if Borel, must be of an exact
multiplicative class. In this section we extend this result to all Cp(X) spaces.

5.1. Theorem. Let X be a countable infinite regular space such that
Cp(X) is Borel. Then there exists a countable ordinal α ≥ 1 such that
Cp(X) ∈Mα\Aα.

Our theorem will easily follow from the lemma below.

5.2. Lemma. Let P ⊂ R be the set of irrationals, and let Cp(X,P ) be the
subspace of Cp(X) consisting of functions that take values in P . For every
countable infinite regular space X, Cp(X) is Borel if and only if Cp(X,P ) is
Borel ; moreover , the exact Borel classes of Cp(X) and Cp(X,P ) coincide.

P r o o f. For discrete X, Cp(X) = RX and Cp(X,P ) = PX and both
belong to M1\A1. Suppose X is not discrete. Evidently, Cp(X,P ) is a
Gδ-subset of Cp(X); consequently, Cp(X,P ) is Borel provided Cp(X) is.
Moreover, using the fact [11] that Cp(X) 6∈ A2, we have Cp(X,P ) ∈ Mα

(resp., Aα) provided Cp(X) ∈Mα (resp., Aα).
Conversely, suppose Cp(X,P ) is Borel. Put

S = {(f, t) ∈ RX × R | ∀x∈X f(x) + t ∈ P} .
SinceX is countable, S is aGδ-subset of a complete metrizable space RX×R.
Let d be a complete metric on S. For f ∈ RX , we define Sf = {t ∈
R | (f, t) ∈ S} = {t ∈ R | ∀x∈X f(x) + t ∈ P}. Since X is countable,⋂

x∈X(P −f(x)) is dense in R. Hence, Sf is dense in R. Define ϕ : S → PX

by letting
ϕ(f, t)(x) = f(x) + t .

Then ϕ is continuous and satisfies

ϕ−1(Cp(X,P )) = {(f, t) | f ∈ Cp(X)} = T .

Claim. The restriction π|T of the projection of Cp(X)×R onto Cp(X)
is open.

The above follows immediately from the fact that π−1({f}) = Sf is dense
in R for every f ∈ Cp(X). Since Sf is closed in S, (π−1({f}), d) = (Sf , d)
is complete. It follows from [18, Theorem 5.9.16, p. 156] (see also [10]) that
if T ∈Mα (resp., Aα), then π(T ) = Cp(X) ∈Mα (resp., Aα). Our lemma
follows.
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P r o o f o f 5.1. Observe that

Cp(X,P ) ∼= Cp(X,P∞) = (Cp(X,P ))∞ .

Now, it is enough to combine 5.2 with 8.3 which, in particular, states that
a countable product of a Borel set is of an exact multiplicative class.

The proof of 5.2 works also for the projective classes Pn. Using embed-
dings of 2∞ into P and of P into 2∞ one can easily verify that for nondiscrete
X, the exact Borel classes of Cp(X,P ) and Cp(X, 2∞) = (Cp(X) ∩ 2X)∞

coincide. Consequently, applying 5.2 and 8.3, we obtain the following gen-
eralization of [14, Lemma 4.2].

5.3. Corollary. Let X be a countable regular space. Then, for a count-
able ordinal α ≥ 1 and n ≥ 1, we have

(a) if Cp(X) ∩ 2X ∈ Aα\Mα, then Cp(X) ∈Mα+1\Aα+1,
(b) if Cp(X) ∩ 2X ∈Mα\Aα, then Cp(X) ∈Mα\Aα,
(c) if Cp(X)∩2X ∈ Aα∩Mα\

⋃
β<α(Aβ∪Mβ), then Cp(X) ∈Mα\Aα.

(d) Cp(X) ∩ 2X ∈ Pn iff Cp(X) ∈ Pn.

Let us notice that Cp(X) ∩ 2X is the subspace of 2X consisting of the
characteristic functions of clopen subsets of X. For X = NF , Cp(X) ∩ 2X

can be identified with F × {0, 1}. Let us also point out that all Borel and
projective classes of the spaces Cp(X)∩2X mentioned in the above corollary
(except for α = 1 in (b) and (c)) do occur (see 9.2).

6. Classification of Borel spaces Cp(X). In this section we discuss
the following question.

6.1. Problem. Let X be a countable regular nondiscrete space such
that Cp(X) is Borel. Does the Borel class of Cp(X) determine its topological
type?

A particular case of this question has been treated in [14], where it was
shown that Cp(X) is homeomorphic to Ω2 provided it belongs to the class
M2. By 5.1, if X is a countable nondiscrete regular space such that Cp(X)
is Borel, then Cp(X) ∈ Mα\Aα for some α ≥ 2. We shall later show that
for every countable ordinal α ≥ 2, there exists a space X such that Cp(X)
is homeomorphic to Ωα. Since every Cp(X) which is Borel is a Zσ-space
[14], by 4.1, it is an absorbing set for the class F0(Cp(X)). The uniqueness
theorem for absorbing sets (Theorem 2.1) implies that 6.1 is equivalent to
the following question.

6.2. Problem. Let X be a countable regular space such that Cp(X) ∈
Mα\Aα, α ≥ 2. Is F0(Cp(X)) equal to Mα?
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All proofs of the fact that Cp(X) ∼= Ωα we are aware of are based on
the Wadge (I∞,Mα)-completeness of the pair (RX , Cp(X)). Therefore it is
reasonable to ask:

6.3. Problem. Let X be a countable regular space such that Cp(X) ∈
Mα\Aα, α ≥ 2. Is the pair (RX , Cp(X)) Wadge (I∞,Mα)-complete?

An affirmative answer to this problem would not only resolve 6.1 but also
provide a complete topological classification of the triples (RX ,RX , Cp(X))
for Borel Cp(X).

