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When are Borel functions Baire functions?

by

Mogens Fo s g e r au ( Lyngby)

Abstract. The following two theorems give the flavour of what will be proved.

THEOREM. Let Y be a complete metric space. Then the families of first Baire class
functions and of first Borel class functions from [0, 1] to Y coincide if and only if Y is
connected and locally connected.

THEOREM. Let Y be a separable metric space. Then the families of second Baire class
functions and of second Borel class functions from [0, 1] to Y coincide if and only if for
all finite sequences U1, . . . , Uq of nonempty open subsets of Y there exists a continuous
function φ : [0, 1]→ Y such that φ−1(Ui) 6= ∅ for all i ≤ q.

0. Introduction. Given metric spacesX and Y we let Ba0(X,Y ) be the
family of all continuous functions from X to Y . For all ordinals 0 < α < ω1

we define the Baire class α, denoted by Baα(X,Y ), to be the family of all
limits of pointwise convergent sequences of functions from

⋃
β<α Baβ(X,Y ).

A class α Borel function from X to Y (0 < α < ω1) is a function f such
that f−1(G) is a Borel set of additive class α whenever G is an open subset
of Y . For reference on Borel sets see [10]. We denote the family of all class
α Borel functions by Boα(X,Y ).

The first Baire and Borel classes do not coincide in general. The function
f : [0, 1] → {0, 1} defined by f(1) = 1 and f(t) = 0 when t < 1 is of first
Borel class, but clearly is not of first Baire class.

The Lebesgue–Hausdorff Theorem in [10, p. 391] tells us that if X is
metric and if Y is an n-dimensional cube, [0, 1]n, n ∈ N, or the Hilbert cube,
[0, 1]N, then the first Baire and Borel classes of functions from X to Y do
coincide.

More general theorems of this kind has been proved. Rolewicz showed
in [14] that if Y is a separable convex subset of a normal linear space, then
the first Baire and Borel classes of functions from X to Y coincide. In
[6] Hansell gave an extension of the Lebesgue–Hausdorff Theorem asserting
that, if every continuous function from a closed subset of X to Y can be
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extended continuously to X, then every σ-discrete (see Section 2) first Borel
class function from X to Y is also of first Baire class. It was pointed out
that Hansell’s proof was incomplete, but that it was valid whenever the
range space is an absolute extensor for metric spaces, hence when Y is any
convex subset of a locally convex linear topological space by the Borsuk–
Dugundji Extension Theorem. A proof of this is also given in [9] where the
domain space is only assumed to be collectionwise normal (Hausdorff). If, in
addition, the range is separable, then the domain need only be normal (see
[9, Theorem 1.2 and the subsequent Remark 1.3]). Hansell remarks that this
latter result appears to be new but it was known to M. Laczkowich earlier
[12]. In [13] Rogers gave another corrected version of Hansell’s statement,
namely that if every continuous function from a closed subset of X to Y
can be extended continuously to X, and if, for each point y in Y and each
neighbourhood L of y, there is a second neighbourhood N of y such that, for
each closed subset F of X and each continuous map f from F to N , there
is a continuous extension of f mapping X into L, then every σ-discrete first
Borel class function from X to Y is also of first Baire class.

In the present paper we prove that all σ-discrete first Borel class functions
from a metric space into a metric, arcwise connected and locally arcwise
connected space are of first Baire class. We then look for a converse to this
result and prove the following theorem. We write I = [0, 1] and Σ(X,Y ) for
the class of σ-discrete functions from X to Y .

Theorem 2. Let Y be complete metric. Then the following three state-
ments are equivalent : (i) Y is connected and locally connected ; (ii) Ba1(I, Y )
= Bo1(I, Y ); and (iii) Ba1(X,Y ) = Bo1(X,Y ) ∩ Σ(X,Y ) for all metric
spaces X.

Having considered the case for the first Baire and Borel classes, we then
turn our attention to the higher classes. Here the classic theorem is the
Banach Theorem which can be found in [10] or in [1]. This theorem uses
the concept of an analytically representable function. The analytically rep-
resentable functions of class one are the first Borel class functions, and
the analytically representable functions of class α are the functions which
are pointwise limits of analytically representable functions of classes lower
than α. The Banach Theorem tells us that if X is metric and if Y is sepa-
rable and metric then the set of analytically representable functions of class
α coincides with the set of Borel class α (α + 1) functions when α is finite
(infinite). Another theorem by Banach in [1] states that if Y is also arcwise
connected then the set of Baire class α functions can replace the analyti-
cally representable functions of class α in the Banach Theorem for α ≥ 2.
In [2] Brown showed in particular that if X is compact metric and Y is ar-
cwise connected, separable and metric, then the class of all Borel functions
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and the class of all Baire functions coincide. In [6] Hansell generalized the
Banach Theorem to the case where Y need not be separable, using the no-
tion of a σ-discrete function. Hansell’s result states that if Y is metric and
f : X → Y is σ-discrete and of Borel class α (α + 1) then f is analytically
representable of class α, whenever α is finite (infinite).

Again we find that a very simple “connectedness” condition tells us when
the Baire and Borel classes coincide. We shall prove the following theorem.

