
FUNDAMENTA
MATHEMATICAE

143 (1993)

Remarks on measurable Boolean algebras
and sequential cardinals

by

Grzegorz P l eb anek (Wroc law)

Abstract. The paper offers a generalization of Kalton–Roberts’ theorem on uni-
formly exhaustive Maharam’s submeasures to the case of arbitrary sequentially continuous
functionals. Applying the result one can reduce the problem of measurability of sequen-
tial cardinals to the question whether sequentially continuous functionals are uniformly
exhaustive.

1. Introduction. The celebrated control measure problem posed by
D. Maharam amounts to asking whether a σ-complete Boolean algebra A
admits a measure provided it carries a strictly positive continuous submea-
sure. A result due to Kalton and Roberts [6] reduced the problem to the
question whether every continuous submeasure is uniformly exhaustive (see
also Talagrand [13] and Louveau [9]). Fremlin’s article on measurable alge-
bras [5] contains a survey on the topic and further references.

We treat here a larger class of functionals in the context of characterizing
measurable algebras. The approach presented below is a result of an attempt
at solving the following problem stated by Keisler and Tarski [7].

Given κ less than the first real-valued measurable cardinal , is it true that
every real-valued sequentially continuous function on the Cantor cube 2κ is
actually continuous?

The basic idea is to consider sequentially continuous and strictly posi-
tive functionals defined on σ-complete Boolean algebras, in the sequel called
Mazur functionals. Extending Kalton and Robert’s result, we show in Sec-
tion 4 that the existence of a Mazur functional on a σ-complete Boolean al-
gebra yields its measurability provided a certain exhaustivity-type condition
is satisfied. Next, developing an idea due to Antonovskĭı and Chudnovsky
[1], we prove that if there is a sequentially continuous and discontinuous
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12 G. Plebanek

function on 2κ then there exists a σ-complete proper ideal H on κ such
that the algebra P(κ)/H carries a Mazur functional (Section 6). This result
is a consequence of some technical lemmas of Section 5, showing how to
construct “better” functionals from arbitrary ones.

If it happened to be true that every sequentially continuous functional
on a σ-complete Boolean algebra is uniformly exhaustive then both the
problems mentioned above would have a positive solution. However, it is
rather believed that the control measure problem has a negative answer
(cf. Fremlin [5]). Professor Fremlin also remarked (in a private letter) that
the two problems may differ dramatically: the former is known to have an
absolute answer while the latter is likely to be independent of the usual
axioms of set theory.

2. Preliminaries. As regards terminology concerning Boolean algebras
and functionals defined on them we essentially follow Fremlin [5]. By a
functional on an algebra A we mean any function ϕ : A → R with ϕ(0) = 0.
In fact all the functionals considered are assumed to be non-negative. In the
context of Boolean algebras, the term measure is reserved for a countably
additive functional µ which is strictly positive, that is, µ(a) = 0 implies
a = 0. A σ-complete algebra A is said to be measurable if it carries a
probability measure (to avoid trivialities we assume that all Boolean algebras
that appear in the sequel are non-zero).

For a sequence (an) in a σ-complete algebra A, we write an → a if

a =
∑
n≥1

∏
k≥n

ak =
∏
n≥1

∑
k≥n

ak .

If moreover the sequence is increasing (decreasing) we write an ↑ a (an ↓ a,
respectively).

Definition 2.1. A functional ϕ on A is called sequentially continuous
if limn ϕ(an) = ϕ(a) whenever an → a. A sequentially continuous functional
ϕ is a Mazur functional if it is strictly positive, i.e. ϕ(a) = 0 is equivalent
to a = 0.

The term “Mazur functional” was used in [1] in a slightly different mean-
ing (see the first part of the proof of Theorem 6.1).

Recall that a Maharam submeasure on an algebra A is a functional ϕ on
A which is

• increasing, i.e. a ≤ b implies ϕ(a) ≤ ϕ(b);
• subadditive, i.e. ϕ(a + b) ≤ ϕ(a) + ϕ(b); and
• continuous at 0, i.e. an ↓ 0 implies limn ϕ(an) = 0.

