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Striped structures of stable and unstable sets

of expansive homeomorphisms and a theorem

of K. Kuratowski on independent sets

by

Hisao Ka t o (Hiroshima)

Abstract. We investigate striped structures of stable and unstable sets of expansive
homeomorphisms and continuum-wise expansive homeomorphisms. The following theo-
rem is proved: if f : X → X is an expansive homeomorphism of a compact metric space X
with dimX > 0, then the decompositions {W s(x) | x ∈ X} and {W u(x) | x ∈ X} of X
into stable and unstable sets of f respectively are uncountable, and moreover there is σ
(= s or u) and ̺ > 0 such that there is a Cantor set C in X with the property that
for each x ∈ C, Wσ(x) contains a nondegenerate subcontinuum Ax containing x with
diamAx ≥ ̺, and if x, y ∈ C and x 6= y, then W

σ(x) 6= Wσ(y). For a continuum-wise
expansive homeomorphism, a similar result is obtained. Also, we prove that if f : G→ G
is a map of a graph G and the shift map f̃ : (G, f) → (G, f) of f is expansive, then
for each x̃ ∈ (G, f), W u(x̃) is equal to the arc component of (G, f) containing x̃, and
dimW s(x̃) = 0.

1. Introduction. All spaces under consideration are assumed to
be metric. By a compactum we mean a compact metric space, and by
a continuum a connected nondegenerate compactum. A homeomorphism
f : X → X of a compactum X is called expansive [6] if there is a constant
c > 0 (called an expansive constant for f) such that if x, y ∈ X and x 6= y,
then there is an integer n = n(x, y) ∈ Z such that

d(fn(x), fn(y)) > c .

This property has frequent applications in topological dynamics, ergodic
theory and continuum theory [1, 5, 6, 25].

A homeomorphism f : X → X of a compactum X is continuum-wise

expansive [15] if there is a constant c > 0 such that if A is a nondegener-
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ate subcontinuum of X, then there is an integer n = n(A) ∈ Z such that
diam fn(A) > c. By the definitions, we can easily see that every expan-
sive homeomorphism is continuum-wise expansive, but the converse is not
true. There are many important examples of homeomorphisms which are
continuum-wise expansive, but not expansive.

In [13, Theorem 3.1], we proved that if f : X → X is an expansive
homeomorphism of a compactum X with dim X > 0, then there is a closed
subset Z of X such that each component of Z is nondegenerate, the space
of components of Z is a Cantor set, the decomposition space of Z into
components is upper and lower semi-continuous and all components of Z
are contained in stable sets or unstable sets.

In this paper, we show more precise results. In particular, we prove that
if f : X → X is an expansive homeomorphism of a compactum X with
dim X > 0, then the decompositions {W s(x) | x ∈ X} and {W u(x) | x
∈ X} of X into stable and unstable sets respectively are uncountable, and
moreover there is σ (σ = s or u) and ̺ > 0 such that the σ-striped set
Z(σ, ̺) of f is not empty. Hence, by using a theorem of K. Kuratowski
on independent sets, it is proved that almost every Cantor set C of Z(σ, ̺)
has the property that for each x ∈ C, W σ(x) contains a nondegenerate
subcontinuum containing x and if x, y ∈ C and x 6= y, then W σ(x) 6= W σ(y).

Also, we prove that if f : G → G is a map of a graph G and the shift
map f̃ : (G, f) → (G, f) of f is expansive, then for each x̃ ∈ (G, f), W u(x̃)
is the arc component of (G, f) containing x̃, and W s(x̃) is 0-dimensional.

We refer the readers to [1], [6] and [25] for the general properties of
expansive homeomorphisms.

2. Definitions and preliminaries. Let X be a metric space. Then
the hyperspaces 2X and C(X) of X are defined as follows:

2X = {A | A is a nonempty compact subset of X} ,

C(X) = {A ∈ 2X | A is connected} .

The hyperspaces 2X and C(X) are metric spaces with the Hausdorff met-

ric dH, i.e., dH(A,B) = inf{ε > 0 | Uε(A) ⊃ B and Uε(B) ⊃ A}, where
Uε(A) denotes the ε-neighborhood of A in X. Note that if X is a com-
pactum, then the hyperspaces 2X and C(X) are also compacta (see [21]).
Let A and B be subsets of X. Put d(A,B) = inf{d(a, b) | a ∈ A and b ∈ B}.