Theorem 3. Let Y be a separable metric space. The following statements
are equivalent : (i) For all finite sequences U1, . . . , Uq of nonempty open
subsets of Y , there exists a continuous function φ : I → Y with φ−1(Ui) 6= ∅
for all i ≤ q; (ii) Ba2(X,Y ) = Bo2(X,Y ) for all metric spaces X ; (iii) For
each metric space X and for each finite (countable, infinite) ordinal α ≥ 2,
Baα(X,Y ) coincides with Boα(X,Y ) (Boα+1(X,Y )).

In [2] Brown makes a remark which implies that if Y is a separable metric
space the condition (i) implies that

⋃
α≥0 Baα(X,Y ) =

⋃
α≥0 Boα(X,Y ) for

all metric spaces X. His remark seems to imply the converse. He gives proof
of neither of these results.

This paper was written at University College London. The author wishes
to express his thanks to his supervisors David Preiss, C. A. Rogers and
John Jayne. The helpful comments from the referee are also thankfully
acknowledged.

1. Definitions. A space is said to be locally arcwise connected if each
point of the space has an arbitrarily small (not necessarily open) arcwise
connected neighbourhood. This is equivalent to requiring that, for all ε,
every point of the space must have an open neighbourhood such that any
two points of the neighbourhood can be joined with an arc of diameter less
than ε.

We say that a family of sets A refines a second family of sets B if each
set of A is contained in a set of B, and

⋃
A =

⋃
B. We write this A ≺ B.

Given any set A in a metric space X and ε > 0, we denote the generalized
open ball with “centre” A and radius ε as B(A, ε) = {x ∈ X : d(x,A) < ε}.

2. σ-discrete functions. We shall make use of the notion of a σ-
discrete function, as developed by A. H. Stone and R. W. Hansell, to allow
us to consider general metric spaces, using techniques normally used for
separable metric spaces. In this section the necessary definitions and results
concerning σ-discrete functions will be given. The reader is referred to [5]–[7]
for further information. All spaces are assumed to be metric.

A family of sets in a topological space is said to be discrete if each
point of the space has a neighbourhood that meets at most one set of the
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family. The family is said to be uniformly discrete if there exists ε > 0 such
that the distance between any two sets of the family is greater than ε. A
family of sets is said to be σ-discrete if it can be decomposed into countably
many subfamilies, each of which is discrete. A family of sets is said to be
σ-uniformly discrete if it can be decomposed into countably many uniformly
discrete families. By [5, Lemma 2 and its proof], if A is a σ-discrete family
of Fσ-sets, then there exists a σ-uniformly discrete family B of Fσ-sets such
that B ≺ A.

A family of sets is a base for a function from one topological space into
another if the pre-image of any open set is a union of sets from the family.
A function is said to be σ-discrete if it has a σ-discrete base. The family of
all σ-discrete functions from X to Y is denoted by Σ(X,Y ). In any metric
space there exists a σ-discrete family of open sets, forming a base for the
topology (see [10, p. 235]). Using this it can be shown that any continuous
map with metric range is σ-discrete. The family Σ(X,Y ) is closed under
pointwise limits ([7]), so all Baire class α functions, α < ω1, are σ-discrete.
In [10, p. 386], it is shown that functions of Baire class α are of Borel class
α, respectively α + 1, according as α is finite or infinite. In [6] it is shown
that a σ-discrete Borel class α function, where α ≥ 2, is the pointwise
limit of a sequence of σ-discrete Borel functions, each of class strictly lower
than α. Hence, if for some α ≥ 1, Baα(X,Y ) is equal to Boα(X,Y ) ∩
Σ(X,Y ), respectively Boα+1(X,Y ) ∩ Σ(X,Y ), according as α is finite or
infinite, then we deduce that Baβ(X,Y ) is equal to Boβ(X,Y ) ∩ Σ(X,Y )
(Boβ+1(X,Y )∩Σ(X,Y )) for all finite (infinite) ordinals β greater than α. A
σ-discrete function of the first Borel class from one metric space into another
has a σ-discrete closed base ([6]). Every function from a metric space to a
separable metric space is σ-discrete, and every Borel function from a space
that is a Souslin-F set in some complete metric space to a metric space is
σ-discrete ([6]). It is consistent with and independent of ZFC to assume that
all Borel functions from a metric space to a metric space are σ-discrete (see
[4]). Under Martin’s Axiom plus the negation of the Continuum Hypothesis
there exists an uncountable X ⊂ R each subset of which is a relative Fσ-set.
Thus any one-to-one map from X onto a discrete subset of a suitably large
hedgehog space (see [3, p. 314]) is an example of a Borel class 1 map which
is not Baire class 1.

3. First Baire class functions. We shall start with two lemmas. The
first is purely technical.

Lemma 1. Let A be a σ-discrete family of closed sets covering the metric
space X. Then there exist families Bp, p = 1, 2, . . . , of closed sets such that :

•
⋃

p Bp ≺ A;
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• each member of Bp is contained in some member of Bp+1, for all p;
• Bp is uniformly discrete for all p; and
•

⋃ ⋃
p Bp = X.

P r o o f. Write A as the countable union of discrete families Ak of closed
sets, and, for each j, let Cj = {A \

⋃
k<j

⋃
Ak : A ∈ Aj} and C =

⋃
j Cj .

Then C is a disjoint, σ-discrete family of Fσ-sets such that C ≺ A. By [5,
Lemma 2 and its proof], we can write each C ∈ C as an increasing union
of Fσ-sets, C =

⋃
nD

n
C , where the families {Dn

C : C ∈ C} are uniformly
discrete for all n. Write each Dn

C =
⋃

m Fnm
C , where the sets Fnm

C are
closed. Then the families Bp = {

⋃
n,m≤p F

nm
C : C ∈ C}, p ∈ N, satisfy the

conclusion of the lemma.