Note that if ϕ is a Maharam submeasure then ϕ is sequentially con-
tinuous. Indeed, if an ↓ a then ϕ(a) ≤ ϕ(an) ≤ ϕ(a) + ϕ(an − a), so



Boolean algebras and sequential cardinals 13

limn ϕ(an) = ϕ(a), and similarly for an ↑ a. Thus, if an → a then

lim sup
k

ϕ(ak) ≤ lim
n

ϕ
( ∑

k≥n

ak

)
= ϕ(a) = lim

n
ϕ
( ∏

k≥n

ak

)
≤ lim inf

k
ϕ(ak) ,

so limn ϕ(an) = ϕ(a).
If a σ-complete algebra A carries a strictly positive Maharam submeasure

then A satisfies the countable chain condition, is complete and weakly ω-
distributive (Fremlin [5], Proposition 5.6). The same holds if we assume
that A carries a Mazur functional (the proof is similar).

Let ϕ be a functional on A. We shall often consider functionals ϕa and
ϕa on A (for fixed a ∈ A) defined as

ϕa(c) = max(ϕ(c + a)− ϕ(a), 0) and ϕa(c) = ϕ(c · a) .

Clearly if ϕ is sequentially continuous then so are ϕa and ϕa.
Recall that a functional ϕ on A is uniformly exhaustive if for every ε > 0

there is an N such that for every family A of pairwise disjoint elements of
A, if A ⊆ {ϕ ≥ ε} then |A| ≤ N . We shall consider the following stronger
property.

Definition 2.2. Say that a functional ϕ on A is uniform if for every
a ∈ A and ε > 0 there is an N such that every family of pairwise disjoint
elements contained in {c : ϕ(c + a) ≥ ϕ(a) + ε} has at most N elements.

In other words, ϕ is uniform if and only if ϕa is uniformly exhaustive
for every a ∈ A. Every strictly positive uniformly exhaustive Maharam
submeasure is thus a uniform Mazur functional.

Given a family P in an algebra A, the intersection number of P, denoted
here by cal(P), is defined as

cal(P) = inf{#(a1, . . . , an) : n ≥ 1, ai ∈ P} ,

where

#(a1, . . . , an) =
1
n

max
{
|I| : I ⊆ {1, . . . , n},

∏
i∈I

ai 6= 0
}

.

The following classical result is due to Kelley [8].

Theorem 2.3. For a family P ⊆ A the condition cal(P) ≥ r is necessary
and sufficient for the existence of an additive functional ξ on A with ξ(1)
= 1 and ξ|P ≥ r, i.e. ξ(a) ≥ r for all a ∈ P.

We end this section with a well-known lemma (see e.g. [5], Proposi-
tion 5.7).
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Lemma 2.4. If ξ is an additive functional on an algebra A then there is
a countably additive functional µ on A such that µ ≤ ξ and

µ(1) = inf{sup
n≥1

ξ(an) : an ↑ 1} .

3. Key lemma. In this section we prove a technical result (Lemma 3.3)
which describes how to construct countably additive functionals on Boolean
algebras from arbitrary sequentially continuous ones. We base on the same
combinatorial background that was used by Kalton and Roberts in [6] (see
also Louveau [9]).

Lemma 3.1 provides a combinatorial tool for evaluating intersection num-
bers. Although it was not stated as a separate item, its proof can be easily
extracted from the first part of the proof of Lemma 3.1 of [6] (cf. [5], the proof
of Theorem 5.11). We reproduce the argument for the reader’s convenience.

Lemma 3.1. Suppose that a1, . . . , am are elements of A such that
#(a1, . . . , am) = q/m. Given p with p2 ≥ 18mq, there exist bij ∈ A, i ≤ m,
j ≤ p, such that

(a) for every j ≤ p, b1j , . . . , bmj are pairwise disjoint ;
(b) for every i ≤ m the sequence bi1, . . . , bip contains at most three non-

zero elements and bi1 + . . . + bip = ai.

P r o o f. We start by recalling two auxiliary facts. Part (1), a lemma
on the existence of the so-called concentrator, is taken from [5], Lemma 5.8
(cf. [6]). Part (2) is a consequence of (1) obtained by use of Hall’s Marriage
Theorem (see e.g. [2], Theorem 3.3).

