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Striped structures of stable and unstable sets
of expansive homeomorphisms and a theorem
of K. Kuratowski on independent sets

by

Hisao K ato (Hiroshima)

Abstract. We investigate striped structures of stable and unstable sets of expansive
homeomorphisms and continuum-wise expansive homeomorphisms. The following theo-
rem is proved: if f : X — X is an expansive homeomorphism of a compact metric space X
with dim X > 0, then the decompositions {W®(z) | € X} and {W"(z) | z € X} of X
into stable and unstable sets of f respectively are uncountable, and moreover there is o
(= s or u) and ¢ > 0 such that there is a Cantor set C' in X with the property that
for each x € C, W7 (x) contains a nondegenerate subcontinuum Az containing x with
diam Az > o, and if z,y € C and = # y, then W7 (z) # W9 (y). For a continuum-wise
expansive homeomorphism, a similar result is obtained. Also, we prove that if f: G — G
is a map of a graph G and the shift map f: (G, f) — (G, f) of f is expansive, then
for each T € (G, f), W"(Z) is equal to the arc component of (G, f) containing Z, and
dim W*(Z) = 0.

1. Introduction. All spaces under consideration are assumed to
be metric. By a compactum we mean a compact metric space, and by
a continuum a connected nondegenerate compactum. A homeomorphism
f:X — X of a compactum X is called ezpansive [6] if there is a constant
¢ > 0 (called an ezxpansive constant for f) such that if z,y € X and = # y,
then there is an integer n = n(z,y) € Z such that

d(f"(x), f"(y)) > ¢

This property has frequent applications in topological dynamics, ergodic
theory and continuum theory [1, 5, 6, 25].

A homeomorphism f : X — X of a compactum X is continuum-wise
expansiwe [15] if there is a constant ¢ > 0 such that if A is a nondegener-
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ate subcontinuum of X, then there is an integer n = n(A) € Z such that
diam f"(A) > c¢. By the definitions, we can easily see that every expan-
sive homeomorphism is continuum-wise expansive, but the converse is not
true. There are many important examples of homeomorphisms which are
continuum-wise expansive, but not expansive.

In [13, Theorem 3.1], we proved that if f : X — X is an expansive
homeomorphism of a compactum X with dim X > 0, then there is a closed
subset Z of X such that each component of Z is nondegenerate, the space
of components of Z is a Cantor set, the decomposition space of Z into
components is upper and lower semi-continuous and all components of Z
are contained in stable sets or unstable sets.

In this paper, we show more precise results. In particular, we prove that
if f: X — X is an expansive homeomorphism of a compactum X with
dim X > 0, then the decompositions {W?*(z) | + € X} and {W"(z) | =
€ X} of X into stable and unstable sets respectively are uncountable, and
moreover there is o (0 = s or u) and ¢ > 0 such that the o-striped set
Z(o,0) of f is not empty. Hence, by using a theorem of K. Kuratowski
on independent sets, it is proved that almost every Cantor set C of Z(o, o)
has the property that for each z € C, W7(x) contains a nondegenerate
subcontinuum containing z and if x,y € C and x # y, then W (x) # W (y).

Also, we prove that if f : G — G is a map of a graph G and the shift
map f: (G, f) — (G, f) of f is expansive, then for each = € (G, f), W" ()
is the arc component of (G, f) containing , and W*(x) is 0-dimensional.

We refer the readers to [1], [6] and [25] for the general properties of
expansive homeomorphisms.

2. Definitions and preliminaries. Let X be a metric space. Then
the hyperspaces 2% and C(X) of X are defined as follows:

2% = {A| A is a nonempty compact subset of X},
C(X)={Ac2¥ | Ais connected} .
The hyperspaces 2% and C(X) are metric spaces with the Hausdorff met-
ric dg, i.e., du(A,B) = inf{e > 0| U.(A) D B and U.(B) D A}, where
U:(A) denotes the e-neighborhood of A in X. Note that if X is a com-
pactum, then the hyperspaces 2% and C(X) are also compacta (see [21]).
Let A and B be subsets of X. Put d(A, B) = inf{d(a,b) | a € A and b € B}.