Our second lemma provides us with approximating functions to a given
function.

Lemma 2. Let X be a metric space and let Y be a metric and arcwise
connected space. Let f : X → Y be given and let Dn, n = 1, . . . , p, be
families of nonempty closed sets in X such that :

• Dn is uniformly discrete for all n;
• each member of Dn+1 is contained in some member of Dn for all

n < p; and
• x1, x2 ∈ A ∈ Dn implies that f(x1) and f(x2) can be joined with an

arc of diameter less than 2−n.

Then there exists a continuous function g : X → Y such that if x ∈
⋃
Dn,

n ≤ p, then d(f(x), g(x)) ≤ 2−n+2.

P r o o f. Since the families Dn, n ≤ p, are uniformly discrete, we can find
ε1 > 2ε2 > . . . > 2p−1εp > 0 so that {B(A, εn) : A ∈ Dn} is a discrete family
of open sets for each n ≤ p. Observe that, for A ⊂ C with A ∈ Dn+1 and
C ∈ Dn, we have B(A, εn+1) ⊂ B(C, εn/2). Pick y′ ∈ f(X) and yA ∈ f(A)
for all A ∈

⋃
n≤pDn. For each A ∈ D1 let φ1

A : I → Y be an arc with
φ1

A(0) = y′ and φ1
A(1) = yA. For each A ∈ Dn, 1 < n ≤ p, there is a unique

C ∈ Dn−1 with A ⊂ C, since the family Dn−1 is disjoint. Let φn
A : I → Y

be an arc of diameter at most 2−n+1, with φn
A(0) = yC and φn

A(1) = yA.
We shall define a sequence g0, g1, . . . , gp of continuous functions from X

to Y and arrange that the function g = gp satisfies the requirements of the
lemma. We start the inductive process by taking g0(x) = y′ for all x in X.
Write

D1 =
⋃
{B(A, ε1/2) : A ∈ D1}, E1 = X \

⋃
{B(A, ε1) : A ∈ D1} .

Since the family {B(A, ε1) : A ∈ D1} is discrete, D1 and E1 are disjoint
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closed sets. Write

h1(x) =
d(x,E1)

d(x,D1) + d(x,E1)
,

so that h1 is a continuous function on X taking value 1 on D1 and 0 on E1.
Set

g1(x) =


g0(x) = y′ on E1 ,

yA on B(A, ε1/2) for each A ∈ D1 ,

φ1
A ◦ h1(x) on B(A, ε1) \B(A, ε1/2) for each A ∈ D1 .

Since the sets E1, B(A, ε1/2), B(A, ε1)\B(A, ε1/2), for A ∈ D1, are disjoint
with unionX, the function g1 is well-defined. We verify that g1 is continuous
on X. For x0 ∈ X we can choose a neighbourhood N of x0 that meets at
most one set of the family {B(A, ε1) : A ∈ D1}. If N meets none of these
sets then g1(x) = g0(x) for x in N , and g1 is continuous at x0. Suppose that
N meets B(A, ε1) for some A in D1, but meets no B(A′, ε1) with A′ ∈ D1,
A′ 6= A. Then, on N \B(A, ε1), h1 takes value 0 and g1 takes value y′. Thus
g1(x) = φ1

A ◦ h1(x), both on B(A, ε1) and on N \ B(A, ε1), and so on N .
Hence g1 is again continuous at x0.

In particular, g1 is a continuous function on X, with

g1(x) =
{
g0(x) on E1 = X \

⋃
{B(A, ε1) : A ∈ D1} ,

yA on B(A, ε1/2) for each A ∈ D1 .

Now suppose that for some n, 1 ≤ n < p, we have defined continuous
functions g1, . . . , gn on X so that

gn(x) =
{
gn−1(x) on En = X \

⋃
{B(A, εn) : A ∈ Dn} ,

yA on B(A, εn/2) for each A ∈ Dn .

Write
En+1 = X \

⋃
{B(A, εn+1) : A ∈ Dn+1} ,

Dn+1 =
⋃
{B(A, εn+1/2) : A ∈ Dn+1} .

Since the family {B(A, εn+1) : A ∈ Dn+1} is discrete, En+1 and Dn+1 are
disjoint closed sets. Hence

hn+1(x) =
d(x,En+1)

d(x,Dn+1) + d(x,En+1)

is a continuous function on X taking value 1 on Dn+1 and 0 on En+1. Take

gn+1(x) =


gn(x) on En+1 ,

yA on B(A, εn+1/2) for A ∈ Dn+1 ,

φn+1
A ◦ hn+1 on B(A, εn+1) \B(A, εn+1/2) for A ∈ Dn+1 .
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Since we have assigned values to gn+1 on a family of disjoint sets with
union X, the function gn+1 is well-defined. We verify that it is continuous
on X. Let x0 be any point of X. If x0 belongs to none of the sets of
the discrete family {B(A, εn+1) : A ∈ Dn+1} of closed sets we can choose a
neighbourhood N of x0 that meets none of these sets. Then gn+1(x) = gn(x)
on N and so gn+1 is continuous at x0. Suppose now that x0 ∈ B(A, εn+1)
for some A ∈ Dn+1. Then x0 ∈ B(C, εn/2) for just one C in Dn. Now
we can take N to be a neighbourhood of x0 contained in B(C, εn/2) that
necessarily meets B(A, εn+1) but meets no set B(A′, εn+1) with A′ ∈ Dn+1,
A′ 6= A. Now on N \B(A, εn+1) ⊂ En+1, hn+1 takes value 0 and gn+1(x) =
gn(x) = yC , since N ⊂ B(C, εn/2), and so

(∗) gn+1(x) = φn+1
A ◦ hn+1(x) .