(1) Suppose that q, p,m are natural numbers such that 1 ≤ q ≤ m and
18mq ≤ p2. Then there is a set R ⊆ {1, . . . ,m}× {1, . . . , p} such that every
vertical section of R has just three members, and |R[E]| ≥ |E| for every
subset E of {1, . . . ,m} having at most q elements. Here R[E] denotes the
image of E under R, i.e. R[E] = {j : j ≤ p, and (i, j) ∈ R for some i ∈ E}.
(Although such a lemma is proved in [5] under the additional assumption
q ≥ 3, the case q ≤ 3 is trivial.)

(2) By Hall’s Marriage Theorem, for each set E ⊆ {1, . . . ,m} with |E| ≤
q there is an injective function fE : E → {1, . . . , p} such that (i, f(i)) ∈ R
for every i ∈ E.

(3) Now the proof of the assertion of Lemma 3.1 follows. For every
E ⊆ {1, . . . ,m} we put bE =

∏
i∈E ai ·

∏
i 6∈E(−ai). These are the atoms of

the finite algebra generated by ai’s. Note that bE = 0 whenever |E| > q
(since #(a1, . . . , am) = q/m). For every i ≤ m and j ≤ p we put

bij =
∑

{bE : i ∈ E, E ⊆ {1, . . . ,m}, |E| ≤ q, fE(i) = j} .

We shall check that bij ’s are as required.
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The remark above explains that bi1 + . . . + bip = ai for every i ≤ m.
Moreover, bij = 0 whenever (i, j) 6∈ R, so there are at most three non-zero
elements among bi1, . . . , bip.

If bi1j · bi2j 6= 0 then there is an E ⊆ {1, . . . ,m} with |E| ≤ q such that
i1, i2 ∈ E and fE(i1) = fE(i2). This means i1 = i2 since fE is injective, so
(a) holds.

Lemma 3.2. Let ϕ be a uniformly exhaustive functional on A. Suppose
that

ε = inf{max
i≤4

ϕ(ci) : ci ∈ A, c1 + . . . + c4 = 1} > 0 ,

and put P = {a ∈ A : ϕ(−a) < ε}. Then the family P has a positive
intersection number.

P r o o f. Suppose otherwise; then for a given δ > 0 there are a natural
number m and a1, . . . , am in P with #(a1, . . . , am) = q/m ≤ δ. Let p be a
natural number with p2 ≥ 18mq ≥ (p−1)2, and let bij be as in the previous
lemma. It follows that for every i ≤ m there is a g(i) ≤ p with ϕ(big(i)) ≥ ε.
Take j∗ such that the set E = {i ≤ m : g(i) = j∗} has at least m/p elements.
Now {bij∗ : i ∈ E} is a sequence of pairwise disjoint elements on which ϕ is
not less than ε. Since

|E| ≥ m/p ≥ m/(
√

18mq + 1) ≥ m/(10
√

mq) ≥ 1/(10
√

δ) ,

and δ can be taken arbitrarily small, it follows that ϕ is not uniformly
exhaustive, a contradiction.

Lemma 3.3. Let ϕ be a non-trivial sequentially continuous functional on
a σ-complete algebra A with the following properties:

(a) ϕ is uniformly exhaustive;
(b) ε = inf{maxi≤4 ϕ(ci) : ci ∈ A, c1 + . . . + c4 = 1} > 0.

Then there exists a non-trivial countably additive functional µ on A.

P r o o f. Put P = {a ∈ A : ϕ(−a) < ε}. Applying Lemma 3.2 to P we
get r = cal(P) > 0. Let ξ be a probability additive functional on A with
ξ|P ≥ r (Theorem 2.3). Let µ ≤ ξ be a countably additive functional as in
Lemma 2.4. We are to check that µ(1) > 0.

Given a sequence (an) in A such that an ↑ 1, we have −an ↓ 0 so
ϕ(−an0) < ε for some n0. Thus ξ(an0) ≥ r; it follows that µ(1) ≥ r > 0
and we are done.