6.4. Theorem. Let X be a countable regular noncompact space such that
Cp(X) ∈Mα, α ≥ 2. The following conditions are equivalent :

(1) (RX , Cp(X)) is Wadge (I∞,Mα)-complete,
(2) F0(RX ,RX , Cp(X)) = (M0,M1,Mα),
(3) (RX ,RX , Cp(X)) ∼= (R∞,R∞, Ωα).

P r o o f. (1)⇒(2). (1) and Lemma 4.6 show that (R∞,R∞, Ωα) ∈
F0(RX ,
RX , Cp(X)). Now, (2) follows.

(2)⇒(3). Apply 4.1, 2.3 and the fact that Cp(X) is a Zσ-space (see [14]).
(3)⇒(1) is obvious.

6.5. R e m a r k. Here are two more conditions equivalent to those of 6.4:

(4) (RX , Cp(X)) is Wadge (R∞,Mα)-complete,
(5) (RX , Cp(X)) ∼= (R∞, Ωα).

Theorem 6.4 holds also for the spaces C loc
p (X). However, in this case,

C loc
p (X) can also be of an exact additive class α. Then we must replace Mα

by Aα and Ωα by Λα. Also 6.4 can be extended to the classes Pn, n ≥ 1,
for both Cp(X) and C loc

p (X) spaces that are Zσ-spaces. Below we give a
detailed statement of these facts for X = NF .

6.6. R e m a r k. Let F be a filter on N that is not a Fréchet filter. Then

(a) if cF ∈Mα (resp., sF ∈Mα), then (1)–(5) formulated for cF (resp.,
sF ) are equivalent,

(b) if sF ∈ Aα, then (1)–(5) formulated for sF , with Mα replaced by
Aα and Ωα by Λα, are equivalent,

(c) if cF ∈ Pn (resp., sF ∈ Pn) and cF is a Zσ-space, then (1), (2), (4),
and (5) formulated for cF (resp., sF ), with Mα replaced by Pn and Ωα by
Πn, are equivalent. We also have (R∞, cF ) ∼= (R∞,Πn) (resp., (R∞, sF ) ∼=
(R∞,Πn)).

A proof of 6.6 can be obtained in the same way as that of 6.4 (use 4.9
and the fact that Cp(NF ) (resp., C loc

p (NF )) is Wadge complete if and only
if cF (resp., sF ) are).
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Since Cp(X) ∈M2 for compact X, Theorem 6.4 shows that an affirma-
tive answer to 6.3 would determine the topological type of (RX ,RX , Cp(X))
for Cp(X) ∈ Mα\Aα, α ≥ 3. Let us discuss the case where α = 2. Let
B(X) = {f ∈ RX | f is bounded}. For countable infinite X, we have
B(X) ∼= Σ (see [1]). If X is compact then Cp(X) ⊂ B(X).

6.7. Theorem. Let X be a countable regular nondiscrete space such that
Cp(X) ∈M2. Then:

(a) If X is not compact , then (RX ,RX , Cp(X)) ∼= (R∞,R∞, Ω2).
(b) If X is compact , then (RX ,RX , B(X), Cp(X)) ∼= (R∞,R∞, Σ, c0).

P r o o f. (a) This follows from 6.4 and the fact ([5], [14, Remark 5.6])
that (RX , Cp(X)) is Wadge (I∞,M2)-complete.

(b) It was implicitly shown in [5], [13] that (Σ, c0) is strongly (M0,M2)-
universal. To get the result we will check that also (B(X), Cp(X)) is strongly
(M0,M2)-universal, and then apply 2.4. Since X is metrizable, a standard
argument ([5], [13]) yields a (linear) factorization (B(X), Cp(X)) ∼= (E ×
Σ,E×c0) for some linear space E. Now, since (Σ, c0) is strongly (M0,M2)-
universal, the argument of [2, Proposition 2.6] shows that (B(X), Cp(X)) is
also strongly (M0,M2)-universal.

6.8. R e m a r k. It has been observed ([9], [12]) that (R∞, Ω2) and
(R∞, c0) are not homeomorphic though the pairs (R∞, Ω2) and (R∞, c0)
are strongly (M0,M2)-universal. Consequently, if X is compact and Y is
not compact such that Cp(Y ) ∈ M2\A2 then (RX , Cp(X)) 6∼= (RY , Cp(Y ))
(however, (RX , Cp(X)) ∼= (RY , Cp(Y ))).

7. Some observations on cF and sF . To attack Problems 6.2 and
6.3 it is tempting to utilize the strategy of [14]: first treat spaces X with
exactly one nonisolated point and then deal with the general case. Having
this in mind, we consider in this section a few specific aspects of spaces cF
and sF .

First, using Theorem 4.12, we reduce 6.2 and 6.3 to spaces cF by proving
the following result.

7.1. Proposition. Let F be a filter on N that is not the Fréchet filter
and such that cF ∈Mα. Then

(a) cF ∼= Ωα iff F0(cF ) contains all Aβ for β < α,
(b) (R∞,R∞, cF ) ∼= (R∞,R∞, Ωα) iff (R∞, cF ) is Wadge (I∞,Aβ)-uni-

versal for all β < α.

P r o o f. Since cF is Borel, by [14], cF is a Zσ-space. By 4.8, cF is
then an F0(cF )-absorbing set; hence it is homeomorphic to Ωα iff F0(cF ) =
Mα. According to the construction of [2], (R∞, Ωα) = ((R∞)∞,

∏∞
n=1 Fn),
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where each Fn ⊂ R∞ belongs to
⋃

β<αAβ . Now, (a) follows from the fact
(Theorem 4.12) that cF ∼= c∞F . To get (b), assume (R∞, cF ) is Wadge
(I∞,Aβ)-universal for all β < α. Hence there exists a map ϕ : (R∞)∞ →
(R∞)∞ such that ϕ−1(c∞F ) =

∏∞
n=1 Fn. Since, by 4.12, ((R∞)∞, c∞F ) ∼=

(R∞, cF ), applying 4.7 we infer that (R∞,R∞, Ωα) ∈ F0(R∞,R∞, cF ). Now
6.6(a) is applicable to conclude that (R∞,R∞, cF ) ∼= (R∞,R∞, Ωα).