Let f : X → X be a homeomorphism of a compactum X and let x ∈ X.
Then the stable set W s(x) and the unstable set W u(x) are defined as follows:

W s(x) = {y ∈ X | lim
n→∞

d(fn(x), fn(y)) = 0} ,

W u(x) = {y ∈ X | lim
n→∞

d(f−n(x), f−n(y)) = 0} .
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Also, the continuum-wise stable and unstable sets V s(x), V u(x) are defined
as follows:

V s(x) = {y ∈ X | there is A ∈ C(X) such that x, y ∈ A and

lim
n→∞

diam fn(A) = 0} ,

V u(x) = {y ∈ X | there is A ∈ C(X) such that x, y ∈ A and

lim
n→∞

diam f−n(A) = 0} .

Clearly, W σ(x) ⊃ V σ(x), {W σ(x) | x ∈ X} and {V σ(x) | x ∈ X} are
decompositions of X for both σ = s and u, i.e., X =

⋃
{W σ(x) | x ∈ X}

(resp. X =
⋃
{V σ(x) | x ∈ X}), and if W σ(x) 6= W σ(y) (resp. V σ(x) 6=

V σ(y)), then W σ(x) ∩ W σ(y) = ∅ (resp. V σ(x) ∩ V σ(y) = ∅). Also, for
0 < δ < ε consider the following subsets of C(X):

V s(ε) = {A ∈ C(X) | diam fn(A) ≤ ε for any n ≥ 0} ,

V u(ε) = {A ∈ C(X) | diam f−n(A) ≤ ε for any n ≥ 0} ,

V s(δ, ε) = {A ∈ V s(ε) | diam A = δ} ,

V u(δ, ε) = {A ∈ V u(ε) | diam A = δ} ,

V s = {A ∈ C(X) | lim
n→∞

diam fn(A) = 0} ,

V u = {A ∈ C(X) | lim
n→∞

diam f−n(A) = 0} .

We are interested in the structures of the decompositions {W σ(x) | x ∈
X} and {V σ(x) | x ∈ X} (σ = s and u) of X. Let f : X → X be an
expansive homeomorphism of a compactum X with an expansive constant
c > 0 and dimX > 0. Let c > ̺ > 0 be a positive number. Consider the
family Φ(σ) = {Z | Z is a closed subset of X such that (i) for each x ∈ Z
there is a subcontinuum Ax of X with diam Ax ≥ ̺ and x ∈ Ax ⊂ W σ(x),
and (ii) for any neighborhood U of x in X, there is y ∈ Z ∩ U such that
W σ(x) 6= W σ(y)}. By [20, p. 315], Φ(σ) has the maximal element Z(σ, ̺)
(= Cl(

⋃
{Z | Z ∈ Φ(σ)})). The set Z(σ, ̺) is said to be a σ-striped set

of f . Note that if 0 < ̺1 < ̺2, then Z(σ, ̺1) ⊃ Z(σ, ̺2). Also, note that
if Z(σ, ̺) 6= ∅ for some ̺ > 0, then X contains an uncountable collection
of mutually disjoint, nondegenerate subcontinua of X each of which is con-
tained in a different element of {W σ(x) | x ∈ X} (see (3.1)).

Let f : X → X be a map of a compactum X with metric d. Consider
the following inverse limit space:

(X, f) = {(xi)
∞

i=0 | xi ∈ X, f(xi+1) = xi for each i ≥ 0} .

Define a metric d̃ for (G, f) by

d̃(x̃, ỹ ) =

∞∑

i=0

d(xi, yi)/2
i for x̃ = (xi)

∞

i=0 , ỹ = (yi)
∞

i=0 ∈ (X, f) .
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The space (X, f) is called the inverse limit of the map f . Define a map

f̃ : (X, f) → (X, f) by

f̃(x0, x1, . . .) = (f(x0), x0, x1, . . .) for (xi)
∞

i=0 ∈ (X, f) .

Then f̃ is a homeomorphism and it is called the shift map of f . Let pn :
(X, f) → X be the natural projection (n ≥ 0), i.e., pn((xi)

∞

i=0) = xn.

(2.1) Example. Let f : I → I be the homeomorphism as in Figure 1,
where I = [0, 1] denotes the unit interval.

Fig. 1

Then {W s(x) | x ∈ I} = {{0}, (0, x1), {x1}, (x1, 1]} is finite, because
W s(0) = {0}, W s(y) = (0, x1) for y ∈ (0, x1), W s(x1) = {x1} and W s(x) =
(x1, 1] for x ∈ (x1, 1]. Similarly, {W u(x) | x ∈ I} is finite. Hence Z(σ, ̺) = ∅
for each ̺ > 0 (σ = s and u).