The same is true on N ∩ B(A, εn+1) \ B(A, εn+1/2). Further, on
B(A, εn+1/2), hn+1(x) takes value 1 and gn+1(x) takes value yA so that
(∗) holds again. Thus it holds on N and gn+1 is continuous at x0. It
follows, in particular, that whenever gn+1(x) 6= gn(x) we have

gn+1(x) = φn+1
A ◦ hn+1(x) and gn(x) = yC .

Since the arc in Y given by φn+1
A (t), 0 ≤ t ≤ 1, is of diameter at most 2−n,

we have
d(gn+1(x), gn(x)) ≤ 2−n ,

for all x in X.
Proceeding inductively in this way we define continuous functions g0, g1,

. . . , gp = g on X satisfying

gn(x) = yA for x ∈ A ∈ Dn and 1 ≤ n ≤ p ,

and
d(gn(x), gn+1(x)) ≤ 2−n for x ∈ X and 1 ≤ n < p .

Thus
d(g(x), gn(x)) ≤ 2−n + 2−n−1 + . . .+ 2−p+1 ≤ 2−n+1

for x ∈ X and 1 ≤ n ≤ p. Now, if x ∈ A ∈ Dn, 1 ≤ n ≤ p, we have

d(g(x), yA) = d(g(x), gn(x)) ≤ 2−n+1 .

Since yA ∈ f(A) and any two points of f(A) can be joined by an arc of
diameter less than 2−n, we have

d(f(x), yA) ≤ 2−n .

Hence d(f(x), g(x)) ≤ 2−n+2 as required.

Theorem 1. Let X be a metric space and let Y be an arcwise connected
and locally arcwise connected metric space. Then Bo1(X,Y ) ∩ Σ(X,Y ) =
Ba1(X,Y ).
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P r o o f. Every first Baire class function is σ-discrete and of first Borel
class, so let f ∈ Bo1(X,Y )∩Σ(X,Y ). We shall define a sequence of contin-
uous functions, converging pointwise to f .

Using local arcwise connectedness find, for each y ∈ Y and each n, an
open neighbourhood Un(y) of y such that any two points of Un(y) can be
joined with an arc of diameter at most 2−n.

Since f is σ-discrete and of first Borel class, it has a σ-discrete closed
base, which we will denote by A. For each n define An = {A ∈ A : ∃y ∈ Y
f(A) ⊆ Un(y)}. Note that

⋃
An = X for each n.

For each n apply Lemma 1 to the family An to find families Bp
n of closed

sets satisfying:

• each member of Bp
n is contained in some member of {f−1(Un(y)) :

y ∈ Y };
• each member of Bp

n is contained in some member of Bp+1
n ;

• Bp
n is uniformly discrete for all p; and

•
⋃

p Bp
n is a cover of X (for all n).

We shall use these families to construct a new set of families of closed
sets by defining, for all p and n,

Dp
n = {A1 ∩ . . . ∩An : Am ∈ Bp

m for all m ≤ n} .

Note that Dp
n is uniformly discrete, that each member of Dp

n+1 is contained
in some member of Dp

n and that
⋃

pDp
n covers X for all n. For each p apply

Lemma 2 to f and the families Dp
n, n ≤ p, to get continuous functions gp :

X → Y such that, whenever x ∈
⋃

n≤pDp
n and p ≥ n, then d(f(x), gp(x))

≤ 2−n+2.
The sequence {gp} converges pointwise to f . To see this let ε > 0 and

x ∈ X be given. Find n such that 2−n+2 ≤ ε and find p ≥ n such that
x ∈

⋃
Dp

n. Then d(f(x), gq(x)) ≤ ε for all q ≥ p.

We now show that the converse of Theorem 1 is true when X is the unit
interval I and Y is complete. This will be done through a series of lemmas.

Lemma 3. Assume Ba1(I, Y ) = Bo1(I, Y ) where Y is a metric space.
Then for all ε > 0 and all y ∈ Y there exists an open neighbourhood U(y)
of y such that , for all nonempty open subsets U0, U1 of U(y), there exists
φ ∈ Ba0(I, Y ) with φ(i) ∈ Ui for i = 0, 1 and diamφ(I) ≤ ε.

P r o o f. Assume the statement is not true. Then we can find ε > 0 and
y ∈ Y such that, in all open balls B(y, 2−nε), there exist two nonempty open
sets U(n, 0) and U(n, 1) with the property that every arc φ ∈ Ba0(I, Y ) with
φ(i) ∈ U(n, i) for i = 0, 1 satisfies diamφ(I) > ε. For each n and i pick a
point y(n, i) ∈ U(n, i).
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Let α : N × {0, 1} → Q be a 1-1 map such that for any open interval
(t0, t1) ⊂ I there exists n with t0 < α(n, 0) < α(n, 1) < t1. Define the
function f : I → Y by

f(t) =
{
y if t ∈ I \ α(N× {0, 1}) ,
y(n, i) if t = α(n, i), (n, i) ∈ N× {0, 1} .

