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Subadditive functions and partial converses
of Minkowski’s and Mulholland’s inequalities
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Abstract. Let ¢ be an arbitrary bijection of Ry. We prove that if the two-place
function ¢~ [¢p(s) + B(t)] is subadditive in Ri then ¢ must be a convex homeomorphism
of R4. This is a partial converse of Mulholland’s inequality. Some new properties of
subadditive bijections of Ry are also given. We apply the above results to obtain several
converses of Minkowski’s inequality.

Introduction. Throughout this paper R, R, and N will stand respec-
tively for the set of reals, nonnegative reals, and positive integers.
Every function f: Ry — R satisfying the inequality

fls+t) < f(s)+f() (s,t=0)

is said to be subadditive. If the inequality is reversed the function is termed
superadditive.
In our recent paper [4] we have proved the following

THEOREM 1. If f: R, — Ry is subadditive, right-continuous at 0 and
bijective then f is a homeomorphism of R, .

In Section 1 we consider the two-place function py : Rﬁ_ — R, given by
the formula py(s,t):= ¢~ 1[g(s) + ¢(t)] where ¢ : Ry — R, is an arbitrary
bijection. Using Theorem 1 we prove that if py is subadditive in Ri then
@ is a convexr homeomorphism of R, . This is a partial converse of Mulhol-
land’s criterion of subadditivity of the functional p, (cf. H. P. Mulholland
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[6], also M. Kuczma [2], p. 201, Theorem 1). In Section 2 we apply this
result to improve some converses of Minkowski’s inequality for 15-norm.

In [5] we have shown that in Theorem 1 the right continuity at 0 cannot
be replaced by a weaker assumption of boundedness in a neighbourhood
of 0. However, in Section 3 of the present paper we prove among other
things that if ¢ is a bijection of Ry such that ¢~' and, for some positive
integer n > 1, the function ¢ o (n¢~') are subadditive and ¢~ is bounded
in a neighbourhood of 0 then ¢ is a homeomorphism of Ry. This result
together with Theorem 1 as well as the main result of Section 1 permit us
(Section 4) to prove some new converses of Minkowski’s inequality for the
L?-norm. One of these results (Theorem 8) reads as follows. Let (£2, X, )
be a measure space with at least three sets A, B,C € X such that

0<pu(Ad) <1, wB)=ulC)=1, BNC=0.

If ¢ : Ry — Ry is a bijection such that ¢(0) = 0 and for all nonnegative
u-integrable step functions x,y,

¢_1(!}f¢o|x+y|du)S¢—1((}f¢o|x\du)+¢_1<J¢O‘y|dﬂ>

then, without any regularity conditions, ¢(t) = ¢(1)tP (t > 0) for some
p=>1.

1. Subadditive functions of the form ¢~![¢(s)+¢(t)] and a partial
converse of Mulholland’s inequality. For an arbitrary bijection ¢ :
R, — R, the two-place function py : Ri — R, given by the formula

Po(z) = ¢ ' [p(x1) + d(x2)], = (21,72),

is well defined. Functions of this form are known to be solutions of the
associativity functional equation (cf. J. Aczél [1], p. 253). Moreover, if
#(t) = ¢(1)tP, p > 1, then, in view of Minkowski’s inequality, p, is subaddi-
tive. This classical fact has been generalized by H. P. Mulholland [6] (cf. also
M. Kuczma [2], p. 198), who proved the following criterion of subadditivity
for pg.

MULHOLLAND’S INEQUALITY. If ¢ : Ry — R4 is a convex homeomor-
phism of Ry such that logo¢ o exp is conver in R then the functional py
is subadditive in R3.

Using Theorem 1, we prove a partial converse.

THEOREM 2. Let ¢ : Ry — Ry be an arbitrary bijection of Ry. If pe
is subadditive in Rﬁ_ then ¢ is a convexr homeomorphism of R .

Proof. Writing out the subadditivity of ps we have
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(1) ¢ Molz1 +v1) + d(m2 + y2)]
< ¢ p(a1) + ¢(w2)] + ¢ Hb(yr) + d(y2)]

for all x1,x2,y1,y2 > 0. Setting here 1 = x5 := s, y1 = Yo :=t, we get

(2) ¢~ 20(s + )] < ¢ 20(s)] + 97 [20(1)], st 20,
which means that the function f := ¢! o (2¢) is subadditive in R. Since
f maps Ry onto R, there exists a tg > 0 such that f(¢y) = 0. From (2)
we have f(2ty) < 2f(tp) = 0 and, consequently, f(2ty) = f(to). Since f
is one-to-one it follows that ¢y = 0. Hence we get f(0) = ¢~ 1[2¢(0)] = 0,
which implies that ¢(0) = 0. Therefore, substituting =y := s, 9 = y1 := 0,
y2 :=tin (1), we get
(3) o p(s) + o) < s+t s,t>0.
In particular, ¢~1[2¢(t)] < 2t (t > 0). This proves that the function f =
¢~ 1o (2¢) is continuous at 0. In view of Theorem 1, f is a homeomorphism
of R+.