4.On uniform Mazur functionals. We show here that if a σ-complete
algebra admits a uniform Mazur functional then it is measurable. This gen-
eralizes results on uniformly exhaustive strictly positive Maharam submea-
sures (see e.g. Theorem 5.12 in Fremlin [5]). (Recall that every strictly posi-
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tive Maharam submeasure is a Mazur functional, and every such submeasure
which is uniformly exhaustive is a uniform Mazur functional.)

It follows that every σ-complete Boolean algebra carrying a Mazur func-
tional is measurable if and only if every Mazur functional is uniform.

Lemma 4.1. (a) If ϕ is a uniform functional on A then ϕa is uniform
for every a ∈ A.

(b) If ϕ1, . . . , ϕk are uniform functionals on A then so is ϕ=max(ϕ1, . . .
. . . , ϕk).

P r o o f. Since the inequality ϕa(c + b) ≥ ϕa(b) + ε implies that ϕ(c +
b + a) ≥ ϕ(b + a) + ε, part (a) follows from the definition of uniformity. The
proof of (b) is straightforward.

Lemma 4.2. Let A be a σ-complete Boolean algebra that carries a uni-
form Mazur functional ϕ. For every natural k there exists a sequentially
continuous and uniformly exhaustive functional τ on A such that

ε = inf{max
i≤k

τ(ci) : ci ∈ A, c1 + . . . + ck = 1} > 0 .

P r o o f. This clearly holds for k = 1. We proceed by induction on k.
Suppose that the assertion holds for τ , ε and k − 1, but there is no such
functional for k.

By induction we construct bni ∈ A, n ≥ 1, i ≤ k, with the properties:

•
∑

i≤k bni = bn−1,k (where b0k = 1);
• τ(

∑
m≤n bmi) ≤ ε(2−2 + . . . + 2−n−1);

• ϕ(bnk) ≤ ε2−n−1.

Having defined bmi for m ≤ n and i ≤ k, we put ei =
∑

m≤n bmi,
i = 1, . . . , k − 1, and consider a new functional τ , where

τ(c) = max( max
i≤k−1

(τ(ei + c · bnk)− τ(ei)), ϕ(bnk · c)) .

Since τ is uniformly exhaustive by Lemma 4.1, there are bn+1,i such that∑
i≤k bn+1,i = bnk and τ(bn+1,i) ≤ ε2−n−2, and the induction follows.
Since (bnk)n≥1 is a decreasing sequence with limn ϕ(bnk) = 0 and ϕ is

strictly positive,
∏

n≥1 bnk =0. Thus, putting ai =
∑

n≥1 bni, i=1, . . . , k−1,
we have

∑
i≤k−1 ai = 1. On the other hand, τ(ai) ≤ ε/2, a contradiction

with our choice of τ .

Theorem 4.3. Let A be a σ-complete Boolean algebra. If A carries a
uniform Mazur functional then A is measurable.

P r o o f. It follows from Lemmas 4.2 and 3.3 that there exists a non-zero
countably additive functional µ on A. Let A be a maximal family of pairwise
disjoint elements from {a ∈ A+ : µ(a) = 0}. Then A is countable (as A is
a ccc algebra), so µ(

∑
A) = 0. Putting a0 = −

∑
A we infer that µ is a
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measure on the algebra A | a0. It is clear that we can repeat the argument
for A | −a0. This gives at most countable sequences (an) and (µn) such
that µn is a measure on A | an and

∑
n an = 1. Finally, µ =

∑
n 2−nµn is

a measure on A and this finishes the proof.

Corollary 4.4. If ϕ is a Mazur functional on a σ-complete Boolean
algebra A then A is measurable if and only if ϕ is uniform.

P r o o f. In view of the theorem above, it remains to check that the con-
dition is necessary. Let µ be a measure on A. Notice that every sequentially
continuous functional τ on A is absolutely continuous with respect to µ (in
the usual ε-δ sense). Indeed, otherwise there would be an ∈ A such that
µ(an) ≤ 2−n and τ(an) ≥ ε for some ε > 0. Putting bn =

∑
k≥n ak and

b =
∏

n≥1 bn we get µ(b) = 0, so b = 0. Therefore an → 0, a contradiction
with sequential continuity of τ . Applying this remark to ϕa we easily get
the uniformity condition for ϕ.

