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An invariant of bi-Lipschitz maps

by

Hossein Movahed i - L anka r an i (Altoona, Penn.)

Abstract. A new numerical invariant for the category of compact metric spaces and
Lipschitz maps is introduced. This invariant takes a value less than or equal to 1 for
compact metric spaces that are Lipschitz isomorphic to ultrametric ones. Furthermore, a
theorem is provided which makes it possible to compute this invariant for a large class of
spaces. In particular, by utilizing this invariant, it is shown that neither a fat Cantor set
nor the set {0} ∪ {1/n}n≥1 is Lipschitz isomorphic to an ultrametric space.

1. Introduction. A metric space (M,d) is an ultrametric space if the
metric satisfies a stronger form of the triangle inequality: for all x, y, z ∈ M ,

d(x, y) ≤ max{d(x, z), d(y, z)} .

One special property of these spaces is the fact that any two closed balls
in an ultrametric space are either disjoint or one is contained in the other.
Consequently, every ultrametric space is totally disconnected. Indeed, it is
well known that a non-empty compact perfect ultrametric space is a Cantor
space, that is, a metric space homeomorphic to the Cantor set. Conversely,
it is also well known that every totally disconnected compact metric space
has a compatible ultrametric. In this paper we consider the problem of
determining whether every Cantor space is Lipschitz isomorphic to an ul-
trametric one. We settle this issue by constructing a new numerical invariant
for the category of compact metric spaces and Lipschitz maps and show that
many Cantor spaces are not Lipschitz isomorphic to ultrametric spaces. We
call this invariant the logarithmic ratio. A non-logarithmic version of this
has been introduced by D. Sullivan [4] to study differentiable structures
on fractal-like sets. The logarithmic ratio takes a value less than or equal
to 1 for compact spaces which are Lipschitz isomorphic to ultrametric ones.
We also prove a theorem enabling us to compute the logarithmic ratio for a
large class of spaces. In particular, we use the logarithmic ratio to show that
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2 H. Movahedi-Lankarani

neither a fat Cantor set nor the set {0} ∪ {1/n}n≥1 is Lipschitz isomorphic
to an ultrametric space.

It appears to us that most of the known invariants of the Lipschitz cat-
egory are dimensions. The logarithmic ratio, however, is not obviously a
dimension. In particular, the logarithmic ratio of a compact connected sub-
set (containing more than one point) of a Euclidean space is infinite.

Compact metric spaces Lipschitz isomorphic to an ultrametric space have
also been studied by G. Michon [1–3]. Making more precise an observation
in [1], note first that if (M,d) is a metric space and if δ(x, y) is the infimum of
the numbers ε > 0 for which there is a finite sequence x = x0, x1, . . . , xk = y
in M with d(xi−1, xi) < ε, then δ is an ultrapseudometric on M , δ ≤ d, and
% ≤ δ for all ultrapseudometrics % on M with % ≤ d. Thus, if % is an
ultrametric on M Lipschitz equivalent to d, i.e., a% ≤ d ≤ b% for some
0 < a ≤ b, then δ ≤ d ≤ (b/a)δ implying that δ, too, is an ultrametric
Lipschitz equivalent to d.

Acknowledgements. The author would like to thank Jouni Luukkainen
for several corrections and valuable suggestions.

2. The invariant. Let (M,d) be a compact metric space and let A
denote the family of all (finite) clopen partitions of M . That is, a family α
is in A if and only if α = {A1, . . . , An} for some n ≥ 0 with Ai non-void and
clopen (i.e., both closed and open) in M for 1 ≤ i ≤ n, and M =

∐n
i=1 Ai.

Note that A = {∅} if M = ∅ and that n = 0 if α = ∅. Then A is partially
ordered by refinement; for α, β ∈ A we write α ≺ β if and only if β is a
refinement of α. This means that for any B ∈ β there is an A ∈ α with
B ⊂ A. For α = {A1, . . . , An} and β = {B1, . . . , Bm} in A their join
α ∨ β ∈ A is given by

α ∨ β = {Ai ∩Bj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} \ {∅} .

Clearly α ≺ α ∨ β and β ≺ α ∨ β.