The remaining part of this section is devoted to the spaces sF and their
application to the study of cF .

7.2. Lemma. For f ∈ RN, let %(f) = f−1({0}) ∈ 2N. Then

(a) % is a transformation of RN into 2N of the first Baire class,
(b) for every closed set H ⊂ 2N the set

V (H) = {f ∈ RN | ∃A∈H A ⊆ %(f)}

is closed in RN.

P r o o f. (a) This is folklore (cf. [22, Lemma 3.2]); we include its proof
for the reader’s convenience. Pick x1, . . . , xn, y1, . . . , ym ∈ N and write

U = U(x1, . . . , xn ; y1, . . . , ym)

= {A ∈ 2N | {x1, . . . , xn} ⊂ A ⊂ N\{y1, . . . , ym}} .

Then %−1(U) is the intersection of a closed set {f | f(x1) = . . . = f(xn) = 0}
and an open set {f | f(yj) 6= 0, 1 ≤ j ≤ m}; hence %−1(U) is an Fσ-set.
Since the sets U(x1, . . . , xn ; y1, . . . , ym) form a basis in 2N, (a) is shown.

To see (b), let (fn) be a sequence in V (H) which converges to f ∈ RN.
By definition of V (H), there are An ∈ H with An ⊆ %(fn). Since H is
compact we can assume that (An) converges to some A ∈ H. If we had
A 6⊂ %(f), there would exist x ∈ A with f(x) 6= 0. Then, if n is sufficiently
large, x ∈ An and fn(x) 6= 0, a contradiction.

It turns out that the topological identification of sF is easy for σ-compact
filters F . For the Fréchet filter F0, sF0 is the space σ = {(xi) ∈ R∞ | xi = 0
a.e.}. The case of all remaining σ-compact filters is described below.

7.3. Proposition. Let F be a σ-compact filter on N that is not the
Fréchet filter. Then (R∞,R∞, sF ) ∼= (R∞ × R∞,R∞ × R∞,R∞ × σ).

P r o o f. First we shall show that, for every σ-compact filter F , sF is a
countable union of Z-sets in R∞. To this end, observe that sF , as a linear
subspace of a Zσ-space cF (see [14]), is itself a Zσ-space. Let F =

⋃∞
n=1Hn,

where Hn ⊂ 2N are compacta. Since sF =
⋃∞

n=1 V (Hn) and each V (Hn) is
closed in R∞ (use 7.2(b)), sF is an Fσ-subset of R∞, and consequently is a
countable union of Z-sets in R∞.
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Let F0 be the Fréchet filter on N. Consider the σ-compact filter F1 =
2N × F0 on N× {0, 1}. Identifying N× N with N, we have

(R∞,R∞, sF1) ∼= (R∞ × R∞,R∞ × R∞,R∞ × σ) .

Since for every filter F , R∞\sF is locally homotopy negligible, our result
will follow from 2.3 and 4.8 if we show that (R∞,R∞, X) ∈ F0(R∞,R∞, sF )
for every X that is a countable union of Z-sets in R∞. However, if X is
such a set, then there exists Y which is an Fσ-subset of R∞ and such that
Y ∩ R∞ = X. Hence, by [14, Lemma 5.4] (see also our Lemma 8.9), there
exists a map ϕ : R∞ → R∞ with ϕ−1(sF ) = Y . Finally, 4.9 is applicable.

Let us ask

7.4. Question. Let F be a σ-compact filter on N that is not the Fréchet
filter. Is (R∞,R∞, cF , sF ) homeomorphic to (R∞ × R∞,R∞ × R∞,R∞×c0,
R∞ × σ), where c0 = {(xi) ∈ R∞ | xi → 0}?

To answer this question in the affirmative it is enough to show that there
are maps ϕ : R∞ → R∞ × R∞ and ψ : R∞ × R∞ → R∞ with

ϕ−1(R∞ × c0) = cF and ϕ−1(R∞ × σ) = sF , and
ψ−1(cF ) = R∞ × c0 and ψ−1(sF ) = R∞ × σ .

In contrast to the case of cF , the relationship between the Borel com-
plexity of F and that of sF seems to be difficult to determine. We have
the following partial result; part (a) is a consequence of the fact that F
embeds onto a closed subset of sF , and (b) and (c) follow from 7.2(a) and
the observation that sF = %−1(F ).

7.5. Corollary. For a filter F on N, we have:

(a) If sF ∈Mα (resp., Aα), then F ∈Mα (resp., Aα).
(b) If F ∈Mα (resp., Aα), then sF ∈M1+α (resp., A1+α). In particu-

lar , for infinite α, F ∈Mα (resp., Aα) iff sF ∈Mα (resp., Aα).
(c) For every n, sF ∈ Pn iff F ∈ Pn.

The following general fact can be helpful in studying cF .

7.6. Proposition. For every filter F on N, we have (R∞,R∞, cF ) ∈
F0((R∞)∞, (R∞)∞, s∞F ).

P r o o f. For every k, let ψk : R → R be a map such that ψk(t) = t for
|t| ≥ 1/k, ψk(t) = 0 for |t| < 1/(k+1) and ψk is linear on [−1/k,−1/(k+1)]
and on [1/(k+ 1), 1/k]. For f ∈ R∞, we let ζk(f) = ψk ◦ f . Then ζ = (ζk) :
R∞ → (R∞)∞ is an embedding such that ζ−1((R∞)∞) = R∞. Moreover,
for f ∈ R∞, ζk(f) ∈ sF if and only if {n | |f(n)| ≤ 1/(k + 1)} ∈ F . It
follows that ζ−1(s∞F ) = cF .
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Note that for the Fréchet filter F0, cF0
∼= s∞F0

. By 7.3, for every σ-
compact filter F on N, we have cF ∼= Ω2

∼= (R∞ × σ)∞ ∼= s∞F . Therefore, it
is reasonable to ask:

7.7. Problem. Is cF homeomorphic to s∞F ?

In view of 7.6, 4.8 and 4.11, this problem for spaces cF that are Zσ-spaces
is equivalent to the question of whether sF ∈ F0(cF ).