5. Sequentially continuous functionals on Boolean algebras.
Throughout this section we fix a σ-complete algebra A that admits a non-
zero sequentially continuous functional. We shall show that on A there
exists a functional τ such that H = {e : τ(e) = 0} is a σ-complete proper
ideal in A, and the algebra A/H carries a Mazur functional. Lemma 5.2 is
essentially due to Antonovskĭı and Chudnovsky [1]. The form of Lemma 5.3
is motivated by an application in the next section.

Lemma 5.1. There exists a sequentially continuous functional τ on A
such that τ(1) = 1, with the following property :

(∗) if a ≤ z, τ(a) = 0 and τ(z) = 1 then τ(z − a) = 1 .

P r o o f. Suppose the contrary, i.e. that for every sequentially continuous
functional τ on A there are a ≤ z with τ(a) = 0, τ(z) = 1 and τ(z−a) < 1.
Let ϕ be a fixed sequentially continuous functional on A with ϕ(1) = 1.

We shall construct a pairwise disjoint sequence (aξ : ξ < ω1) ⊆ A and a
decreasing sequence (xξ : ξ < ω1) ⊆ A such that for every ξ < ω1,

(i) aξ ≤ xξ;
(ii) ϕ(

∑
η<ξ aη) = 0;

(iii) ϕ(
∑

η<ξ aη + xξ) = 1;
(iv) ϕ(

∑
η<ξ aη + (xξ − aξ)) < 1.

Having constructed such aξ and xξ for ξ < α, we put y =
∏

ξ<α xξ and
e =

∑
ξ<α aξ, and consider a functional τ on A, where τ(c) = ϕ(e + y · c).

Let us check that τ(1) = 1. Indeed, if α = β + 1 then y = xβ and

e + xβ =
∑
ξ<β

aξ + aβ + xβ =
∑
ξ<β

aξ + xβ ,
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so τ(1) = ϕ(e + xβ) = 1 (by (iii)). If α is a limit ordinal then, choosing any
cofinal increasing sequence αn in α, we have

τ(1) = ϕ(e + y) = lim
n

ϕ
( ∑

ξ<αn

aξ + xαn

)
= 1 .

By our assumption τ does not have property (∗) so there are c, z ∈ A
with c ≤ z, τ(c) = 0, τ(z) = 1 and τ(z − c) < 1. Now it is easy to see that
aα = c · y − e and xα = y · z are as required.

Now there is a δ > 0 and an increasing sequence ξn such that

ϕ
( ∑

η<ξn

aη + (xξn − aξn)
)
≤ 1− δ .

Put ξ = supn ξn, e =
∑

η<ξ aη and x =
∏

η<ξ xξ. Since∑
η<ξn

aη + (xξn − aξn) → e + x ,

we get ϕ(e + x) ≤ 1− δ. On the other hand,∑
η<ξn

aη + xξn
→ e + x ,

so ϕ(e + x) = 1, a contradiction.

Lemma 5.2. There exists a non-zero sequentially continuous functional
% on A such that

(i) %(b) = 0 whenever b ≤ a and %(a) = 0;
(ii) %(a + b) = 0 whenever %(a) = %(b) = 0.

The family H = {e : %(e) = 0} is then a σ-complete proper ideal in A.

P r o o f. Let τ be a functional as in Lemma 5.1. Notice first that there
is an x ∈ A such that τ(x) = 1 and

(∗∗) for every y ≤ x and a ≤ x− y, if τ(y) = 1 then τ(a) = 0 .

Indeed, otherwise we can easily define a sequence (aξ : ξ < ω1) ⊆ A and a
decreasing sequence (xξ : ξ < ω1) ⊆ A with aξ ≤ xξ − xξ+1, τ(xξ) = 1 and
τ(aξ) > 0. There is a δ > 0 such that τ(aξn) ≥ δ for some infinite sequence
(ξn). Then we have aξn → 0, a contradiction with sequential continuity
of τ .

We shall check that % = τx satisfies (i) and (ii) (recall that τx is given
by τx(c) = τ(c · x)).

To check (i) suppose that %(a) = 0 and b ≤ a. Then τ(a · x) = 0, so
τ(x− a) = 1 by (∗), and %(b) = τ(b · x) = 0 by (∗∗).