Note that f(I) is contained in B(y, ε/2). Since the y(n, i) converge to y, the
function f is of the first Borel class, and so, by assumption, there exists a
sequence {φk} ⊂ Ba0(I, Y ) converging pointwise to f .

Define for each m the set Hm =
⋃

k≥m φ−1
k (Y \ B(y, ε/2)). Then each

Hm is open and dense. To see this let 0 ≤ t0 < t1 ≤ 1 and find n such that
t0 < α(n, 0) < α(n, 1) < t1. The sequence {φk} converges pointwise to f ,
so we can find k ≥ m so large that φk(α(n, i)) ∈ U(n, i) for i = 0, 1. By
the definition of U(n, i), i = 0, 1, we have diamφk(α(n, 0), α(n, 1)) > ε. So
there exists t2 ∈ (α(n, 0), α(n, 1)) such that φk(t2) ∈ Y \B(y, ε/2).

Using the Baire category theorem we get
⋂

mHm 6= 0, which contradicts⋂
mHm ⊆ f−1(Y \B(y, ε/2)) = ∅.

Lemma 4. Let Y be complete. Then Y is locally arcwise connected if and
only if for all ε > 0 and for all y ∈ Y there exists an open neighbourhood U
of y such that for all nonempty open sets U0, U1 ⊂ U there exists an arc of
diameter less than ε starting in U0 and ending in U1.

P r o o f. The “only if” part is trivial. To show the “if” part let ε > 0,
y ∈ Y and let U be an open neighbourhood of y such that any two nonempty
open sets U0, U1 contained in U can be joined with an arc of diameter less
than ε/3 starting in U0 and ending in U1. Let V ⊂ Y be obtained from U
by adding to U all arcs intersecting U and having diameter less than ε/3.
We prove that V is connected. Indeed, if V = G0 ∪ G1, where G0 and G1

are nonempty, disjoint relatively open subsets of V , then each arc in V lies
in either G0 or in G1. Since each point of V \ U lies, by definition, on an
arc in V that intersects U , it follows that U ∩ G0 6= ∅ and U ∩ G1 6= ∅.
Since U ∩G0 and U ∩G1 are open sets, we can find an arc of diameter less
than ε/3 joining U ∩G0 and U ∩G1. By definition this arc lies in V , which
is impossible since it intersects both G0 and G1. Finally, we observe that
diamU ≤ ε/3, hence diamV ≤ 2ε/3 < ε, which shows that V is a connected
neighbourhood of y of diameter less than ε.

Now [11, Theorem 1, p. 254] shows that Y is locally arcwise connected.

Lemma 5. Let Y be complete and assume that Ba1(I, Y ) = Bo1(I, Y ).
Then Y is arcwise connected.

P r o o f. Let y0, y1 ∈ Y . We shall define an arc joining these two points.
Use Lemmas 3 and 4 to find open neighbourhoods U0, U1 of y0 and y1,
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respectively, such that any pair of points of U0 can be joined with an arc,
and likewise for U1.

The function

f(t) =
{
y0 if t = 0 ,
y1 if t > 0 ,

from I to Y is of first Borel class. By assumption f is then of first Baire
class, so there exists an arc φ ∈ Ba0(I, Y ) with φ(i) ∈ Ui for i = 0, 1. Join
y0 to φ(0) and φ(1) to y1 with arcs. Then these three arcs together join y0
and y1.

Theorem 2. Let Y be complete metric. Then the following three state-
ments are equivalent :

(i) Y is connected and locally connected ;
(ii) Ba1(I, Y ) = Bo1(I, Y ); and
(iii) Ba1(X,Y ) = Bo1(X,Y ) ∩Σ(X,Y ) for all metric spaces X.

R e m a r k. The implication: Y is arcwise connected and locally arcwise
connected ⇒ (iii) is the statement of Theorem 1 which does not assume that
Y is complete.

P r o o f. Theorem 1, p. 254 in [11] shows that (i) implies that Y is locally
arcwise connected. This again implies that Y is arcwise connected. To see
this let y∈Y and let U be the union of all arcs going through y. Since Y is
locally arcwise connected U is a nonempty clopen set. Since Y is connected
we conclude that U equals Y , and hence that Y is arcwise connected. Now,
to obtain the conclusion of the theorem, combine Lemmas 3–5 and Theo-
rem 1 and note that every function from I to Y is σ-discrete.

Note that the proofs of Lemmas 3 and 5 still work when I is replaced
by a metric space X containing a homeomorphic copy of I. Therefore we
immediately get the following corollary.

Corollary. Let X be a metric space that contains a homeomorphic
copy of I. Let Y be a complete metric space. Then Ba1(X,Y ) = Bo1(X,Y )∩
Σ(X,Y ) if and only if Y is locally connected and connected.

R e m a r k. The remark after Theorem 2 applies here as well.

Next we shall look at some examples. The first will show that Lemmas
4 5 fail to be true in general if Y is not complete, and that it is not enough
to assume that Y is a Kσ-set in a complete separable metric space to obtain
the conclusions of the lemmas.

We will be working in the Hilbert cube IN, equipped with the complete
metric d((ti), (si)) =

∑
i 2−i|ti − si|, and we will let πi be the projection on

the ith coordinate.