(2.2) Example. Let S1 be the unit circle and let f : S1 → S1 be
the natural covering map with degree 2. Consider the inverse limit (S1, f)

of f and the shift map f̃ : (S1, f) → (S1, f). The continuum (S1, f) is

well-known as the 2-adic solenoid and f̃ is an expansive homeomorphism
(see [26]). In this case, for each x̃ ∈ (S1, f), W u(x̃) = V u(x̃) is the arc
component of (S1, f) containing x̃. Also, V s(x̃) = {x̃}  W s(x̃) for each
x̃ ∈ (S1, f). Then the decomposition {W σ(x̃) | x̃ ∈ (S1, f)} (σ = s and u)
is uncountable. Note that dimW s(x̃) = 0, because W s(x̃) is an Fσ-set and
does not contain a nondegenerate subcontinuum (see (3.10) below). Note

that the continuum (S1, f) itself is a u-striped set Z(u, ̺) of f̃ for some
̺ > 0, but Z(s, ̺) = ∅ for each ̺ > 0.

(2.3) Example. (a) There is an expansive homeomorphism f : X → X
such that IntX W σ(x) 6= ∅ for some x ∈ X. Let G be the one-point union
of the unit interval I and a circle S1, i.e., (G, ∗) = (I, 1) ∨ (S1, ∗). Define a
map g : G → G such that g|S1 : S1 → S1 is the natural covering map with
degree 2 and g(0) = 0, g(1) = ∗ and g(I) = G. We can choose g : G → G
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so that g̃ : X = (G, g) → X = (G, g) is expansive (see [10, Theorem 4.3]).
Then W u(0̃) is a dense open set of X, where 0̃ = (0, 0, . . .). Hence X itself
is not a u-striped set of g̃.

(b) There is an expansive homeomorphism h of a continuum Y such that

there is a point x0 ∈ Y such that if A is any nondegenerate subcontinuum

of Y containing x0, then A 6∈ V s ∪V u. Let G and g : G → G be the same
as in (a), and let Xi (i = 1, 2) be the copies of the space X as in (a). Let
(Y, 0̃) = (X1, 0̃)∨(X2, 0̃) be the one-point union of X1 and X2 (see Figure 2).

Fig. 2

Take a natural injection i : R → Y such that i(0) = 0̃, where R is the
set of real numbers. Let k : R → R be defined by k(x) = 2x + 1 (x ≥ 0),
k(x) = 1

2
x+1 (x ≤ 0). Define a homeomorphism h : Y → Y by h(x) = g̃(x)

if x ∈ (S1, g|S1) ⊂ X1, h(x) = g̃−1(x) if x ∈ (S1, g|S1) ⊂ X2 and h(x) =
i ◦ k ◦ i−1(x) if x ∈ i(R). Then h is an expansive homeomorphism. Note
that if x0 ∈ i(R) and A is any nondegenerate subcontinuum containing x0,
then A 6∈ V s ∪V u.

R e m a r k. Instead of the solenoid (S1, g), one can construct the ex-
amples above with the help of an Anosov diffeomorphism, say

(
2 1

1 1

)
on the

2-dimensional torus T 2, and a curve outside T 2 “unwinding” from an un-
stable manifold in T 2.

A subset E of a space X is an Fσ-set in X if E is the union of a countable
collection of closed subsets of X. A subset E of X is an Fσδ-set in X if it
is the intersection of a countable collection of Fσ-sets.

In this paper, we use a theorem of K.Kuratowski on independent sets [19].
A subset F of X is said to be independent in R ⊂ Xn if for every system
x1, . . . , xn of different points of F the point (x1, . . . , xn) ∈ Fn never belongs
to R. In [19], K. Kuratowski proved the following theorem.

(2.4) Theorem ([19, Main theorem and Corollary 3]). If X is a complete

space and R ⊂ Xn is an Fσ-set of the first category , then the set J(R) of
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all compact subsets F of X independent in R is a dense Gδ-set in the space

2X of all compact subsets of X. Moreover , if X has no isolated points, then

almost every Cantor set of X is independent in R.

(2.5) Proposition. Let f : X → X be a homeomorphism of a com-

pactum X. Then W σ(x) is an Fσδ-set in X (σ = s, u).

P r o o f. We prove the case σ = u. Let x ∈ X. For any natural numbers
m,n ≥ 1, consider the set

Wm,n(x) = {y ∈ X | d(f−i(x), f−i(y)) ≤ 1/n for i ≥ m} .

Then Wm,n(x) is closed and Wn(x) =
⋃

∞

m=1
Wm,n(x) is an Fσ-set. Hence

W u(x) =
⋂

∞

n=1
Wn(x) is an Fσδ-set in X.

(2.6) Proposition. Let f : X → X be an expansive homeomorphism of

a compactum X. Then W σ(x) is an Fσ-set in X (σ = s,u).