8. Construction of spaces cF homeomorphic to Ωα for even α. In
this section, for every countable odd (resp., even) ordinal α, we inductively
construct a filter Fα ∈ Aα\Mα (resp., Gα ∈Mα\Aα) such that cFα

(resp.,
cGα) is homeomorphic to Ωα+1 (resp., Ωα). We start with some auxiliary
constructions.

For a sequence {(Xn, An)}∞n=1 of pairs of metrizable spaces, we define
the Fréchet product of An with respect to Xn to be the subset

FP(Xn, An) =
{

(xn) ∈
∞∏

n=1

Xn : xn ∈ An for almost all n
}

of the product
∏∞

n=1Xn. If Xn = X (resp., Xn = X and An = A) for n ≥ 1,
we abbreviate FP(Xn, An) = FP(X,An) (resp., FP(Xn, An) = FP(X,A)).

The following fact is the key to this section.

8.1. Proposition. Let Y be a separable metrizable space and let
{(Xn, An)}∞n=1 be a sequence of pairs of separable metrizable spaces.

(a) Let α ≥ 1 (or α ≥ 0 if Y is zero-dimensional) be a countable
ordinal. If each (Xn, An) is Wadge (Y,Aα(Y ))-complete then (

∏∞
n=1Xn,

FP(Xn, An)) (resp., (
∏∞

n=1Xn,
∏∞

n=1An)) is Wadge (Y,Aα+2(Y ))-complete
(resp., (Y,Mα+1(Y ))-complete).

(b) Let α be a limit ordinal , and let (αn) be a sequence of ordinals such
that αn < α and supαn = α. If each (Xn, An) is Wadge (Y,Aαn(Y ))-
complete, then (

∏∞
n=1Xn, FP(Xn, An)) (resp., (

∏∞
n=1Xn,

∏∞
n=1An)) is

Wadge (Y,Aα+1(Y ))-complete (resp., (Y,Mα(Y ))-complete).

The proof makes use of the lemma below which is essentially due to
Calbrix [4].

8.2. Lemma. Let Y be a separable metrizable space and let α ≥ 2 (or
α ≥ 1 if Y is zero-dimensional) be a countable ordinal.

(a) If A ∈ Aα+1(Y ), then there exists {Bn}∞n=1 with Bn ∈
⋃

β<αAβ(Y ),
n ≥ 1, such that A =

⋃∞
m=1

⋂
n≥mBn.

(b) If A ∈ Mα+1(Y ), then there exists {Bn}∞n=1 with Bn ∈⋃
β<αMβ(Y ), n ≥ 1, such that A =

⋂∞
m=1

⋃
n≥mBn.
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P r o o f. (b) There exist Ci ∈ Aα(Y ), i ≥ 1, such that A =
⋂∞

i=1 Ci

and Ci+1 ⊆ Ci for all i. By [20, Theorem 2 and Remarks, p. 348], there
exist sets Dij ∈

⋃
β<αMβ(Y ) such that Ci =

⋃∞
j=1Dij and Dij ∩Dik = ∅

for j 6= k. Let {Bn}∞n=1 be an enumeration of {Dij}∞i,j=1. We claim that
A =

⋂∞
m=1

⋃
n≥mBn. In fact, if x ∈ A then x belongs to each Ci; and

hence it belongs to some element of {Dij}∞j=1. Consequently, x belongs to
infinitely many Bn. Conversely, if x 6∈ A then there exists an integer i0 such
that x 6∈ Ci for i ≥ i0. Since, for fixed i, x belongs to at most one of the
sets {Dij}∞j=1, x cannot belong to infinitely many Bn.

(a) If A ∈ Aα+1(Y ), then A′ = Y \A ∈ Mα+1(Y ). By (b), A′ =⋂∞
m=1

⋃
n≥mB′n, where B′n ∈

⋃
β<αMβ(Y ). Then

A = Y \
∞⋂

m=1

⋃
n≥m

B′n =
∞⋃

m=1

(
Y \

⋃
n≥m

B′n

)
=

∞⋃
m=1

⋂
n≥m

(Y \B′n) ,

and Bn = Y \B′n ∈
⋃

β<αAβ(Y ).

P r o o f o f 8.1. We only show (a); the proof of (b) is similar. Let T ∈
Aα+2(Y ) (resp., T ∈ Mα+1(Y )). It follows from 8.2(a) (resp., it is elemen-
tary) that there exist Sn ∈ Aα(Y ), n ≥ 1, such that T =

⋃∞
m=1

⋂
n≥m Sn

(resp., T =
⋂∞

n=1 Sn). For every n, let ϕn : Y → Xn be a map such
that ϕ−1

n (An) = Sn. Let ϕ = (ϕn) : Y →
∏∞

n=1Xn. One can check that
ϕ−1(FP(Xn, An)) = T (resp., ϕ−1(

∏∞
n=1An) = T ).

Proposition 8.1 allows us to determine the Borel class of FP(Xn, An) (as
well as that of

∏∞
n=1An, which we include herein though, presumably, this

belongs to mathematical folklore).

8.3. Proposition. Let {(Xn, An)}∞n=1 be a sequence of pairs of separable
metrizable spaces, and let Xn be complete metrizable, n ≥ 1. Let α ≥ 1 be
a countable ordinal.

(a) If An ∈ Aα\Mα (resp., A1(Xn)\M1 for α = 1), n ≥ 1, then
FP(Xn, An) ∈ Aα+2\Mα+2 and

∏∞
n=1An ∈Mα+1\Aα+1.

(b) If An ∈Mα\
⋃

β<αMβ (resp., M1\M0(X) for α = 1), n ≥ 1, then
FP(Xn, An) ∈ Aα+1\Mα+1 and

∏∞
n=1An ∈Mα\Aα.