Definition 2.1. Let α = {A1, . . . , An} ∈ A with n = card(α). Define
the diameter δ(α) ∈ [0,∞) of α by

δ(α) = max{diam(Ai) | 1 ≤ i ≤ n}

if n ≥ 1 and by δ(α) = 0 if n = 0. Define the gap γ(α) ∈ [0,∞) of α by

γ(α) = min{d(x, y) | x ∈ Ai, y ∈ Aj , i 6= j}

if n > 1 and by γ(α) = diam(M) if n ≤ 1 (with the convention that
diam(∅) = 0). Moreover, define the logarithmic ratio R(α) ∈ [0,∞] of α by

R(α) =
log γ(α)
log δ(α)
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if 0 < δ(α) < 1 and (0 <) γ(α) < 1, by R(α) = 0 if δ(α) = 0 and by
R(α) = ∞ if either 0 < δ(α) < 1 and γ(α) ≥ 1 or δ(α) ≥ 1.

Trivially, if α ≺ β, then δ(β) ≤ δ(α). It follows from a straightforward
argument that for any α, β ∈ A we have

γ(α ∨ β) = min{γ(α), γ(β)} .

Hence, α ≺ β implies γ(β) ≤ γ(α). Also, if α, β ∈ A and α 6= β, then
γ(α ∨ β) ≤ max{δ(α), δ(β)} (this estimate is sharp, i.e., equality can ap-
pear). Furthermore, if α, β ∈ A with γ(α) ≤ γ(β), then R(α ∨ β) ≤ R(α).

Lemma 2.2. Suppose that M satisfies the following condition:

(2.1) For each r > 0 there is an α ∈ A with 0 < δ(α) < r.

Then
lim sup

r→0
{γ(α) | α ∈ A , 0 < δ(α) < r} = 0 .

P r o o f. Deny. Then there exist ε > 0 and α, β ∈ A such that α 6= β
and γ(β) ≥ γ(α) ≥ ε > max{δ(α), δ(β)}. This implies that ε ≤ γ(α) =
γ(α ∨ β) ≤ max{δ(α), δ(β)} < ε, a contradiction.

Note that M satisfies (2.1) if and only if M is totally disconnected but
not discrete.

Definition 2.3. Let (M,d) be a compact metric space and let A denote
the family of all clopen partitions of M . Then the logarithmic ratio of M
(with respect to the metric d) is defined by

R(M,d) = lim inf
r→0

{R(α) | α ∈ A and δ(α) < r} ,

with the convention that inf ∅ = +∞.

Observe that R(M,d) is defined and is in [0,∞] for every compact metric
space M . Moreover, R(M,d) = 0 if M is discrete (or, equivalently, finite)
and R(M,d) = ∞ if M is not totally disconnected.

The most important property of the logarithmic ratio is the fact that it
is an invariant of the Lipschitz category. Specifically, we have the following
result.

Theorem 2.4. Suppose (M1, d1) and (M2, d2) are Lipschitz isomorphic
compact metric spaces. Then R(M1, d1) = R(M2, d2).

P r o o f. In view of the preceding remarks, we may as well assume that
(M1, d1) is totally disconnected but not discrete. Suppose f : (M1, d1) →
(M2, d2) is a Lipschitz isomorphism. Then there is a constant C ≥ 1 such
that

1
C

d1(x, y) ≤ d2(f(x), f(y)) ≤ Cd1(x, y) for all x, y ∈ M1 .
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Let Ai denote the family of all clopen partitions of Mi for i = 1, 2. Then f
induces a bijection F : A1 → A2 by

F (α) = {f(A1), . . . , f(An)} ∈ A2

whenever α = {A1, . . . , An} ∈ A1. We will prove the theorem in four steps.

S t e p 1. Let α ∈ A1; then δ(α) > 0. If u and v belong to the same
member of α with d1(u, v) = δ(α), then f(u) and f(v) are in the same
member of F (α) and therefore

δ(α) = d1(u, v) ≤ Cd2(f(u), f(v)) ≤ Cδ(F (α)) .

By symmetry, we conclude from this that

(2.2)
1
C

δ(α) ≤ δ(F (α)) ≤ Cδ(α) .

S t e p 2. Let α ∈ A1 with α 6= {M1}. Suppose x and y belong to dis-
tinct members of α with d1(x, y) = γ(α). Then f(x) and f(y) belong to
distinct members of F (α) and so

γ(F (α)) ≤ d2(f(x), f(y)) ≤ Cd1(x, y) = Cγ(α) .