P r o o f. We prove the case σ = u. Let c > 0 be an expansive constant for
f and let 0 < ε < c/2. Note that if y, y′ ∈ X and d(f−i(y), f−i(y′)) ≤ ε for
each i ≥ m (m is some natural number), then limi→∞ d(f−i(y), f−i(y′)) = 0
(see [20, p. 315]). For any m = 1, 2, . . . , put

Wm,ε(x) = {y ∈ X | d(f−i(x), f−i(y)) ≤ ε for i ≥ m} .

Since W u(x) =
⋃

∞

m=1
Wm,ε(x) and Wm,ε(x) is closed, W u(x) is an Fσ-set

in X.

(2.7) Proposition. Let f : X → X be a continuum-wise expansive

homeomorphism of a compactum X. Then V σ(x) is an Fσ-set in X (σ =
s,u).

P r o o f. We prove the case σ = u. Let c > 0 be a continuum-wise
expansive constant for f and let 0 < ε < c/2. Note that if A ∈ C(X) and
diam f−i(A) ≤ ε for any i ≥ m, then limi→∞ diam f−i(A) = 0 (see [15,
(2.1)]). For each m = 1, 2, . . . , put

Vm,ε(x) =
⋃

{A ∈ C(X) | x ∈ A and diam f−i(A) ≤ ε for i ≥ m} .

Then V u(x) =
⋃

∞

m=1
Vm,ε(x) is an Fσ-set in X.

3. Striped structures of stable and unstable sets. In this section,
we study striped structures of stable and unstable sets of expansive home-
omorphisms and continuum-wise expansive homeomorphisms. The main
result of this section is the following theorem.

(3.1) Theorem. Let f : X → X be an expansive homeomorphism of a

compactum X with dim X > 0. Then the decomposition {W σ(x) | x ∈ X}
(σ = s and u) of X is uncountable. Moreover , there exists σ (σ = s or u) and

̺ > 0 such that the σ-striped set Z(σ, ̺) is not empty. In particular , almost
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every Cantor set C of Z(σ, ̺) has the property that for any x ∈ C, there

exists a nondegenerate subcontinuum Ax of X such that x ∈ Ax ⊂ W σ(x),
and if x, y ∈ C and x 6= y, then W σ(x) 6= W σ(y).

To prove (3.1), we need the following facts. The next lemma is obvious.

(3.2) Lemma. Let f : X → X be a map of a compactum X and let N ≥ 1
be a natural number. Suppose that there is γ > 0 such that d(f iN (x), f iN (y))
≥ γ for each i = 0, 1, 2, . . . Then there is η > 0 such that d(f i(x), f i(y)) ≥ η
for each i = 0, 1, 2, . . .

(3.3) Lemma ([15, (2.3)]). Let f : X → X be a continuum-wise expansive

homeomorphism of a compactum X with an expansive constant c > 0 and

let 0 < ε < c/2. Then there is δ > 0 such that if A is any nondegenerate

subcontinuum of X such that diam A ≤ δ and diam fm(A) ≥ ε for some

integer m ∈ Z, then one of the following conditions holds:

(a) If m ≥ 0, then diam fn(A) ≥ δ for each n ≥ m. More precisely ,
there is a subcontinuum B of A such that diam f j(B) ≤ ε for 0 ≤ j ≤ n
and diam fn(B) = δ.

(b) If m < 0, then diam f−n(A) ≥ δ for each n ≥ −m. More precisely ,
there is a subcontinuum B of A such that diam f−j(B) ≤ ε for 0 ≤ j ≤ n
and diam f−n(B) = δ.

(3.4) Lemma ([15, (2.4)]). Let f , c, ε, δ be as in (3.3). Then for any

γ > 0, there is N > 0 such that if A ∈ C(X) and diam A ≥ γ, then either

diam fn(A) ≥ δ for each n ≥ N , or diam f−n(A) ≥ δ for each n ≥ N .

P r o o f o f (3.1). Let c, ε, δ be positive numbers as in (3.3). Suppose
that there exists no nondegenerate subcontinuum A of X such that
limn→∞ diam f−n(A) = 0, i.e., V u = {{x} | x ∈ X}. Let C be a non-
degenerate component of X. Then for any x ∈ C, W u(x) =

⋃
∞

i=1
Fi, where

each Fi is closed (see (2.6)). Note that IntC(Fi ∩ C) = ∅ for all i. By
the Baire category theorem, {W u(x) | x ∈ C} is uncountable, and hence
{W u(x) | x ∈ X} is uncountable. The case σ = s is similar.