(c) Let α be a limit countable ordinal and (αn) be a sequence of ordinals
such that αn < α and supαn = α. If An ∈ Aαn ∪Mαn\

⋃
β<αn

(Aβ ∪Mβ),
n ≥ 1, then FP(Xn, An) ∈ Aα+1\Mα+1 and

∏∞
n=1An ∈Mα\Aα.

We need the following lemma.

8.4. Lemma. Let A be a Borel subset of a separable complete metrizable
space X and let α be a countable ordinal. If A 6∈ Mα(X) then the pair
(X,A) is Wadge (2∞,Aα(2∞))-complete.
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P r o o f. According to [19, Theorem 4], X contains a zero-dimensional
compactum P such that P ∩ A 6∈ Mα. We can consider P as a subset of
the Cantor set 2∞. Let r : 2∞ → P be a retraction (see [17, Ex. 4.5.10,
p. 363]) and let B = r−1(A∩P ). Obviously B is Borel and B 6∈ Mα (A∩P
is a closed subset of B). The Wadge Lemma (see [24]) shows that (2∞, B) is
Wadge (2∞,Aα)-complete. Using the retraction r we infer that (P, P ∩A),
and therefore (X,A), is Wadge (2∞,Aα(2∞))-complete.

P r o o f o f 8.3. It is elementary that if An ∈ Aα (resp., An ∈Mα) then
FP(Xn, An) belongs to Aα+2 and

∏∞
n=1An ∈ Mα+1 (resp., FP(Xn, An)

belongs to Aα+1 and
∏∞

n=1An belongs to Mα). Now, to evaluate the exact
Borel classes of the spaces FP(Xn, An) and

∏∞
n=1An apply 8.1 together with

the suitable Wadge completeness of these spaces given by 8.4. .

Let F be a filter on N. We write

uF = {(xn) ∈ R∞ | ∀A∈F sup
i∈A

|xi| = ∞}

and set
XF = cF ∪ uF .

8.5. Proposition. Let {Fn}∞n=1 be a sequence of filters on N. Consider
the filters F = FP(2N, Fn) and P =

∏∞
n=1 Fn on N× N.

(a) If α is a countable ordinal such that (XFn , cFn) are Wadge (I∞,Aα)-
complete for all n then

(i) the pair (XF , cF ) is Wadge (I∞,Aα+2)-complete,
(ii) the pair (XP , cP ) is Wadge (I∞,Mα+1)-complete.

(b) If α is a countable limit ordinal and (αn)∞n=1 a sequence of ordinals
satisfying αn < α and supαn = α such that (XFn

, cFn
) is Wadge (I∞,Aαn

)-
complete for all n, then

(i) the pair (XF , cF ) is Wadge (I∞,Aα+1)-complete,
(ii) the pair (XP , cP ) is Wadge (I∞,Mα)-complete.

P r o o f. (a) Let us note that

(1) FP(XFn
, cFn

) ⊂ cF ,
(2) (

∏∞
n=1XFn)\FP(XFn , cFn) ⊂ uF ,

(3) cP =
∏∞

n=1 cFn ,
(4)

∏∞
n=1XFn ⊂ XP .

The assertion (i) (resp., (ii)) follows from (1), (2) and 8.1 (resp., (2), (3)
and 8.2).

The proof of (b) is the same as that of (a).

For odd countable ordinals α, define filters Fα inductively as follows. Let
F1 be any filter that belongs to A1. Suppose filters Fβ have been defined for
all odd β < α. If α−1 is not a limit ordinal, put βn = α−2, n = 1, 2, . . . ; if
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α−1 is a limit ordinal, pick (βn) to be a sequence of odd ordinals satisfying
βn < α− 1 and supβn = α− 1. Then let

Fα = FP(2N, Fβn) .

Let us also define, for all even ordinals α > 0, filters Gα as follows. If α is not
a limit ordinal, let Gα = F∞α−1. If α is a limit ordinal, pick (βn) a sequence
of odd ordinals satisfying βn < α and supβn = α, and let Gα =

∏∞
n=1 Fβn .

8.6. Lemma. (a) For every odd α, Fα ∈ Aα\Mα.
(b) For every even α > 0, Gα ∈Mα\Aα.

P r o o f. Since no filter belongs to M1 (see [4]), F1 ∈ A1\M1. Now, the
assertions (a) and (b) follow inductively from 8.3.

8.7. Theorem. (a) For every odd α > 1, we have (R∞,R∞, cFα) ∼=
(R∞,R∞, Ωα+1) and (R∞,R∞, sFα

) ∼= (R∞,R∞, Λα+1).
(b) For every even α > 0, we have (R∞,R∞, cGα) ∼= (R∞,R∞, Ωα) ∼=

(R∞,R∞, sGα
).

We will employ the following auxiliary result.

8.8. Lemma. For every odd α ≥ 1, (XFα
, cFα

) is Wadge (I∞,Aα)-
complete.

P r o o f. It follows from 8.5 that whenever our lemma holds for α = 1,
then it holds for arbitrary odd α. Verification of the assertion for α = 1 is
a particular case of the following fact.

8.9. Lemma. Let F be a filter on N that is an element of the σ-algebra
generated by the open subsets and the first category subsets of 2N. Then the
pair (XF , cF ) is Wadge (I∞,A1)-complete.

We will make use of the fact below whose proof is implicitly contained
in the proof of [14, Lemma 5.4].

8.10. Lemma. Let X be a complete absolute retract and Z ⊆ Y be subsets
of X that satisfy

(i) Y is a countable union of Z-sets in X,
(ii) X\Z is locally homotopy negligible in X.

Then for every σ-compact subset A of I∞ there exists a map ϕ : I∞ → X
such that ϕ(A) ⊆ Z and ϕ(I∞\A) ⊆ X\Y .