Substituting z; = ys := s, x3 = y1 :=t in (1) we get

fls+1) <207 [8(s) +6(1)],  s,t>0.

As f is strictly increasing, it follows that
(4) f#) <207 [o(s) +¢(1)],  s,t>0.
Since f(t) =t if and only if t = 0 we have either

(a) f(t) <tforallt>0,or
(b) f(t) >t for all t > 0.

We are going to show that case (a) cannot occur. To this end denote
by f™ the nth iterate of f. In case (a) the sequence (f"(¢)),., would be
strictly decreasing for every ¢ > 0. Therefore, since f™(t) = ¢~ 1[2"¢(t)], we
would have from (4),

o7 2"0()] <207 [¢(s) +o(1)],  st>0, neEN.
Replacing ¢ by ¢~ 1[27"¢(t)] we hence obtain
t <20 'o(s) +27"¢(t)], s,t>0, neN.
Fix t > 0. For n € N sufficiently large we clearly have ¢(271) —27"¢(t) > 0.
Substituting in the above inequality
s:= ¢ [p(271t) — 27" 9(t)]

we get t < t, which is a contradiction.

This proves that f satisfies inequality (b).
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Now we are in a position to prove that ¢—! is continuous at 0. From (4)
and (b) we have

t <20 'p(s) +o(t)], s,t>0,
or, equivalently,
(5) oMt <20 (s +1), s,t>0.
If »~! were discontinuous at 0 then there would exist an ¢ > 0 and a sequence

of positive reals (,,)72; such that

lim ¢, =0 and 2<¢ *(t,), n€N.

n—oo
Hence, setting t := t,, in (5), we obtain
e<¢Hs+ty), s>0,neN.
This inequality and the relation lim,, ., t, = 0 imply that

¢_1[(0’ OO)] = U ¢_1[(tn’ OO)] - U [57 OO) = [5700)7

which contradicts the bijectivity of ¢ and proves that ¢! is continuous at 0.
Since ¢ is bijective it follows from (3) that ¢! is a subadditive bijection
of Ry. In view of Theorem 1 the function ¢! is a homeomorphism of R
and, consequently, increasing.
Hence for all s,t > 0 with s < ¢, the numbers

ST

Y=o " <S2+t> —¢ M), y2:=0

are nonnegative. Inserting them in (1) we obtain

0N (55 iz,

(6)

i.e. $~!is Jensen concave. Since ¢! is continuous and increasing it follows
that ¢ is convex. This completes the proof.

Remark 1. If f: Ry — Ry satisfies f(s)+ f(t) < f(s+t), s,t > 0, then
obviously it is increasing and f(0) = 0. Thus every superadditive bijection

of Ry is a homeomorphism. This permits us to prove a dual counterpart
of Theorem 2.

THEOREM 3. Let ¢ : R — Ry be an arbitrary bijection. If py is
superadditive in Ri then ¢ is a concave homeomorphism of R,.

Proof. Suppose that p, is superadditive in Ri. It is easy to see that
#(0) = 0 and ¢! is superadditive. By Remark 1, ¢! is a homeomorphism
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of Ry. Substituting in the reversed inequality (1) the numbers z1, x2, y1,
y2 defined by (6) we conclude that ¢ is concave.

This is a partial converse of Mulholland’s inequality stating that if ¢ and
log o¢ o exp are concave then py is superadditive [6].