Next, we shall show the existence of a nonempty σ-striped set Z(σ, ̺).
By [20, Lemma 3], there is a nondegenerate subcontinuum A ∈ V s ∪V u.
From now on, we assume that there is a nondegenerate subcontinuum A
such that limi→∞ diam f−i(A) = 0. In this case, V u(δ, ε) 6= ∅ (see (3.3)).
Note that if A ∈ V u, then W u(x) = W u(y) for all x, y ∈ A.

For any closed subset M of V u(ε), we define

Mf = {A ∈ C(X) | for any neighborhood U of A in C(X) there is

A′ ∈ M such that A′ ∈ U and W u(a) ∩ W u(a′) = ∅

for all a ∈ A and a′ ∈ A′} .
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We can easily see that Mf ⊂ M is a closed subset of C(X) and (Mf )f

⊂ Mf . For any ordinal numbers, define M0 = M , M1 = Mf , Mα+1 =
(Mα)f , and Mλ =

⋂
α<λ Mα, where λ is a limit ordinal. From now on, we

assume that

M = M(δ) = V u(δ, ε) .

Now, we need the following claim which is directly proved by transfinite
induction.

Claim (λ). Let λ be a countable ordinal. If A ∈ Mλ, then there are two

subcontinua A1 and A2 of A such that d(A1, A2) ≥ δ/3 and A1, A2 ∈ (M ′)λ,
where M ′ = M(γ) (= V u(γ, ε)) and 0 < γ < δ/3.

By transfinite induction, we shall prove Mλ 6= ∅ for any ordinal λ.
Choose γ > 0 such that if A and B are any subsets of X with diam A ≥ δ
and diamB ≥ δ, then there are a ∈ A and b ∈ B such that d(a, b) ≥ 3γ. Let
N be a natural number such that if A ∈ C(X) and diamA ≥ γ, then either
diam fn(A) ≥ δ (n ≥ N) or diam f−n(A) ≥ δ (n ≥ N) (see (3.4)). We may
assume γ ≤ δ/3.

First, choose A ∈ V u(δ, ε). Since diam A = δ, we can choose two sub-
continua A1, B1 of A such that A1, B1 ∈ M ′ = V u(γ, ε) and d(A1, B1) ≥
δ/3 ≥ γ (see Claim (0)). Since diam fN(A1) ≥ δ and diam fN(B1) ≥ δ, we
choose a subcontinuum A2 of fN (A1) and a subcontinuum B2 of fN(B1)
such that A2, B2 ∈ V u(γ, ε) and d(A2, B2) ≥ γ. By induction, we can
choose two sequences {An} and {Bn} of C(X) such that An ⊂ fN(An−1),
Bn ⊂ fN(Bn−1), d(An, Bn) ≥ γ and An, Bn ∈ V u(γ, ε). Also, choose a
subsequence n1 < n2 < . . . of natural numbers such that limi→∞ Ani

= A′

and limi→∞ Bni
= B′. Then d(f−Ni(A′), f−Ni(B′)) ≥ γ for each i ≥ 0.

By (3.2), d(f−i(a), f−i(b)) ≥ η for all a ∈ A′, b ∈ B′ and i ≥ 0, and hence
W u(a) 6= W u(b). Note that for each ani

∈ Ani
and bni

∈ Bni
, W u(ani

) =
W u(bni

). Hence either A′ ∈ (M ′)f = (M ′)1 or B′ ∈ (M ′)f = (M ′)1. We
assume that A′ ∈ (M ′)1. By (3.3), fN(A′) contains a subcontinuum A1

such that A1 ∈ M1, which implies that M1 6= ∅.
For a countable ordinal λ, we may assume that for any α < λ, Mα is not

empty. We must consider the following two cases.

(I) λ = α + 1. Claim (α) and an argument similar to the above show
that Mλ is not empty.

(II) λ is a limit ordinal. In this case, take an increasing sequence α1 <
α2 < . . . of countable ordinals such that limi→∞ αi = λ. Also, choose
Ai ∈ Mαi

for each i. We may assume that limi→∞ Ai = A∞. Then A∞ ∈⋂
α<λ Mα = Mλ.
Thus we proved that Mλ 6=∅ for any countable ordinal λ. Hence there is

a countable ordinal α such that Mα =Mα+1 (6= ∅). Put Z =
⋃
{A |A∈Mα}.
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Since Mα is closed in C(X), Z is also closed in X. We can easily see that
Z = Z(u, δ) is a u-striped set of f . Put

A(n, ε) = {(x, y) ∈ Z × Z | d(f−i(x), f−i(y)) ≤ ε for each i ≥ n} .