By symmetry, we conclude from this that

(2.3)
1
C

γ(α) ≤ γ(F (α)) ≤ Cγ(α) .

Observe that (2.3) is also valid if α = {M1}.
S t e p 3. Let α ∈ A1, let δ(α) < 1/C and let γ(α) < 1/C. From (2.2)

and (2.3) we get the following:

0 < log C−1 + log δ(α)−1 ≤ log δ(F (α))−1 ≤ log C + log δ(α)−1 ,

0 < log C−1 + log γ(α)−1 ≤ log γ(F (α))−1 ≤ log C + log γ(α)−1 .

Therefore,

R(F (α)) =
log γ(F (α))−1

log δ(F (α))−1
≥ log C−1 + log γ(α)−1

log C + log δ(α)−1
.

S t e p 4. Now suppose that β ∈ A2. Since F is a bijection, there is an
α ∈ A1 such that β = F (α). Hence, δ(β) ≥ δ(α)/C and if δ(β) < r, then
δ(α) < Cr. Therefore,

R(M2, d2) = lim inf
r→0

{R(β) | β ∈ A2 and δ(β) < r}

≥ lim inf
r→0

{R(F (α)) | α ∈ A1 and δ(α) < Cr}

= lim inf
r→0

{R(F (α)) | α ∈ A1 and δ(α) < r}

≥ lim inf
r→0

{
log γ(α) + log C

log δ(α) + log C−1

∣∣∣∣ α ∈ A1 and δ(α) < r

}
= R(M1, d1) ,
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where the last inequality and equality follow from Lemma 2.2. By symmetry,
R(M1, d1) ≥ R(M2, d2) and so R(M1, d1) = R(M2, d2).

We remark that the same argument shows that R(M1, d1) = R(M2, d2)
if there is a homeomorphism f : (M1, d1) → (M2, d2) such that

C1d1(x, y)ε ≤ d2(f(x), f(y)) ≤ C2d1(x, y)ε

for some positive constants ε, C1 and C2.
In general, it is not very easy to compute the logarithmic ratio. But, if

there is a suitably nice sequence {αn}n≥1 ⊂ A of clopen partitions of M ,
then the limit along this sequence is equal to the true limit. In order to be
more precise, we have to make the following definitions.

Definition 2.5. Two points x, y ∈ M are said to be associated endpoints
of (M,d) if there is a clopen subset A ⊂ M such that x ∈ A, y ∈ M \A and
for the partition α = {A,M \A} we have γ(α) = d(x, y).

Clearly, if β ∈ A \ {{M}} with γ(β) = d(x, y) for some x, y ∈ M , then
there are B1, B2 ∈ β, B1 6= B2, such that x ∈ B1 and y ∈ B2. Therefore,
for the partition α = {B1,M \ B1} we have x ∈ B1 and y ∈ B2 ⊂ M \ B1

with γ(α) = d(x, y). Hence, x and y are associated endpoints of M .

Definition 2.6. Let A be a clopen subset of (M,d). Then the largest
gap in A is defined as

Γ (A) = sup{d(x, y) | x, y ∈ A and x, y are associated endpoints of A} ,

with the convention that sup ∅ = 0.

Theorem 2.7. Suppose there is a sequence {αn}n≥1 ⊂ A such that

(a) δ(αn) > 0 and δ(αn) converges monotonically to zero as n tends to
infinity , and

(b) there is a constant C ≥ 1 such that for all n ≥ 1 there is an A ∈ αn

with diam(A) = δ(αn) and Γ (A) ≤ Cγ(αn+1).

Then R(M,d) = lim infn→∞R(αn).

P r o o f. We may assume that δ(αn) < 1 and γ(αn) < 1/C for each
n. Clearly there exists a sequence {βn}n≥1 ⊂ A such that δ(βn) converges
monotonically to 0 and

R(M,d) = lim
n→∞

R(βn) .

We may also assume that δ(β1) < δ(α1). Then for each k ≥ 1 we may
choose n(k) ≥ 1 such that

δ(αn(k)+1) ≤ δ(βk) < δ(αn(k)) .

Furthermore, there is an A ∈ αn(k) such that diam(A) = δ(αn(k)) and
Γ (A) ≤ Cγ(αn(k)+1); so δ(βk) < diam(A). Thus, there is a B ∈ βk such
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that ∅ 6= A∩B 6= A. Because both A and B are clopen, {A∩B,A \B} is a
clopen partition of A. Therefore, there are associated endpoints x ∈ A ∩B
and y ∈ A \B of A. But y ∈ B′ for some B′ ∈ βk, B′ 6= B. Hence,

γ(βk) ≤ dist(B,B′) ≤ d(x, y) .