Let f: X — X be a homeomorphism of a compactum X and let x € X.
Then the stable set W*(z) and the unstable set W™ (z) are defined as follows:

W(@) = {y € X | Tim d(f"(2), f"()) = 0}
W) = {y € X | lim d(f (), /" () = 0}
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Also, the continuum-wise stable and unstable sets V=(x), V" (x) are defined
as follows:

V3(z) = {y € X | there is A € C(X) such that z,y € A and
lim diam f"(A) =0},
V% (z) = {y € X | there is A € C(X) such that z,y € A and
lim diam f~"(A) =0}.
Clearly, W7 (z) D Vo (z), {W(z) | x € X} and {V7(z) | x € X} are
decompositions of X for both ¢ = s and u, i.e,, X = (J{W%(x) | z € X}
(resp. X = [ J{V9(z) | = € X}), and if W7(x) # W(y) (resp. V(x) #
Vo(y)), then Wo(x) "W (y) = 0 (resp. V7 (z) NV (y) = (). Also, for
0 < 6 < € consider the following subsets of C'(X):
Vi) ={4A € C(X) | diam f"(A) < ¢ for any n > 0},
Vi) ={A e C(X) |diam f~"(A) < ¢ for any n > 0},
V3(0,e) = {A € V3(e) | diam A = ¢},
)

—~

VU(8,e) = {A € V'(e) | diam A = 6},
Ve ={AeC(X)| lim diam f"(4) =0},

)
Vi={AeCX) | nlLIr()lodiamf_”(A) =0}.

We are interested in the structures of the decompositions {W7(z) | x €
X} and {V7(z) | x € X} (0 =sand u) of X. Let f : X — X be an
expansive homeomorphism of a compactum X with an expansive constant
c¢>0and dimX > 0. Let ¢ > o > 0 be a positive number. Consider the
family ®(0) = {Z | Z is a closed subset of X such that (i) for each z € Z
there is a subcontinuum A, of X with diam A, > g and x € A, C W7 (x),
and (ii) for any neighborhood U of x in X, there is y € Z N U such that
We(z) # W(y)}. By [20, p. 315], (o) has the maximal element Z(o, p)
(=ClU{Z | Z € ©(0)})). The set Z(o,p) is said to be a o-striped set
of f. Note that if 0 < 91 < g2, then Z(0,01) D Z(0,02). Also, note that
if Z(o,0) # 0 for some g > 0, then X contains an uncountable collection
of mutually disjoint, nondegenerate subcontinua of X each of which is con-
tained in a different element of {W7(x) |z € X} (see (3.1)).

Let f : X — X be a map of a compactum X with metric d. Consider
the following inverse limit space:

(X, f) ={(@i)Zo | i € X, f(zit1) = ; for each i > 0}.
Define a metric d for (G, f) by

dF,7) =Y dwi,y)/2" for T = (2:)20,7 = ()0 € (X, ).
=0
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The space (X, f) is called the inverse limit of the map f. Define a map
(X, f) = (X, f) by
f(zo,x1,...) = (f(zo),x0,21,...) for (x;)2, € (X, f).

Then f is a homeomorphism and it is called the shift map of f. Let p, :
(X, f) — X be the natural projection (n > 0), i.e., pn((2:)52,) = @n.

(2.1) EXAMPLE. Let f : I — I be the homeomorphism as in Figure 1,
where I = [0, 1] denotes the unit interval.

0 xr1 1
Fig. 1

Then {W*(x) | z € I} = {{0},(0,21), {xl} (x1,1]} is finite, because
W=(0) = {0}, Wa(y) = (0,21) for y € (0,21), W3(21) = {x1} and W*(z) =
(x1,1] for € (x1,1]. Similarly, {W"(x) | « € I} is finite. Hence Z(o, 0) = ()
for each p > 0 (¢ = s and u).