Then A(n, ε) is a closed subset of Z × Z; put R =
⋃

∞

n=1
A(n, ε). Note that

IntZ A(n, ε) = ∅. Hence R is an Fσ-set of the first category in Z×Z. By the
theorem of K. Kuratowski on independent sets (see (2.4)), S = {S ∈ 2Z |
S is independent in R} = {S ∈ 2Z | for any x, y ∈ S with x 6= y,W u(x) 6=
W u(y)} is a dense Gδ-set in 2Z . By (2.4), almost every Cantor set of Z is
contained in S. This completes the proof.

(3.5) Corollary. Under the assumption of (3.1), if moreover V s and

V u contain nondegenerate subcontinua, then for both σ = s and σ = u, the

σ-striped set Z(σ, ̺) of f is not empty for some ̺ > 0.

By (2.7) and an argument similar to the above, we can prove the following
theorem on continuum-wise expansive homeomorphisms.

(3.6) Theorem. Let f : X → X be a continuum-wise expansive homeo-

morphism of a compactum X with dim X > 0. Then the decompositions

{V σ(x) | x ∈ X} (σ = s and u) are uncountable. Moreover , there is σ (σ =
s or u) and a positive number ̺ > 0 such that there is a nonempty closed

set Z ′ of X such that (i) for each x ∈ Z ′ there is a subcontinuum Ax of X
with diam Ax ≥ ̺ and x ∈ Ax ⊂ V σ(x), (ii) for any neighborhood U of x
in X, there is y ∈ Z ′ ∩ U such that V σ(x) 6= V σ(y). In particular , almost

every Cantor set C of Z(σ) has the property that for any x ∈ C, there is a

nondegenerate subcontinuum Ax of X with x ∈ Ax ⊂ V σ(x), and if x, y ∈ C
and x 6= y, then V σ(x) 6= V σ(y).

(3.7) Theorem. Let X be a locally connected continuum (= Peano con-

tinuum). If f : X → X is an expansive homeomorphism (resp. a conti-

nuum-wise expansive homeomorphism) of X, then there is an uncountable

subset Z of X such that Cl(Z) = X, and

(1) for each x ∈ Z and σ = s and u, there is a nondegenerate subcontin-

uum Ax ∈ V σ with x ∈ Ax and diam Ax ≥ δ for some δ > 0,

(2) if x, y ∈ Z and x 6= y, then W σ(x) 6= W σ(y) (resp. V σ(x) 6= V σ(y))
for both σ = s and u.

To prove (3.7), we need the following.

(3.8) Lemma ([16, (1.6)]). Let f : X → X be a continuum-wise expansive

homeomorphism of a Peano continuum X. Then there is δ > 0 such that for

each x ∈ X, there are two subcontinua Ax and Bx such that x ∈ Ax∩Bx, Ax

∈ V s, Bx ∈ V u, diam Ax = δ and diam Bx = δ. In particular , IntX(W σ(x))
= ∅ for each x ∈ X and σ = s, u.
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P r o o f o f (3.7). Suppose that f is an expansive homeomorphism. The
case of continuum-wise expansive homeomorphism is similarly proved. Let
B = {Ui}

∞

i=1 be a base of X. We use the Baire category theorem. By
induction, we obtain a countable subset Zω of X such that Ui ∩Zω 6= ∅ and
if x, y ∈ Zω, then W σ(x) 6= W σ(y) for σ = s and u, because IntX(W σ(x)) =
∅ and W σ(x) is an Fσ-set (see (2.6)). By transfinite induction, for any
countable ordinal λ we have a countable set Zλ such that (1) if x, y ∈ Zλ

and x 6= y, then W σ(x) 6= W σ(y) for both σ = s and u, and (2) if α < β,
then Zα  Zβ . Put Z =

⋃
λ<ω1

Zλ. Clearly, Z is the desired set.

Let f : X → X be a homeomorphism of a compactum X. For σ = s
and u, let Mσ(f) be the maximal element of the family {Z | Z is a closed
subset of X such that for any x ∈ Z and any neighborhood U of x in X there
is y ∈ Z ∩ U such that W σ(x) 6= W σ(y)}. Clearly, Mσ(f) is f -invariant. It
is called the σ-mixed set of f .

By (3.1) and (3.7), we have the following corollary.

(3.9) Corollary. If f : X → X is an expansive homeomorphism of a

compactum X with dim X > 0, then the σ-mixed set Mσ(f) is not empty

and hence it is a perfect set. Moreover , if X is a Peano continuum, then

Mσ(f) = X.

P r o o f. By (3.1), there is an uncountable subset Hσ of X such that if
x, y ∈ Hσ and x 6= y, then W σ(x) 6= W σ(y). Then Cl(Hσ) is a closed and
uncountable set, hence it contains a Cantor set C. Then C ⊂ Mσ(f).