2. An application to a partial converse of Minkowski’s inequal-
ity for 15-norm. Mulholland’s inequality provides us with a broad class of
bijective functions ¢ for which the functional py is subadditive in Ri. It
is easy to verify that every power function ¢(t) := ¢(1)t?, p > 1, belongs
to this class and that the subadditivity of ps becomes the simplest version
of Minkowski’s inequality for the 15-norm. The main result of this section
says that, under only some regularity assumptions, the subadditivity of the
functional py implies that ¢ is a power function. We start with the following

THEOREM 4. Let ¢ : Ry — R be an arbitrary bijection and suppose that
the functional py is subadditive in Ri. Then ¢ is a convex homeomorphism
of Ry and the limit

co := lim M
t—oo

exists where 0 < ¢y < 0o. Moreover:
(a) if co < 0o then ¢(t) = cot (t > 0);
(b) if co = o0 and there exists a p > 1 such that the limit
c:= lim —é(t)
t—oo P
exists, 0 < ¢ < oo, and the function ¢'/P is conver then ¢(t) = ct? (t > 0).
Proof. By Theorem 2 the function ¢ is a convex homeomorphism of
Ry. Thus ¢(0) = 0 and, consequently, the function (0,00) 3 t — ¢(t)/t is
increasing. This implies that the limit ¢y exists and 0 < ¢g < 0.
Inequality (1) holds by assumptions. Setting z1 = z2 :=s, y1 = y2 :=1
in (1) we get inequality (2), which means that f := ¢~10(2¢) is subadditive.
Since f is increasing it follows that f™, the nth iterate of f, is subadditive,
ie.
(1) o7 2"g(s +1)] < ¢7'12"d(s)] + 67 [2"6(t)], s,t=0, nEN.
Suppose now that cq is finite. Then lim; .o, ¢~ (t)/t = c;*. Writing (7)
in the form
¢ [2"¢(s + 1)] ¢’1[2”¢(8)]¢(8) L 2o
2n¢(s +1) 27 (s) 27¢(t)
for s,t > 0, n € N, and letting n tend to infinity we hence get

d(s+t)<o(s)+o(t), st>0,

P(s+1t) < (1)
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i.e. ¢ is subadditive. On the other hand, ¢, being convex and satisfying
#(0) = 0, is superadditive. Thus ¢ is additive and, consequently, ¢(t) = cot
(t >0) (cf. J. Aczél [1], p. 34, Theorem 1).

Suppose that ¢y = co. Now lim; ., ¢~ (t)/t1/P = ¢~1/P. Therefore
writing (7) in the form

GO A D] gy 6T 6720
2ro(s+ e O TS g T g
for all s,t > 0, n € N, and letting n tend to infinity we get
[o(s + )7 < [o(NYP +[0(]F, st 20,

i.e. ¢/ is subadditive. Since ¢'/P is increasing and by assumption convex,
it follows that it is superadditive. Thus ¢'/? is additive and, consequently,
linear. This concludes the proof.

o))"

Remark 2. One can easily verify that the assumption of convexity of
$'/? in Theorem 4(b) can be replaced by each of the following conditions:

(i) t — ¢(t/P) is convex in (0,00);

(ii) t — t~1p(t'/P) is increasing in (0,00);

(iii) t — t~1[@(t)]'/? is increasing in (0, 00);

(iv) t — ¢(t/P) is superadditive in (0, 00);

(v) ¢'/P is superadditive.
This improves our earlier result (cf. [4], Corollary 2) where it is assumed
that ¢(0) = 0 and ¢~ is continuous at 0.

If we drop the convexity assumption in Theorem 4(b) we can only assert
that ¢(t) > ct? (¢ > 0). In fact, in view of the first part of the proof
of Theorem 4(b), where we do not use the convexity assumption, H/P s
subadditive. Therefore

[p(nt)]V/? < nlp(®)]'?,  t>0, neN,
or, equivalently,
¢(nt)
(nt)?
As n tends to infinity we hence obtain ct? < ¢(t) for all t > 0 (cf. also [4],
Proposition 5). In this connection consider the following

P <¢p(t), t>0, neN.

EXAMPLE. For p > 1 the function ¢(t) := t? +tP~1, ¢t > 0, is obviously
convex. After some simple calculations we have

(logopoexp)’(u) = (u+1)"%, weR,

which proves that logo¢ o exp is also convex. Thus, by Mulholland’s in-
equality, pys is subadditive in Ri. Since ¢ is not a power function, this
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example shows that in Theorem 4(b) the convexity of ¢'/? (or of any of its
substitutes (i)—(v)) is essential.

Remark 3. It is easy to observe that the assumption of the existence
of p > 1 such that the limit

t
c:= lim —¢( )
t—oo P
is positive and finite in Theorem 4(b) can be replaced by the existence of a
finite positive limit
t
lim M
t—0 tP
Remark 4. Making use of Remark 3 one can easily get the counterparts

of the above results for p, superadditive.

3. Functions conjugate to linear functions and subadditivity.
In the proofs of Theorems 2 and 4 we considered functions of the form
f = ¢ 1o (ap), with a = 2", n € N. Since ¢ o f o ¢71(t) = at, the
function f is ¢-conjugate to the linear function ¢ — at. In this section we
are concerned with some properties of such functions.