Example 1. There exists a Kσ-set Y ⊂ IN such that :
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(i) Bo1(X,Y ) = Ba1(X,Y ) for all metric spaces X; and
(ii) Y is not locally arcwise connected nor arcwise connected.

For all p let Yp = {(ti) ∈ IN : tp = 1, ti = 0 ∀i > p}. Then {Yp : p ∈ N}
is a countable and disjoint collection of compact sets. Define Y =

⋃
p Yp.

(i) Let f ∈ Bo1(X,Y ). Then πk ◦f ∈ Bo1(X, I) for each k, since the pro-
jection is continuous. By Theorem 1 there exist sequences {gm

k } ⊆ Ba0(X, I)
of continuous functions converging pointwise to πk ◦ f for each k. Now
gm = (gm

1 , g
m
2 , . . . , g

m
m , 1, 0, 0, . . .) is a continuous function from X to Ym+1

and {gm} converges pointwise to f .
(ii) Let φ : I → Y be an arc. Then φ−1(Yp) 6= ∅ for exactly one p for

otherwise we could write I as a disjoint union of countably many but at least
two nonempty closed sets, which is impossible by the Sierpiński Theorem in
[3, p. 440]. This shows that Y is not arcwise connected. In fact, it also shows
that Y is not locally arcwise connected, for any open nonempty subset of Y
intersects infinitely many of the sets {Yp : p ∈ N} and, as we have just seen,
a pair of points that do not lie in one of these sets cannot be joined with an
arc.

If a metric space Y satisfies Ba1(I, Y ) = Bo1(I, Y ), then Y must have
the following two properties which we call (P1) and (P2).

(P1) For all finite sequences of nonempty open sets U1, . . . , Un ⊂ Y there
exists an arc φ ∈ Ba0(I, Y ) such that φ−1(Ui) 6= ∅ for all i ≤ n.

(P2) For all ε>0 and all y∈Y there exists an open neighbourhood U of y
such that, for all finite sequences of nonempty open sets U1, . . . , Un⊂
U , there exists an arc φ ∈ Ba0(I, Y ) such that φ−1(Ui) 6= ∅ for all
i≤n and such that diamφ(I)≤ε.

That (P1) must hold can be shown with an argument similar to that in
the proof of Lemma 5, and that (P2) must hold can be shown along the lines
of the proof of Lemma 3.

Conversely, if a complete space Y satisfied (P1) and (P2) then by
Lemma 4 it would be arcwise connected and locally arcwise connected. If
Y were also separable, then we would have Ba1(X,Y ) = Bo1(X,Y ) for all
metric spaces X. The next example shows that this conclusion fails when Y
is not complete. Indeed, it shows that the conclusion fails for a space that
satisfies (P1) and (P2) and is a Kσ-set in a complete separable metric space.

Example 2. There exists a Kσ-subset Y of IN satisfying (P1) and (P2)
but where Ba1(I, Y ) 6= Bo1(I, Y ).

We shall construct the set Y . Consider the following subsets of IN:

Y 1
p = {(ti) ∈ IN : tp = 1, ti = 0 ∀i > p} ,
Y 2

p = {(ti) ∈ IN : tp = 1/2, ti = 0 ∀i > p} .
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These sets are disjoint. To see this assume that Y j1
p1
∩ Y j2

p2
is nonempty.

We cannot have p1 6= p2 because of the restriction on the last nonzero
coordinate. For the same reason we cannot have j1 6= j2.

The space IN has a countable base of sets of the form

O1 × . . .×Ok × I × I × . . .

with O1, . . . , Ok nonempty open subsets of I, so the set of all finite sequences
of sets from this base is countable. We denote it by

{(U i
1, U

i
2, . . . , U

i
σ(i)) : i ∈ N} .

Note that the function σ : N → N determines the length of each of the finite
sequences.

For each i there exists a q(i) such that πq(U i
j) = I for all q ≥ q(i) and

all j ≤ σ(i). Let p(1) = max{q(1), 3} and define inductively p(i + 1) =
max{q(i + 1), p(i) + 1}. Then {p(i)} is a strictly increasing sequence of
integers, all greater than 3, and such that U i

j ∩ Y 1
p(i) 6= ∅ and U i

j ∩ Y 2
p(i) 6= ∅

for all i and j ≤ σ(i). To see this fix i and j and write U i
j = V × IN

where V is an open subset of Ip(i)−1. Let (t1, . . . , tp(i)−1) ∈ V . Then
(t1, . . . , tp(i)−1, 1, 0, 0, . . .) ∈ U i

j ∩ Y 1
p(i) and (t1, . . . , tp(i)−1, 1/2, 0, 0, . . .) ∈

U i
j ∩ Y 2

p(i).
For each i and j ≤ σ(i) pick a point ui

j ∈ U i
j ∩ Y 1

p(i). For all i let
yi = (0, 1, 0, 0, . . . , 0, 1, 0, 0, . . .), where the second 1 is the p(i)th coordinate.
Note that the distance between yi and y = (0, 1, 0, 0, . . .) is 2−p(i), and that
2−p(i) ≤ 2−3 for all i.