For the case of inverse limits of graphs, we have the following theorem.

(3.10) Theorem. Let f : G → G be a map of a graph G (= finite con-

nected 1-dimensional polyhedron). Suppose that the shift map f̃ : (G, f) →
(G, f) is expansive. Then for each x̃ ∈ (G, f), (a) W u(x̃) is equal to the arc

component A(x̃) of (G, f) containing x̃, and (b) W s(x̃) is 0-dimensional.

To prove (3.10), we need the following notations. Let A be a closed
subset of a compactum X. A map f : X → X is called positively expansive

on A if there is c > 0 such that if x, y ∈ A and x 6= y, then there is a natural
number n ≥ 0 such that d(fn(x), fn(y)) > c. If a map f : X → X is
positively expansive on the whole space X, we say f is positively expansive.
Let A be a finite closed covering of X. A map f : X → X is positively

pseudo-expansive with respect to A if the following conditions hold:

(P1) f is positively expansive on A for each A ∈ A.
(P2) For all A,B ∈ A with A ∩ B 6= ∅, either f is positively expansive

on A ∪ B, or there is a natural number k ≥ 1 such that for any A′, A′′ ∈ A
with A′ ∩ A′′ 6= ∅, either

fk(A′ ∪ A′′) ∩ (A − B) = ∅ or fk(A′ ∪ A′′) ∩ (B − A) = ∅ .
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(3.11) Theorem ([13, (2.5)]). Let G be a graph and let f : G → G be an

onto map. Then the shift map f̃ : (G, f) → (G, f) is expansive if and only

if f is positively pseudo-expansive with respect to A, where A = {e | e is an

edge of some simplicial complex K with |K| = G}.

(3.12) Proposition ([13, (2.9)]). Let f : G → G be an onto map of a

graph G. If the shift map f̃ : (G, f) → (G, f) is expansive, then there is

α > 0 such that if A is a subcontinuum of (G, f) with diam A ≤ α, then

A ∈ V u, i.e., limn→∞ diam f̃−n(A) = 0.

P r o o f o f (3.10). We may assume that f : G → G is an onto map,
since so is f |G′ : G′ → G′, where G′ = pn((G, f)) and pn : (G, f) → G is
the natural projection.

(a) Let ỹ be any point of the arc component A(x̃) of (G, f) containing x̃.
Choose an arc A from x̃ to ỹ in A(x̃). Choose points x̃ = x̃0, x̃1, . . . , x̃m = ỹ
of A such that diam[x̃i, x̃i+1] ≤ α for each i = 0, 1, . . . ,m − 1, where α > 0
is as in (3.12) and [x̃i, x̃i+1] denotes the arc from x̃i to x̃i+1 in A. By (3.12),
[x̃i, x̃i+1] ∈ V u for each i, hence ỹ ∈ W u(x̃). This implies that A(x̃) ⊂
W u(x̃).

We show the converse inclusion. Let ỹ ∈ W u(x̃). Suppose that x̃ =
(xi)

∞

i=0 and ỹ = (yi)
∞

i=0. Since limi→∞ d(xi, yi) = 0, there is m ≥ 0 such
that if n ≥ m, then xn ∈ en and yn ∈ e′n, where K is a simplicial complex as
in (3.11) and en, e′n are edges of K such that en ∩ e′n 6= ∅. Also, we assume
that d(xn, yn) < min{d(e, e′) | e and e′ are edges of K with e ∩ e′ = ∅} for
each n ≥ m.

Since f : G → G is positively pseudo-expansive with respect to A = {e | e
is an edge of K}, it is positively expansive on en∪e′n for each n ≥ m. We may
assume that f([xn, yn]) does not contain a simple closed curve, where [xn, yn]
is the arc in en ∪ e′n from xn to yn. It follows that f([xn+1, yn+1]) = [xn, yn]
and f |[xn+1, yn+1] : [xn+1, yn+1] → [xn, yn] is a homeomorphism for each
n ≥ m, because f |[xn, yn] is locally injective and f([xn, yn]) does not contain
a simple closed curve. Consider the subset A = {(zi)

∞

i=0 | zi ∈ G, zn ∈
[xn, yn] for each n ≥ m and f(zi+1) = zi for each i ≥ 0} in (G, f). Clearly, A
is an arc from x̃ to ỹ in (G, f). Hence ỹ ∈ A(x̃). Note that V u(x̃) = W u(x̃).

(b) By (3.12), W s(x̃) contains no nondegenerate subcontinuum. Since
W s(x̃) is an Fσ-set in (G, f), W s(x̃) =

⋃
∞

i=1
Fi, where each Fi is closed.