P r o o f o f 8.9. Applying [14, Lemmas 2.2 and 2.3], we can find a matrix
{A(n,m)}∞n,m=1 of pairwise disjoint finite subsets of N such that, for every
A ∈ F , there exists n ∈ N with A ∩A(n,m) 6= ∅ for all m. Put

X(n, k) = {(xi) ∈ R∞ | ∀m∃i∈A(n,m) |xi| ≤ k} .
One can easily check that
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(1) each X(n, k) is a Z-set in R∞,
(2) cF ⊆

⋃∞
n,k=1X(n, k) = Y ,

(3) R∞\Y ⊂ uF .

It suffices to apply 8.10 with X = R∞, Y and Z = cF .

P r o o f o f 8.7. Combining 8.6 and [14, Lemma 4.2], we infer that
cFα ∈ Mα+1. This together with 8.8 and 7.1 yields that (R∞,R∞, cFα) ∼=
(R∞,R∞, Ωα+1).

Similarly, we deduce that cGα
belongs toMα. By 8.8 and 8.5, (XGα

, cGα
)

is Wadge (I∞,Mα)-complete (hence, (R∞, cGα) is also Wadge (I∞,Mα)-
complete). Now, 7.1 shows that (R∞,R∞, cGα) ∼= (R∞,R∞, Ωα).

Observe that for every sequence {Fn}∞n=1 of filters on N, writing F =
FP(2N, Fn) and P =

∏∞
n=1 Fn, we have

(1) sF = FP(R∞, sFn),
(2) sP =

∏∞
n=1 sFn

.

Note that sF1 ∈ A1(R∞)\M1(R∞) (for a filter F1 that is not the Fréchet
filter, apply 7.3; if F1 is the Fréchet filter then sF1 = σ). Using 8.3 and (1),
we inductively deduce that sFα ∈ Aα\Mα for all odd α > 1. By 8.3 and
(2), sGα ∈Mα for all even α > 0.

Since sF1 is a countable union of Z-sets in R∞ (see the proof of 7.3),
Lemma 8.10 is applicable and thus (R∞, sF1) is Wadge (I∞,A1)-complete.
Using 8.1 and (1), we show inductively that (R∞, sFα) is Wadge (I∞,Aα)-
complete. By 6.6(b), (R∞,R∞, sFα) ∼= (R∞,R∞, Λα).

Since (R∞, sFα
) is Wadge (I∞,Aα)-complete for all odd α, it follows

from 8.1(a) and (2) that (R∞, sGα) is Wadge (I∞,Mα)-complete for even
α > 0. By 6.6(b), (R∞,R∞, sGα

) ∼= (R∞,R∞, Ωα).

8.11. R e m a r k. Let F0 be the Fréchet filter on N and let A=FP(2N, F0)
be the filter defining the Arens space NA (see [17, Example 1.6.20]). By
8.7, we find that cA ∼= Ω4 and sA

∼= Λ3. In particular, cA ∈ M4\A4 and
sA ∈ A3\M3; these facts were shown with the use of different approaches
by R. Pol during Winter School at Srńı (Czechoslovakia), 1990.

8.12. R e m a r k. If we know a filter F on N that belongs to A2 so that
(XF , cF ) is Wadge (I∞,A2)-complete, then we could repeat the inductive
construction preceding Lemma 8.6 to obtain filters F̃α ∈ Aα\Mα (resp.,
G̃α ∈ Mα\Aα) for all even (resp., odd) ordinals α, 2 ≤ α < ω. For such α,
Theorem 8.6 holds. See the next section for a construction of F .

The techniques of this section allow us to construct inductively linear
copies of Λα for odd ordinals α and Ωα for even ordinals α in R∞ as follows.
Let α be a countable ordinal ≥ 2. If α is a limit ordinal, let (αn) be
a sequence of ordinals such that αn < α and supαn = α; otherwise set
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αn = α − 1 for all n. Let {En}∞n=1 be a sequence of linear subspaces of
R∞ such that (R∞, En) ∼= (R∞, Λαn) for all n. Let E = FP(R∞, En) and
H =

∏∞
n=1En.

8.13. Proposition. We have:

(a) ((R∞)∞, E) ∼= (R∞, Λα+1),
(b) ((R∞)∞,H) ∼= (R∞, Ωα).

P r o o f. Evidently, E ∈ Aα+1 and H ∈ Mα. By 8.1, ((R∞)∞, E) is
Wadge (I∞, Aα+1)-complete and ((R∞)∞,H) is Wadge (I∞,Mα)-complete.
Since ((R∞)∞, E) is homeomorphic to R∞ × ((R∞)∞,FP(R∞, En+1)), it
easily follows that F0((R∞)∞, E) = (M1,Aα+1) (cf. 4.6). Using the fact
that (R∞, En) ∼= (R∞, En)×R, we infer that ((R∞)∞,H) ∼= ((R∞)∞,H)×
R∞; consequently, F0((R∞)∞,H) = (M1,Mα). Since E and H are Zσ-
spaces, 3.1 is applicable, for according to 3.8 the strong universality of both
((R∞)∞, E) and ((R∞)∞,H) follows.

9. Filters generated by subsets of I∞. We shall adapt the con-
struction of filters described in [22] to I∞. This is done so that for every
subset A of I∞, there exists a filter FA such that cFA

contains a closed copy
of A.

Let d be a metric on I∞ that is bounded by 1. For k ≥ 1, let Qk be
a finite subset of I∞ such that for every q ∈ I∞ there exists q′ ∈ Qk with
d(q, q′) < 1/k. Assume {Qk}∞k=1 is pairwise disjoint. Let Q =

⋃∞
k=1Qk, and

let {qn}∞n=1 be an enumeration of Q. For k ≥ 1, put Nk = {i ∈ N | qi ∈ Qk};
N has thus been decomposed into finite sets Nk. For every q ∈ I∞, set

Bq =
∞⋃

k=1

{n ∈ Nk | d(q, qn) ≤ 2/k} .