THEOREM 5. If ¢ : Ry — Ry is a bijection such that
(i) ¢~ is subadditive;
(i) ¢! o (ag) is continuous for some a > 0, a # 1;
(iii) ¢! is bounded in (0,c) for some ¢ > 0,
then ¢ is a homeomorphism of R..
Proof. Since ¢ = 0 is the only fixed point of the homeomorphism
f = ¢ o (ag), we have either
(a) f(t) <tforallt>0,or
(b) f(t) >t for all t > 0.
Take an arbitrary xo > 0 and define
Tt = f(xg) (k=0,£1,£2,...).
One can easily verify that
o(x1) = a¥p(xo) (E=0,+£1,4£2,...).
In the sequel, without any loss of generality, we may assume that a > 1.
(In fact, if 0 < a < 1, consider the function ¢=! o (a~!¢) which, being the
inverse of f, is also a homeomorphism of R, .)

Note that case (a) cannot occur. Indeed, in this case we have xy 1 < z)
for all integer k. Consequently, the limit

c:= lim z_p >x9>0
k—o0

exists. If ¢ < oo then, by the continuity of f, we would have
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fle)= lim f(z_y) = lim z_p, =c,

k—o0
which is a contradiction.
Suppose that ¢ = oo and put yi := ¢(z_x), k € N. Since
klim Yk = klim d(z_y) = klim a *p(x0) =0,
we hence get
klim ¢ Hyr) = klim T_p=Cc=00.
This is a contradiction as ¢! is bounded in a neighbourhood of 0.
This proves that f satisfies inequality (b). Consequently,
Tp < Th41, k=0,£1,£2,...,
and, by the continuity of f,
lim f(z_x) =0, lim f(zx) = 0.
k—o0o k—oo

It follows that

oo

(0,00) = U [Tk, Trt1) -

k=—o00

Because [z, 241) = f([zk-1,2x)), we have ¢([xk, 2p11)) = ad([zrp-1,2k)).
Setting

Ey = ¢([xk, vk41)) (B=0,£1,£2,...),
we obtain
Eyx=aFi_1:={at:t€ Ex_1} = a"E, (k=0,£1,42,...).

Since ¢ is bijective, the sets Ej are pairwise disjoint and

(0,00): [j Ek.

k=—o00

Observe that 0 is not a limit point of the set Fy. For an indirect proof

suppose that this is not the case. Then there exists a sequence yr € Ey

(k € N) such that z; := a*y (k € N) satisfies limy_.o, zx = 0. Since 25, € Ey,

(k € N), we hence get ¢~1(2x) € [zg, Tr+1) (K € N) and limg_ o ¢~ (21)

= 0o0. This contradicts the boundedness of ¢~! in a neighbourhood of 0.
Hence, putting 0y := inf Fy, (k= 0,£1,%2,...), we have

op=a"6g >0 (k=0,+1,42,...).

Taking an arbitrary integer n we get



Subadditive functions 83

é((wn,00)) = ¢ U lowszre1)) = | @llawwis1))
k=n k=n

= U Ek C U [516’00) = [571700) = [an50700)>
k=n k=n

which means that for every ¢,

0<t<ab= ¢ (t) <az,.
Since n = 0,+1,42, ... is arbitrary and lim,_,, z_, = 0, this implies that
¢! is continuous at 0. Now Theorem 1 concludes the proof.

EXAMPLE. Let a : R — R be a discontinuous additive involution (cf. [2],
p. 293, Theorem 2) and let ¢ := |af|r, (the restriction of [a| to R ). Since
a = a1, it is easy to verify that

1° ¢~ ! and ¢ are subadditive bijections of R ;

2° for every rational a > 0 the function ¢! o (a¢) is linear;

-1 L R2

3° the graphs of ¢ and ¢~ are dense in R7.
Thus ¢! o (ag) can be homeomorphic (even linear) for extremely irregular
¢. This also shows that assumption (iii) of Theorem 5 is essential.

The main result of this section reads as follows.

THEOREM 6. If a bijective function ¢ : Ry — Ry satisfies the following
conditions:
(i) ¢~ is subadditive;
(ii) there exists n € N,n > 1, such that ¢$—1 o (ng) is subadditive;
(iii) ¢! is bounded in a neighbourhood of 0,

then ¢ is a homeomorphism of R .
Proof. Clearly f:= ¢! o (n¢) is a bijection of Ry. From (i) we get
f(t) =¢7 (ng(t)) <ng~(¢(t)) =nt, te€[0,00),

which proves that f is continuous at 0. In view of Theorem 1 the function
f is a homeomorphism of R,. Now Theorem 5 concludes the proof.