On the other hand, d(x, y) ≤ Γ (A) by definition; so we have

γ(βk) ≤ Cγ(αn(k)+1) < 1 .

Therefore, for each k ≥ 1

R(βk) =
log γ(βk)
log δ(βk)

≥
log(Cγ(αn(k)+1))

log δ(αn(k)+1)
= R(αn(k)+1) +

log C

log δ(αn(k)+1)
.

Hence,

lim inf
k→∞

R(βk) ≥ lim inf
k→∞

R(αn(k)+1)

and thus R(M,d) = lim infn→∞R(αn).

We use this result to compute the logarithmic ratio of two familiar spaces.

Corollary 2.8. Let M be the standard Cantor subset of the interval
[0, 1]. Then R(M, | · |) = 1.

P r o o f. Let {αn}n≥1 ⊂ A be the sequence of standard partitions of
M with card(αn) = 2n. Then δ(αn) = 1/3n and γ(αn) = 1/3n and
so R(αn) = 1 for all n ≥ 1. Furthermore, for each A ∈ αn we have
Γ (A) = 1/3n+1 = γ(αn+1) for all n ≥ 1. Thus, by Theorem 2.7 we have
R(M, | · |) = lim infn→∞R(αn) = 1.

More interesting, however, is the case when M is a fat Cantor subset of
the interval [0, 1]. Specifically, M is constructed in the same manner as the
Cantor ternary set except that each of the intervals removed at the nth step
has length s3−n with 0 < s < 1. It is a standard exercise to show that the
Lebesgue measure of M is equal to 1− s.

Corollary 2.9. Let M be a fat Cantor set with 0<s<1. Then R(M, |·|)
= log 3/ log 2.

P r o o f. Again let {αn}n≥1 ⊂ A be the sequence of standard partitions
of M . Then γ(αn) = s3−n and

δ(αn) =
1
2n

− s

2n+1

n∑
i=1

(
2
3

)i

=
1− s

2n
+

s

3n
, n ≥ 1 .

Hence,

R(αn) =
log(s/3n)

log[(1− s)/2n + s/3n]
, n ≥ 1 .
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Also, for each n ≥ 1 and each A ∈ αn we have

Γ (A) ≥ s

3n+1
= γ(αn+1) .

On the other hand, two points x and y of A with x < y are associated end-
points of A if and only if (x, y)∩A = ∅. If x, y are such endpoints of A, then
they are in the same member of αm for the last time at some level m ≥ n and
so in different members Am+1, A

′
m+1 of αm+1. Hence, x is the right hand

endpoint of Am+1 and y is the left hand endpoint of A′m+1. This means that

y − x =
s

3m+1
≤ s

3n+1

and so
Γ (A) ≤ s

3n+1
= γ(αn+1) .

By combining the two inequalities, we see that for each A ∈ αn and for each
n ≥ 1,

Γ (A) =
s

3n+1
= γ(αn+1) .

Therefore,
R(M, | · |) = lim inf

n→∞
R(αn) = log 3/ log 2.

Since the logarithmic ratio is an invariant of the Lipschitz category, we
see immediately that the Cantor ternary set and a fat Cantor set are not
Lipschitz isomorphic. Observe that if M is the Cantor ternary set, we may
define an ultrametric d on M by setting d(x, y) = 1/3n if x and y are in the
same member of αn but in different members of αn+1 (with α0 = {M}).
Then |x− y| ≤ d(x, y) ≤ 3|x− y| and so (M, | · |) is Lipschitz isomorphic to
(M,d). This raises the question whether a fat Cantor set is Lipschitz isomor-
phic to an ultrametric space. The following theorem provides the answer.

Theorem 2.10. Let (M,d) be a compact ultrametric space. Then R(M,d)
≤ 1.

P r o o f. If M is discrete, we have R(M,d) = 0. Now assume that M
is not discrete. Let {rn}n≥1 ⊂ (0,diam(M)) converge to zero, and for each
n ≥ 1 let αn be the cover of M by closed rn-balls. Then αn ∈ A and
0 < δ(αn) ≤ rn < γ(αn). Furthermore, for sufficiently large n we have
γ(αn) < 1, which implies R(αn) < 1. Therefore, by definition,

R(M,d) ≤ lim inf
n→∞

R(αn) ≤ 1.