Note that, for p, q ∈ I∞, p 6= q, the set Bp ∩ Bq is finite. For A ⊆ I∞, let
FA be the filter on N generated by the sets of the form

N\(Bq1 ∪ . . . ∪Bqn ∪ S) ,

where n = 1, 2, . . . , qi ∈ A for i = 1, . . . , n and S is a finite subset of N. If
q 6= qi for i = 1, . . . , n, then Bq ∩Bqi

is finite; hence N\(Bq1 ∪ . . .∪Bqn
∪S)

6= ∅. This shows that FA is well defined. Write F = FI∞ .

9.1. Lemma. There exists an embedding ϕ : I∞ → R∞ such that , for
every subset A of I∞, we have

(i) ϕ(A) ⊆ sFA
,

(ii) ϕ(I∞\A) ⊂ uFA
.

P r o o f. Define ϕ as follows:

ϕ(q)(n) = kmax(0, 2− kd(q, qn)) if n ∈ Nk ,
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k = 1, 2, . . . It is clear that ϕ is a map of I∞ into R∞. Let q ∈ I∞ and
n ∈ Nk with ϕ(q)(n) 6= 0. Then 2− kd(q, qn) > 0; hence d(q, qn) < 2/k and
n belongs to Bq. Consequently, if q ∈ A then ϕ(q) ∈ sFA

; this shows (i).
For each k there exists nk ∈ Nk with d(q, qnk

) < 1/k. It easily follows that
ϕ(q)(nk) ≥ k; thus ϕ(q) is unbounded on Bq. This shows that ϕ is injective.
To see (ii), suppose q 6∈ A and let

X = N\(Bq1 ∪ . . . ∪Bqn
∪ S)

be a basic element of FA, where q1, . . . , qn are points of A and S is a finite
subset of N. Since Bq\X is finite, ϕ(q) is unbounded on X.

9.2. Proposition. Let α be a countable ordinal ≥ 2 and n be an integer
≥ 1. For a subset A of I∞, the following assertions are equivalent :

(i) A ∈ Aα (resp., Mα or Pn),
(ii) FA ∈ Aα (resp., Mα or Pn),
(iii) sFA

∈ Aα (resp., Mα or Pn).

Moreover , this holds for the class A1 provided (iii) is replaced by (iii)′:
sFA

∈ A1(R∞).

P r o o f. (i)⇒(iii). For A ⊆ I∞ and l,m ≥ 1, we put

P (A, l,m) = {f ∈ R∞ | ∃p∈Am N\f−1({0}) ⊆ Bp1 ∪ . . .∪Bpm ∪ {1, . . . , l}} ,

where p = (p1, . . . , pm). Note that

(1) sFA
=

∞⋃
l,m=1

P (A, l,m) .

If π : R∞ × (I∞)m → R∞ is the natural projection, then P (A, l,m) =
π(Cm,l∩ (R∞×Am)), where Cm,l = {(f, p) ∈ R∞× (I∞)m | ∀n>l[n ∈ Nk →
∃1≤i≤m d(qn, pi) ≤ 2/k or (f(n) = 0)]}. The set Cm,l is closed. If A is
an Fσ-set, then the same is true of Cm,l ∩ (R∞ × Am), therefore also of its
projection, P (A, l,m) on R∞. Apply (1), to get sFA

∈ A1(R∞).
Recall that σ = {(xi) ∈ R∞ | xi = 0 a.e.}. Put R(A, l, 1) = (A, l, 1)\σ

and R(A, l,m) = P (A, l,m)\
⋃∞

j=1 P (A, j,m− 1) for m ≥ 2; hence

(2) sFA
= σ ∪

∞⋃
l,m=1

R(A, l,m) .

Since σ is σ-compact, to examine the case of A ∈ Aα, α ≥ 2 (resp., A ∈ Pn),
it suffices to show that each R(A, l,m) belongs to Aα (resp., Pn).

Since P (I∞, l,m) = π(Cm,l) is closed, each R(I∞, l,m) is a Gδ-subset
of R∞. Let Qm be the closed subset of 2I∞ consisting of elements that
contain no more than m points. For f ∈ R(I∞, l,m), there exists a unique
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set H(f) = {p1, . . . , pm} ∈ Qm such that

N\f−1({0}) ⊂ Bp1 ∪ . . . ∪Bpm ∪ {1, . . . , l} .
We will check that H is continuous. Fix f ∈ R(I∞, l,m) and ε > 0 and
write H(f) = {p1, . . . , pm}. Let δ = min{d(pi, pj) | 1 ≤ i, j ≤ m, i 6= j}.
Choose k > l with 1/k < min(δ/8, ε/4). Since f 6∈

⋃∞
j=1 P (A, j,m− 1), we

can find n1, . . . , nm ∈
⋃

j≥k Nj such that f(ni) 6= 0 and that ni ∈ Bpi
for

i = 1, . . . ,m. By definition of Bpi , we have

d(qni , pi) ≤
2
k
.

Then
d(qni , qnj ) ≥ d(pi, pj)− d(pi, qni)− d(pj , qnj )

≥ δ − 2
k
− 2
k
> δ − δ

2
>

4
k
.

If q ∈ R(I∞, l,m) is so close to p that q(ni) 6= 0 for i = 1, . . . ,m, then,
writing H(q) = {r1, . . . , rm}, for every i ≤ m there exists an index j(i) such
that ni ∈ Brj(i) . Then d(qni , rj(i)) ≤ 2/k and, by (3), i→ j(i) is a bijection.
Moreover, we have

d(pi, rj(i)) ≤ d(pi, qni) + d(qni , rj(i)) ≤
2
k

+
2
k
< ε ;

the continuity of H follows. Let Am = {{p1, . . . , pm} ∈ Qm | pi 6= pj for
i 6= j and pi ∈ A for i = 1, . . . ,m}. Every point of Am has an open neighbor-
hood in Am that is homeomorphic to an open set in Am. Consequently, Am

belongs toAα (resp., Pn). One can easily verify thatR(A, l,m) = H−1(Am).
Since R(I∞, l,m) is an absolute Gδ-set, it follows that R(A, l,m) ∈ Aα

(resp., Pn).
Suppose now that A ∈ Mα, α ≥ 2. Then A =

⋂∞
n=1Bn, where Bn ∈⋃

β<αAβ . We have

sFA
= {f ∈ sF | ∀p∈I∞\A (N\f−1({0})) ∩Bp is finite}
= {f ∈ sF | ∀p∈I∞\

⋂∞
n=1

Bn
(N\f−1({0})) ∩Bp is finite}

=
∞⋂

n=1

{f ∈ sF | ∀p∈I∞\Bn
(N\f−1({0})) ∩Bp is finite}

=
∞⋂

n=1

sFBn
.