For each i we define a continuous piecewise linear function φ1
i : I → Y 1

p(i)

by

φ1
i (t) =



yi if t ≤ 1
2σ(i)

,

yi +
(
t− j

σ(i)
+

1
2σ(i)

)
2σ(i)(ui

j − yi)

if
j

σ(i)
− 1

2σ(i)
< t ≤ j

σ(i)
, j ≤ σ(i)− 1 ,

ui
j +

(
t− j

σ(i)

)
2σ(i)(yi − ui

j) if
j

σ(i)
< t ≤ j

σ(i)
+

1
2σ(i)

.

Note that Y 1
p(i) is convex and that φ1

i (I) is the union of σ(i) straight-line
segments joining yi to the points ui

j .
Let N = {i ∈ N : diam(

⋃
j≤σ(i) U

i
j) ≤ 1/2}. For each i ∈ N let φ2

i :
I → Y 2

p(i) be a piecewise linear continuous function satisfying:

• φ2
i (I) ∩ U i

j 6= ∅ ∀j ≤ σ(i); and
• diamφ2

i (I) ≤ diam(
⋃

j≤σ(i) U
i
j).
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We can construct these functions by the method used to construct the
functions φ1

i .
The space providing the example is defined by

Y = Y 1
2 ∪ Y 2

2 ∪
⋃
i∈N

φ1
i (I) ∪

⋃
i∈N

φ2
i (I) .

Note the following points:

• Y is a Kσ-set;
• any arc ψ(I) ⊂ Y must be contained in one of the disjoint sets of which

Y is the union;
• the subset {φ1

i (I)} of Y ensures that Y satisfies (P1); and
• the subset {φ2

i (I) : i ∈ N} of Y ensures that Y satisfies (P2).

Let us assume that Ba1(I, Y ) = Bo1(I, Y ) and seek a contradiction to
prove that Y is indeed the example. Define the first Borel class function
f : I → Y by

f(t) =
{

(t, 1/2, 0, 0, . . .) if t < 1 ,
(1, 1, 0, 0, . . .) if t = 1 .

Then, by assumption, we can find a sequence {ψn} ⊂ Ba0(I, Y ) converging
pointwise to f . For n sufficiently large the points ψn(0) and ψn(1) are near
(t, 1/2, 0, 0, . . .) and (1, 1, 0, 0, . . .). We may assume that ψn(I) ⊆

⋃
i∈N φ

1
i (I)

for all n, for all arcs contained in one of the sets φ2
i (I), i ∈ N, would have

too small a diameter. In fact, ψn(I) ⊆ φn
i (I) for some i = i(n).

Let y = (0, 1, 0, 0, . . .), which is in Y 1
2 , and for each m define Hm =⋃

n≥m ψ−1
n (B(y, 1/4)). Then clearly Hm is open and yi ∈ B(y, 1/4) for

all i. To see that Hm is also dense in [1/2, 1] let a and b be such that
1/2 < a < b < 1. For ε sufficiently small there is no line that inter-
sects B(f(a), ε), B(f(b), ε) and {y} ∪

⋃
i{yi}. However, for large n we have

ψn(a) ∈ B(f(a), ε) and ψn(b) ∈ B(f(b), ε). But ψn(I) ⊆ φ1
i (I) for some

i, so, since ψn((a, b)) cannot be contained in one of the linear segments
of φ1

i (I), we see that ψn((a, b)) cannot lie on just one of the line segments
making up φ1

i (I). Therefore yi ∈ ψn((a, b)) and so ψn((a, b))∩B(y, 1/4) 6= ∅.
Hence each Hm is dense and open in [1/2, 1] and so

⋂
mHm ∩ [1/2, 1] 6=

∅ by the Baire category theorem, which contradicts
⋂

mHm ∩ [1/2, 1] ⊆
f−1(B(y, 1/4)) = ∅. We conclude that Ba1(I, Y ) 6= Bo1(I, Y ) as required.

Example 3. Consider the subset

M = {(x, sin(π/x)) : 0 < x ≤ 1} ∪ {0} × [−1, 2] ∪ [0, 1]× {2} ∪ {1} × [0, 2]

of R2. The space M is metric, separable, compact, complete, arcwise con-
nected and a continuous image of the real line. But M is not locally arcwise
connected and so, by Theorem 2, we have Ba1(I,M) 6= Bo1(I,M).
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4. Second Baire class functions

Lemma 6. If
⋃

α<ω1
Baα(X,Y ) =

⋃
α<ω1

Boα(X,Y ), then, for all q ∈ N,
for all sequences U1, . . . , Uq of nonempty open subsets of Y and for all se-
quences x1, . . . , xq of distinct points of X , there exists a continuous function
φ : X → Y with φ(xi) ∈ Ui for all i ≤ q.

P r o o f. Let U1, . . . , Uq be a sequence of nonempty open subsets of Y
and x1, . . . , xq be a sequence of distinct points of X. Pick for each i ≤ q a
point yi ∈ Ui. Define the σ-discrete first Borel class function

f(x) =
{
yi if x = xi, q ≥ i > 1 ,
y1 otherwise .

Then by assumption f is a Baire class α function, for some α < ω1, and
f(xi) ∈ Ui for all i ≤ q.

Observe that, whenever a noncontinuous function g of Baire class β
satisfies g(xi) ∈ Ui for all i ≤ q, then there exists η < β and a function h of
Baire class η such that h(xi) ∈ Ui for all i ≤ q.