(2.2) EXAMPLE. Let S! be the unit circle and let f : S1 — S! be
the natural covering map with degree 2. Consider the inverse limit (S!, f)
of f and the shift map f : (S, f) — (S, f). The continuum (S, f) is
well-known as the 2-adic solenoid and j“v is an expansive homeomorphism
(see [26]). In this case, for each ¥ € (S, f), W¥(Z) = V4() is the arc
component of (S, f) containing 7. Also, V5(z) = {#} ¢ W5(Z) for each
7 € (S, f). Then the decomposition {W"( )2 € (S f)} (0 =sand )
is uncountable. Note that dim W*(z) = 0, because W*(7) is an F,-set and
does not contain a nondegenerate subcontinuum (see (3.10) below). Note
that the continuum (S, f) itself is a u-striped set Z(u, o) of f for some
0> 0, but Z(s, ) = 0 for each o > 0.

(2.3) EXAMPLE. (a) There is an expansive homeomorphism f: X — X
such that Intx W°(z) # 0 for some x € X. Let G be the one-point union
of the unit interval I and a circle St i.e., (G,*) = (I,1) V (S1,%). Define a
map ¢ : G — G such that g|S! : S' — S is the natural covering map with
degree 2 and ¢g(0) = 0, g(1) = * and g(I) = G. We can choose g : G — G
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so that g : X = (G,9) — X = (G, g) is expansive (see [10, Theorem 4.3)).
Then W"(0) is a dense open set of X, where 0 = (0,0,...). Hence X itself
is not a u-striped set of g.

(b) There is an expansive homeomorphism h of a continuum Y such that
there is a point xg € Y such that if A is any nondegenerate subcontinuum
of Y containing xq, then A € V3UV". Let G and g : G — G be the same
as in (a), and let X; (i = 1,2) be the copies of the space X as in (a). Let
(Y,0) = (X1,0)V(X3,0) be the one-point union of X; and X5 (see Figure 2).

Wiy

Xi

Fig. 2

Take a natural injection i : R — Y such that i(0) = 0, where R is the
set of real numbers. Let k : R — R be defined by k(z) = 2z + 1 (x > 0),
k(z) = 2z +1 (z < 0). Define a homeomorphism h : Y — Y by h(z) = g(z)
if v € (S, 9|9Y) C Xy, h(z) = g~ 1(z) if 2 € (S%,g|S') C X5 and h(z) =
iokoi~(z)if x € i(R). Then h is an expansive homeomorphism. Note
that if g € i(R) and A is any nondegenerate subcontinuum containing z,
then A g VUV

Remark. Instead of the solenoid (S!,g), one can construct the ex-
amples above with the help of an Anosov diffeomorphism, say (f 1) on the
2-dimensional torus 72, and a curve outside 72 “unwinding” from an un-

stable manifold in T2.

A subset E of aspace X is an F,-set in X if F is the union of a countable
collection of closed subsets of X. A subset E of X is an F,s-set in X if it
is the intersection of a countable collection of F,-sets.

In this paper, we use a theorem of K. Kuratowski on independent sets [19].
A subset F' of X is said to be independent in R C X™ if for every system
Z1,...,x, of different points of F' the point (z1,...,x,) € F™ never belongs
to R. In [19], K. Kuratowski proved the following theorem.

(2.4) THEOREM ([19, Main theorem and Corollary 3]). If X is a complete
space and R C X™ is an F,-set of the first category, then the set J(R) of
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all compact subsets F' of X independent in R is a dense Gs-set in the space
2X of all compact subsets of X. Moreover, if X has no isolated points, then
almost every Cantor set of X is independent in R.

(2.5) PROPOSITION. Let f : X — X be a homeomorphism of a com-
pactum X. Then W7 (zx) is an Fys-set in X (o = s, u).

Proof. We prove the case 0 = u. Let x € X. For any natural numbers
m,n > 1, consider the set

Winn(@) = {y € X | d(f~(2), {7 (y)) < 1/n for i > m}.

Then W, () is closed and W,,(z) = U,-_; Winn(x) is an F,-set. Hence
W (z) =2, Wh(z) is an Fys-set in X.