Since dimFi = 0 for each i, by the sum theorem of dimension theory we see
that dim W s(x̃) = 0.

(3.13) R e m a r k. Of course (3.10) is not true for general expansive
homeomorphisms. Consider for example an arbitrary Anosov diffeomor-
phism. Even in the 1-dimensional case (3.10) is not true. Let g : G → G be
the map as in (a) of (2.3). Let Y = ((G, g), 0̃)∨ ((G, g)′, 0̃′) be the one-point
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union of ((G, g), 0̃) and ((G, g)′, 0̃′), where ((G, g)′, 0̃′) is a copy of ((G, g), 0̃).
Define a homeomorphism f : Y → Y by

f(y) =

{
g̃(y) if y ∈ (G, g),
g̃−1(y) if y ∈ (G, g)′.

Then f is an expansive homeomorphism and for both σ = s and u, W σ(0̃)
is not equal to the arc component A(0̃).

Also, (3.10) is not true in the case that the shift map f̃ : (G, f) →
(G, f) of f is continuum-wise expansive, where f : G → G is a map of a
graph G. In fact, there is a map f : I → I of the unit interval I such that
f̃ : (I, f) → (I, f) is a continuum-wise expansive homeomorphism and (I, f)
is a pseudo-arc (= hereditarily indecomposable arc-like continuum) (see [16,
(2.3)]). Since (I, f) contains no arc and W u(x̃) contains a nondegenerate
subcontinuum of (I, f) for each x̃ ∈ (I, f) (see the proof of [15, (3.2)]),
W u(x̃) is not equal to the arc component A(x̃) = {x̃}.

In connection with (3.10), we have the following questions.

Question 1. In the situation of (3.10), under what assumptions does
X = (G, f) admit a closed neighborhood base {Bn}

∞

n=1 such that each Bn

is the product of an arc in W u and a Cantor set in W s? Is the condition
that X is σ-mixed sufficient? For Williams’ mixing expanding maps on
1-dimensional branched manifolds, the answer is positive [27].

Question 2. Does “positive pseudo-expansiveness” imply “pseudo-
expanding” in a metric giving the same topology as the original metric
(cf. [3])?

The author wishes to thank the referee for his helpful and kind remarks.

References

[1] N. Aok i, Topological dynamics, in: Topics in General Topology, K. Morita and J.
Nagata (eds.), Elsevier, 1989, 625–740.

[2] B. F. Bryant, Unstable self-homeomorphisms of a compact space, thesis, Vanderbilt
University, 1954.

[3] M. Denker and M. Urba/nsk i, Absolutely continuous invariant measures for ex-
pansive rational maps with rationally indifferent periodic points, Forum Math. 3
(1991), 561–579.

[4] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-
Wesley, 1989.

[5] W. Gottschalk, Minimal sets; an introduction to topological dynamics, Bull.
Amer. Math. Soc. 64 (1958), 336–351.

[6] W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc.
Colloq. Publ. 34, Amer. Math. Soc., 1955.



Expansive homeomorphisms 165

[7] K. Hira ide, Expansive homeomorphisms on compact surfaces are pseudo-Anosov ,
Osaka J. Math. 27 (1990), 117–162.

[8] J. F. Jacobson and W. R. Utz, The nonexistence of expansive homeomorphisms
of a closed 2-cell , Pacific J. Math. 10 (1960), 1319–1321.

[9] H. Kato, The nonexistence of expansive homeomorphisms of Peano continua in the
plane, Topology Appl. 34 (1990), 161–165.

[10] —, On expansiveness of shift homeomorphisms of inverse limits of graphs, Fund.
Math. 137 (1991), 201–210.

[11] —, The nonexistence of expansive homeomorphisms of dendroids, ibid. 136 (1990),
37–43.

[12] —, Embeddability into the plane and movability on inverse limits of graphs whose
shift maps are expansive, Topology Appl. 43 (1992), 141–156.

[13] —, Expansive homeomorphisms in continuum theory , ibid. 45 (1992), 223–243.
[14] —, Expansive homeomorphisms and indecomposability, Fund. Math. 139 (1991),

49–57.
[15] —, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576–

598.
[16] —, Concerning continuum-wise fully expansive homeomorphisms of continua, Topol-

ogy Appl., to appear.
[17] H. Kato and K. Kawamura, A class of continua which admit no expansive homeo-

morphisms, Rocky Mountain J. Math. 22 (1992), 645–651.
[18] K. Kuratowsk i, Topology , Vol. II, Academic Press, New York, 1968.
[19] —, Applications of Baire-category method to the problem of independent sets, Fund.

Math. 81 (1974), 65–72.
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