Since sFBn
∈

⋃
β<αAβ(R∞), applying the additive case, we conclude that

sFA
∈Mα.

The implication (iii)⇒(ii) follows from the fact that FA is homeomorphic
to a closed subset of sFA

.
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(ii)⇒(i). If FA ∈ Mα then, by [14, Lemma 4.2], cFA
∈ Mα. The

argument of [14, Lemma 4.2] (see also our Corollary 5.3) shows that if FA ∈
Pn then cFA

∈ Pn. By 9.1, condition (i) follows for Mα and Pn.
Assume FA ∈ Aα. Then, by [14, Lemma 4.2], cFA

is Borelian. In view
of 9.1, so is A. If A does not belong to Aα, by [19], there exists a Cantor set
C ⊂ I∞ such that C ∩A does not belong to Aα. The fact below contradicts
the assumption that FA ∈ Aα.

9.3. Lemma. Let C ⊂ I∞ be a Cantor set. There exists ψ : C → 2N such
that ψ−1(FA) = A ∩ C for all A ⊆ I∞.

P r o o f. We identify each subset of N with its characteristic function.
For k ≥ 1, let Ck = {C1

k , C
2
k , . . . , C

mk

k } be a partition of C into closed subsets
of diameters < 1/k. Let Ck(q) be the unique element of Ck which contains q.
Define

ψ(q)(n) =
{

0 if d(qn, Ck(q)) ≤ 1/k,
1 if d(qn, Ck(q)) > 1/k,

for n ∈ Nk, k = 1, 2, . . . Since ψ(q)(n) is constant on Ck(q), ψ(q) is con-
tinuous. It is easy to see that ψ is injective. Let q ∈ C and n ∈ Nk with
ψ(q)(n) = 0. Using the fact that the diameters of Ck(q) are less than 1/k,
we infer that d(qn, q) < 2/k; hence n belongs to Bq. This shows that ψ(q)
contains N\Bq; consequently, ψ(q) ∈ FA provided q ∈ A. Let q 6∈ A and
let

X = N\(Bq1 ∪ . . . ∪Bqn
∪ S)

be a basic element of FA, where q1, . . . , qn ∈ A and S is a finite subset
of N. The set Bq\X is finite. For every k, there exists nk ∈ Nk with
d(q, qnk

) < 1/k. Then nk ∈ Bq and ψ(q)(nk) = 0; hence nk does not belong
to ψ(q). Consequently, Bq\ψ(q) is infinite. This yields X\ψ(q) 6= ∅. As a
consequence ψ(q) does not contain any basic element of FA; hence it does
not belong to FA.

Here is our main result of this section. In particular, when applied to
the pair (R∞, A), A = Λα (resp., A = Ωα), it shows that for every α ≥ 2
there exist filters Fα ∈ Aα (resp., Gα ∈ Mα) such that cFα

∼= Ωα+1 (resp.,
cGα

∼= Ωα). Moreover, when applied to (R∞,Πn), it provides filters Fn ∈ Pn

such that cFn
∼= Πn.

9.4. Theorem. Let A be a subset of I∞.

(a) If A ∈ Mα, α ≥ 2, and (I∞, A) is Wadge (I∞,Mα)-complete, then
(R∞,R∞, cFA

) ∼= (R∞,R∞, sFA
) ∼= (R∞,R∞, Ωα).

(b) If A ∈ Aα, α ≥ 2, and (I∞, A) is Wadge (I∞,Aα)-complete, then
(R∞,R∞, sFA

) ∼= (R∞,R∞, Λα) and (R∞,R∞, cFA
) ∼= (R∞,R∞, Ωα+1).
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(c) If A ∈ Pn, n ≥ 1, and (I∞, A) is Wadge (I∞,Pn)-complete, then
F0(R∞,R∞, cFA

) = F0(R∞,R∞, sFA
) = (M0,M1,Pn). In particular ,

(R∞, cFA
) ∼= (R∞, sFA

) ∼= (R∞,Πn) and (R∞, cFA
) ∼= (R∞, sFA

) ∼= (Q,Π ′
n).

P r o o f. (a) It follows from 9.1 that if (I∞, A) is Wadge (I∞,Mα)-
complete, then so are (R∞, cFA

) and (R∞, sFA
). By 9.2 and [14, Lemma 4.2],

cFA
and sFA

belong to Mα. Now, to get the result apply 6.6(a).
(b) This follows in the same way (use 7.1(b)).
(c) As above, using our assumption, we infer that (R∞, cFA

) and
(R∞, sFA

) are Wadge (I∞,Pn)-complete. Since cF is a Zσ-space, cFA
(as

a linear dense subspace of cF ) is also a Zσ-space. Now, 6.6(c) is applica-
ble.
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ANALYSE COMPLEXE ET GÉOMÉTRIE THE UNIVERSITY OF OKLAHOMA

4, PLACE JUSSIEU 601 ELM AVENUE, ROOM 423

75252 PARIS CEDEX 05, FRANCE NORMAN, OKLAHOMA 73019-0315, U.S.A.

E-mail: TDOBROWO@NSFUVAX.MATH.UOKNOR.EDU

INSTITUTE OF MATHEMATICS

UNIVERSITY OF WARSAW

BANACHA 2

02-097 WARSZAWA, POLAND

E-mail: WMARCISZ@MIMUW.EDU.PL

Received 2 July 1992;
in revised form 20 January 1993