Remark 5. The function ¢ : Ry — Ry given by ¢(t) := t~! (¢t > 0)
and ¢(0) = 0 is a subadditive bijection of R;. Moreover, for every a > 0
the function ¢~! o (a¢)(t) = at (¢t > 0) is additive. This shows that the
assumption (iii) of Theorem 6 is indispensable.

4. A contribution to the converse of Minkowski’s integral in-
equality. For a measure space (£2, X, u) denote by S = S(£2, X, i) the set
of all p-integrable step functions x : 2 — R and by S the set of all nonneg-
ative z € S. It can be easily verified that for every bijection ¢ : Ry — Ry
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such that ¢(0) = 0 the functional P4 : S — R, given by the formula
Py(@) =o' ( [ @olzldu), weS.
2

is well-defined. In [3] the following converse of Minkowski’s inequality has
been proved.

If (£2,X, 1) is a measure space with two sets A, B € X such that
0<p(A) <1< upu(B) <o
and ¢ is a bijection such that ¢(0) =0, ¢~ is continuous at 0 and
Py(z+y) <Py(x) +Py(y), x,y€Sy,
then ¢(t) = ¢(1)tP (t > 0) for some p > 1.

At least from the aesthetic point of view this result would be more sat-
isfactory if the purely technical continuity assumption could be dropped.
This seems to be a rather difficult question. To explain the role of this
assumption observe that ¢(0) = 0 and the triangle inequality for Py im-
ply that f := ¢! is subadditive in R,. Therefore, by Theorem 1, ¢ is a
homeomorphism of R ;. This is a starting point of the proof given in [3].

An attempt at replacing the continuity of ¢~! at 0 by the boundedness
of ! in a neighbourhood of 0 causes serious difficulties (cf. [5]). However,
making use of Theorem 6, we can prove the following

THEOREM 7. Let (£2,X, 1) be a measure space with two disjoint sets
A,B € X such that p(A) € (0,1) and uw(B) € N\{1}. If ¢ : Ry — Ry is
an arbitrary bijection such that ¢(0) = 0, the function ¢~ is bounded in a
neighbourhood of 0 and

(8) Ps(x+y) <Py(2) + Pyly), =58y,
then ¢(t) = ¢(1)t? (t > 0) for some p > 1.

Proof. Put a:= p(A), n:= pu(B) and denote by x the characteristic
function of a set C'. Setting in (8),

TI=T1X, T T2Xg Y= YIX4 T Y2Xg  (T1,T2,y1,y2 > 0),

we get the inequality

9) ¢ Hag(x1 +y1) + no(w2 + y2)]

< ¢ ag(x1) + no(@2)] + ¢ ap(y) + ne(ya)]

for all nonnegative x1,zs,y1,y2. Hence, specifying these variables in an
obvious way and making use of the assumption ¢(0) = 0, we infer that ¢!
and ¢! o (ng) are subadditive. Since ¢! is bounded in a neighbourhood
of 0, Theorem 6 implies that ¢ is a homeomorphism of R;. We also have
0 < u(A) <1< pu(B) < oco. Now our theorem results from the converse of
Minkowski’s inequality quoted above.
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We end this paper with one more application of Theorem 2. Strength-
ening slightly the assumptions on the underlying measure space, we prove
a converse of Minkowski’s inequality without any regularity assumptions.

THEOREM 8. Let (£2,X, 1) be a measure space with three sets A, B,C
€ X such that

0<u(A) <1, wB)=plC)=1, BNC=10.
If ¢ : Ry — Ry is a bijection such that ¢(0) =0 and
Py(z+y) <Py(z) + Pyly), x,y€Sy,
then ¢(t) = ¢(1)t? (t > 0) for some p > 1.

Proof. One can easily verify that taking in the triangle inequality (8),

T = xlXB+x2XCa Yy = leB+y2XC (x17x27y17y2 20)7
we get inequality (1). It means that the functional p, : RZ — Ry given by
the formula

Po(2) = ¢~ p(z1) + ¢(22)], @ = (21,22),
is subadditive. By Theorem 2 the function ¢ is a homeomorphism of R
and, consequently, ¢! is continuous at 0. Since 0 < p(A) < 1 and u(B U
C') = 2, our theorem follows from the above quoted converse of Minkowski’s
inequality.
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