If a · b = 0 and %(a) = %(b) = 0 then τ(x − a) = 1 by (∗), and τ(x −
(a + b)) = 1 ((∗) again); consequently, %(a + b) = τ(x · (a + b)) = 0 by (∗∗).
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Finally, given any a, b with %(a) = %(b) = 0, we have %(a + b) = %((a −
b) + b) = 0.

Properties (i) and (ii) mean that H is an ideal in A; σ-completeness
follows immediately from sequential continuity of %.

In the sequel, the symbol ÷ denotes symmetric difference, i.e. a ÷ b =
a · −b + b · −a.

Lemma 5.3. Let ϕ be a sequentially continuous functional on A and let
H be a σ-complete proper ideal in A such that ϕ(e) = 0 and ϕ(−e) > 0 for
all e ∈ H. There exists a non-zero sequentially continuous functional τ on
A such that τ(a) = τ(b) whenever a ÷ b ∈ H. In particular , τ is zero on
elements of H. If , moreover , H = {e : ϕ(e) = 0}, then τ can be chosen so
that H = {e : τ(e) = 0}.

P r o o f. Notice first that, given a ∈ A, there is a ba ≤ a such that a−ba ∈
H and for every c ≤ ba, if ba − c ∈ H then ϕ(ba) = ϕ(c). Otherwise there
exists a decreasing sequence (bξ : ξ < ω1) ⊆ A satisfying, for every ξ < ω1,
a− bξ ∈ H and ϕ(bξ) 6= ϕ(bξ+1). Choose δ > 0 and an increasing sequence
of ξn’s such that |ϕ(bξn) − ϕ(bξn+1)| ≥ δ. Since

∏
n bξn =

∏
n+1 bξn+1 , this

contradicts the sequential continuity.
We define τ(a) = ϕ(ba). If b′a has the same property as ba then

ϕ(ba) = ϕ(ba · b′a) = ϕ(b′a) ,

so the definition is correct. If a1÷ a2 ∈ H then τ(a1) = ϕ(ba1 · ba2) = τ(a2).
It remains to check that τ is sequentially continuous.

Let an → a and put e =
∑

n(an − ban). Then ban − e = an − e → a− e,
so

τ(an) = ϕ(ban) = ϕ(ban − e) → ϕ(a− e) .

Let b=a− e. Given c≤ b with b− c∈ H, we let f = e + (b− c) (∈ H). Now

ϕ(c) = ϕ(a− f) = lim
n

ϕ(ban − f) = lim
n

ϕ(ban) = ϕ(a− e) = ϕ(b) .

This proves that τ(a) = ϕ(b), and the continuity follows.
It is clear that τ(a) = 0 whenever a ∈ H. If H = {a : ϕ(a) = 0} then

τ(a) = 0 means ϕ(ba) = 0 and ϕ(a−ba) = 0; consequently, a = ba+(a−ba) ∈
H and ϕ(a) = 0.

Proposition 5.4. If a σ-complete algebra A carries a non-zero sequen-
tially continuous functional then it carries such a functional τ with the ad-
ditional properties that τ(a1) = τ(a2) whenever τ(a1÷a2) = 0, and τ(b) = 0
whenever b ≤ a and τ(a) = 0. Consequently , there is a proper σ-complete
ideal H in A such that A/H carries a Mazur functional.

P r o o f. The first assertion follows from 5.2 and 5.3. We put

H = {a ∈ A : τ(a) = 0} ;
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it is easy to check that the formula τ ′(π(a)) = τ(a), where π : A → A/H is
the canonical epimorphism, defines a Mazur functional on A/H.

6. On measurability of sequential cardinals. Suppose that µ is a
probability measure defined for all subsets of κ and vanishing on countable
sets. Identifying the power set P(κ) of κ with the Cantor cube, we may
regard µ to be a function µ : 2κ → [0, 1]. It is not difficult to check that µ is
sequentially continuous; as µ is zero on a dense subset, it is not continuous.