As an immediate corollary of this theorem we get:

Corollary 2.11. A fat Cantor set is not Lipschitz isomorphic to an
ultrametric space.

There is also a partial converse to the above theorem.



8 H. Movahedi-Lankarani

Proposition 2.12. Let (M,d) be a compact metric space and suppose
that there is a sequence of clopen partitions {αn}n≥1 ⊂ A of (M,d) such that

(a) αn ≺ αn+1, n ≥ 1;
(b) 0<δ(αn)→0 and there is a constant C≥1 such that δ(αn)/δ(αn+1)

≤ C, n ≥ 1;
(c) lim supn→∞R(αn) ≤ 1.

Then there is a compatible ultrametric % for M with the following property :
For each ε > 0 there is a constant K > 0 such that

K%(x, y)1+ε ≤ d(x, y) ≤ %(x, y) for all x, y ∈ M .

P r o o f. Observe that conditions (b) and (c) imply that R(M,d) ≤ 1.
Set α0 = {M} and define an ultrametric % for the set M by setting %(x, y) =
δ(αn) whenever x and y are in the same member of αn but in distinct mem-
bers of αn+1. For these x, y and n, we then have

γ(αn+1) ≤ d(x, y) ≤ δ(αn) = %(x, y) .

Thus, d ≤ %, and it is easy to see that the metric % is also continuous and
hence compatible.

Let ε > 0. By (b) and (c), there is an m ≥ 1 such that if n > m, then
δ(αn) < 1, γ(αn) < 1 and

log γ(αn)
log δ(αn)

≤ 1 + ε ,

which gives δ(αn)1+ε ≤ γ(αn). Hence, if x, y and n are as in the definition
of % and if n ≥ m, then

δ(αn+1)1+ε ≤ γ(αn+1) ≤ d(x, y) .

But %(x, y) = δ(αn) ≤ Cδ(αn+1) by hypothesis. Then, for any two points
x and y in M which are in the same member of αm, we get %(x, y)1+ε ≤
C1+εd(x, y). On the other hand, if x and y are in different members of αm,
we have

%(x, y)1+ε ≤ δ(α0)1+ε

γ(αm)
d(x, y) .

Now let K = min{C−(1+ε), γ(αm)δ(α0)−(1+ε)}. Then K%(x, y)1+ε ≤ d(x, y)
for all x, y ∈ M .

We observe that the above proof establishes the following proposition as
well.

Proposition 2.13. Let (M,d) be a compact metric space and suppose
that there is a sequence of clopen partitions {αn}n≥1 ⊂ A of (M,d) sat-
isfying conditions (a) and (b) of Proposition 2.12 such that (R(M,d) ≤)
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lim supn→∞R(αn) < 1. Then (M,d) is Lipschitz isomorphic to an ultra-
metric space.

There is a quick way to decide that a compact metric space is not Lip-
schitz isomorphic to an ultrametric space. Let M = {1/k}k≥1 ∪ {0} ⊂ R1.
Let {αn}n>1 be the sequence of clopen partitions of M defined by

αn =
{

M \
{

1
k

}n−1

k=1

, {1},
{

1
2

}
, . . . ,

{
1

n− 1

}}
.

Then for each n > 1 we have δ(αn) = 1/n and γ(αn) = 1/(n − 1) − 1/n.
Moreover, αn ≺ αn+1 for all n > 1 and for the set A ∈ αn with diam(A) =
δ(αn) we have

Γ (A) =
1
n
− 1

n + 1
= γ(αn+1) .

Therefore,

R(M, | · |) = lim inf
n→∞

R(αn) = lim inf
n→∞

log[1/(n− 1)− 1/n]
log(1/n)

= 2 .

Consequently, (M, | · |) is not Lipschitz isomorphic to an ultrametric space.
Indeed, this argument proves the following proposition.

Proposition 2.14. Let (M,d) be a compact metric space. Suppose there
is a sequence {xn}n≥1 in M converging to some x ∈ M such that the subspace
N = {xn}n≥1∪{x} is Lipschitz isomorphic to the space ({1/n}n≥1∪{0}, |·|).
Then (M,d) is not Lipschitz isomorphic to an ultrametric space.
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