Apply this observation to f to get a function f1 of strictly lower Baire
class than that of f , with f1(xi) ∈ Ui for all i ≤ q. If f1 is continuous, then
f1 satisfies the conclusion of the lemma. If f1 is not continuous, we apply our
observation to f1 to get a function f2 of strictly lower Baire class than that of
f1. We repeat this process until it halts. The process will indeed halt, since
a strictly decreasing sequence of ordinals can only be finite. The function
we have when the process halts satisfies the conclusion of the lemma.

Lemma 7. If Y is separable, metric and X is metric such that for all
q ∈ N, for all sequences F1, . . . , Fq of disjoint closed subsets of X and
for all sequences U1, . . . , Uq of nonempty open subsets of Y , there exists
a continuous function φ : X → Y with φ(Fi) ⊆ Ui for all i ≤ q, then
Ba2(X,Y ) = Bo2(X,Y ).

P r o o f. We will first show that all first Borel class functions from X to
Y with finite range are of first Baire class. So let f : X → Y be a first Borel
class function with finite range. Let {yi : i ≤ q} be the finite range, and
let, for each m, {Fim : i ≤ q} be a disjoint family of closed sets such that
f−1(yi) =

⋃
m Fim for every i ≤ q. By hypothesis we can find continuous

functions φn : I → Y , n ∈ N, so that φn(
⋃

m≤n Fim) ⊆ B(yi, 2−n) for all
i ≤ q. Then the sequence {φn} converges pointwise to f .

Now let h : X → Y be of second Borel class. We shall show that h is
of second Baire class. In [10, p. 389–391], it is proved that all second class
Borel functions from a metric space to a separable metric space are pointwise
limits of first Borel class functions with finite range. By the argument above,
all these first Borel class functions are of first Baire class. Thus h is of second
Baire class.
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Theorem 3. Let Y be a separable metric space. Let X be a metric
space containing a homeomorphic copy of the unit interval. The following
statements are equivalent :

(i) Ba2(I, Y ) = Bo2(I, Y );
(ii) For all q ∈ N, for all sequences x1, . . . , xq of distinct points of I and

for all sequences U1, . . . , Uq of nonempty open subsets of Y , there exists a
continuous function φ : I → Y with φ(xi) ∈ Ui for all i ≤ q;

(iii) For all q ∈ N, for all sequences F1, . . . , Fq of disjoint closed subsets
of X and for all sequences U1, . . . , Uq of nonempty open subsets of Y , there
exists a continuous function φ : X → Y with φ(Fi) ⊆ Ui for all i ≤ q;

(iv) Ba2(X,Y ) = Bo2(X,Y );
(v) For each finite (countable infinite) ordinal α ≥ 2 we have Baα(X,Y )

equal to Boα(X,Y ) (Boα+1(X,Y )); and
(vi)

⋃
α<ω1

Baα(X,Y ) =
⋃

α<ω1
Boα(X,Y ).

P r o o f. (i)⇒(ii) follows from the argument of Lemma 6.
(ii)⇒(iii). By Tietze’s theorem let f : X → I be a continuous extension

of the function defined by f(x) = i/q ⇔ x ∈ Fi. By (ii) we can find a
continuous function φ : I → Y with φ(i/q) ∈ Ui for all i ≤ q. The function
φ ◦ f satisfies the condition in (iii).

(iii)⇒(iv) is Lemma 7.
(iv)⇒(v) follows from the remark in Section 1, or from Banach’s theorem

in [10, p. 394].
(v)⇒(vi) is trivial.
(vi)⇒(i). By Lemma 6 we see that I satisfies (ii), since I ⊆ X. We have

already noted that (ii) implies (iv) so I satisfies (iv), which is the statement
of (i).

Let X be a topological space and let Y be a metric space. Every σ-
discrete second Borel class function from X to Y is, by [6, Theorem 5], the
pointwise limit of a sequence of σ-discrete first Borel class functions, each
of which has discrete range.

Let us assume that X and Y together have the property that, for every
closed subset F of X, every continuous function with discrete range g : F →
Y and every ε > 0, there exists a continuous function h : X → Y such that
d(h(x), g(x)) ≤ ε for all x ∈ F .

Then, using an argument similar to that in Lemma 2, we can show that
every σ-discrete first Borel class function with discrete range is of first Baire
class. Indeed, let g : X → Y be a σ-discrete first Borel class function with
discrete range. Let {yγ : γ ∈ Γ} be the discrete range and let, for each n,
{Fγn : γ ∈ Γ} be a discrete family of closed sets such that g−1(yγ) =

⋃
n Fγn

for each γ. Define continuous functions gm by letting gm(x) = yγ if and only
if x ∈

⋃
n≤m Fγn, and note that

⋃
γ∈I

⋃
n≤m Fγn is closed for every m. Let
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hm : X → Y be a continuous function such that d(hm(x), gm(x)) ≤ 2−m for
all x ∈

⋃
γ∈Γ

⋃
n≤m Fγn. Then the sequence {hm} converges pointwise to g,

and hence g is of first Baire class. Thus Bo2(X,Y ) ∩Σ(X,Y ) = Ba2(X,Y )
and we have proved the following theorem.

Theorem 4. Let X be a topological space and let Y be a metric space.
Assume that for every closed subset F of X , every continuous function g :
F → Y with discrete range and every ε > 0, there exists a continuous
function h : X → Y such that d(h(x), g(x)) ≤ ε for all x ∈ F . Then
Bo2(X,Y ) ∩Σ(X,Y ) = Ba2(X,Y ).
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