Following [1] we say that κ is a sequential cardinal if there exists a real-
valued sequentially continuous but not continuous function on 2κ. Note that
if κ is sequential and λ ≥ κ then so is λ. Denote by κ0 the least sequential
cardinal in case such cardinals exist. The remark above explains that κ0

is less than or equal to the first real-valued measurable cardinal. Keisler
and Tarski [7] posed the problem, which to my best knowledge is still open,
whether κ0 is actually equal to the latter cardinal. We mention below a
partial answer given by Antonovskĭı and Chudnovsky.

Such considerations were originated by Mazur [10] in connection with
the problem of the continuity of functions defined on products of separa-
ble metric spaces (see also Engelking [3], Antonovskĭı–Chudnovsky [1] and
Fremlin [4]). Sequentiality of κ is also related to some properties of the
Banach space C(2κ) (see [11] and [12]).

Theorem 6.1. If κ is a sequential cardinal then there exists a σ-complete
proper ideal H in P(κ) containing all singletons and such that the algebra
B = P(κ)/H carries a Mazur functional.

P r o o f. (1) Let g : 2κ → R be sequentially continuous but not con-
tinuous. Following Mazur [10] we get a sequentially continuous functional
ϕ defined on the algebra P(κ) such that ϕ(κ) > 0 and ϕ(I) = 0 for all
countable I ⊆ κ. Here is the sketch of the proof: the space

Q = {I ⊆ κ : |I| ≤ ω} ⊆ 2κ

is sequential, that is, closure in Q is determined by ordinary sequences;
moreover, 2κ is the Čech–Stone compactification of Q. Thus g|Q is contin-
uous; denoting by f the unique extension of g|Q to 2κ we take ϕ = |f − g|.

(2) It follows from Lemma 5.1 (or can be easily checked) that we may
additionally require ϕ to satisfy ϕ(κ− I) > 0 for all countable I. (Actually,
if we want to make use of Lemma 5.1 here, a brief analysis of its proof is
necessary to make sure that a new function still vanishes on countable sets.)

(3) By Lemma 5.3, applied to the ideal I of countable subsets of κ, we
can additionally assume that |A÷B| ≤ ω implies ϕ(A) = ϕ(B). This in fact
means that we can consider ϕ to be a non-zero sequentially continuous func-
tional on the σ-complete algebra A = P(κ)/I. Now we apply Proposition
5.4 and the proof is complete.
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Corollary 6.2. If it is true that every Mazur functional on a σ-complete
Boolean algebra is uniform (in particular : if every sequentially continuous
functional on such an algebra is uniformly exhaustive) then κ0 is a real-
valued measurable cardinal.

P r o o f. This is a consequence of Theorems 6.1 and 4.3.

R e m a r k. The dichotomy κ0 ≤ 2ω or κ0 is a measurable cardinal,
discovered by Antonovskĭı and Chudnovsky [1], can be easily derived from
Theorem 6.1. The same authors showed that under Martin’s Axiom 2ω is not
sequential. A simpler proof of that result was given by Fremlin [4], Theorem
24.F. There the fact that κ0 < 2ω contradicts Martin’s Axiom is shown
by a purely topological argument (under MA the space 2κ is sequentially
separable for every κ < 2ω). For the fact that κ0 > 2ω under MA we can
argue as follows.

Take a 2ω-Luzin set L ⊆ R, that is, |L| = 2ω and |L ∩ D| < 2ω for
every nowhere dense D (MA implies the existence of such L). If we suppose
that κ0 = 2ω then we can construct a sequentially continuous functional
ϕ : P(L) → R as in the proof of Theorem 6.1 (with ϕ(L) = 1). Denoting by
(qn)n≥1 any sequence containing all rational numbers we choose inductively
open sets Vk such that qk ∈ Vk and

ϕ((V1 ∪ . . . ∪ Vk) ∩ L) ≤ 2−2 + . . . + 2−k−1 .

Putting V =
⋃

k≥1 Vk we get ϕ(V ∩ L) ≤ 1/2. Now the formula

τ(C) = ϕ(C ∪ (V ∩ L))− ϕ(V ∩ L)

defines a non-zero sequentially continuous functional on P(L− V ). Since τ
vanishes on countable sets, it is not continuous. As |L − V | < 2ω, this is a
contradiction.

Acknowledgement. I should like to thank the referee for his several
helpful comments that enabled me to correct and improve the former version
of this paper.
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