(2.6) PROPOSITION. Let f: X — X be an expansive homeomorphism of
a compactum X. Then W (x) is an F,-set in X (o =s,u).

Proof. We prove the case ¢ = u. Let ¢ > 0 be an expansive constant for
f and let 0 < € < ¢/2. Note that if y,y/ € X and d(f~(y), f~*(y')) < € for

each i > m (m is some natural number), then lim; .. d(f~%(y), f~*(y’)) = 0
(see [20, p. 315]). For any m =1,2,..., put

Wine(w) = {y € X | d(f " (2), f(y)) < e for i >m}.
Since W*(z) = Upo—y Wine(z) and W,, .(z) is closed, W"(z) is an Fj,-set
in X.
(2.7) PROPOSITION. Let f : X — X be a continuum-wise expansive

homeomorphism of a compactum X. Then V(x) is an F,-set in X (o0 =
s,u).

Proof. We prove the case ¢ = u. Let ¢ > 0 be a continuum-wise
expansive constant for f and let 0 < e < ¢/2. Note that if A € C(X) and
diam f~%(A) < e for any i > m, then lim; . diam f~¢(A4) = 0 (see [15,
(2.1)]). For each m =1,2,..., put

Vime(z) = J{A € C(X) |z € A and diam f~(A) <& for i > m}.
Then V'(x) = *_; Vinc(z) is an F,-set in X.

m=1
3. Striped structures of stable and unstable sets. In this section,
we study striped structures of stable and unstable sets of expansive home-
omorphisms and continuum-wise expansive homeomorphisms. The main
result of this section is the following theorem.

(3.1) THEOREM. Let f : X — X be an expansive homeomorphism of a
compactum X with dim X > 0. Then the decomposition {W?(x) | v € X}
(0 =s and ) of X is uncountable. Moreover, there exists o (o = s oru) and
0 > 0 such that the o-striped set Z (o, 0) is not empty. In particular, almost
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every Cantor set C' of Z(o,0) has the property that for any x € C, there
exists a nondegenerate subcontinuum A, of X such that x € A, C W7 (x),

and if x,y € C and x # y, then W (x) # W (y).
To prove (3.1), we need the following facts. The next lemma is obvious.

(3.2) LEMMA. Let f : X — X be a map of a compactum X and let N > 1
be a natural number. Suppose that there is v > 0 such that d(f*N (x), f*N (y))
> v for eachi =0,1,2,... Then there is n > 0 such that d(f*(x), fi(y)) >n
for each i =0,1,2,...

(3.3) LEMMA ([15, (2.3)]). Let f: X — X be a continuum-wise expansive
homeomorphism of a compactum X with an expansive constant ¢ > 0 and
let 0 < e < ¢/2. Then there is 6 > 0 such that if A is any nondegenerate
subcontinuum of X such that diam A < ¢ and diam f"™(A) > e for some
integer m € Z, then one of the following conditions holds:

(a) If m > 0, then diam f™(A) > § for each n > m. More precisely,
there is a subcontinuum B of A such that diam fj(B) <efor0<j<n
and diam f"(B) = 4.

(b) If m < 0, then diam f~"(A) > § for each n > —m. More precisely,
there is a subcontinuum B of A such that diam f_j(B) <efor0<j<n
and diam f~"(B) = .

(3.4) LEMMA ([15, (2.4)]). Let f, ¢, €, § be as in (3.3). Then for any
~v > 0, there is N > 0 such that if A € C(X) and diam A > ~, then either
diam f""(A) > 0 for each n > N, or diam f~"(A) > 0 for each n > N.

Proof of (3.1). Let ¢, €, 6 be positive numbers as in (3.3). Suppose
that there exists no nondegenerate subcontinuum A of X such that
lim, oo diam f~"(A4) = 0, ie., V' = {{z} | « € X}. Let C be a non-
degenerate component of X. Then for any z € C, W"(z) = ;2 Fi, where
each Fj is closed (see (2.6)). Note that Into(F; N C) = () for all i. By
the Baire category theorem, {W"(z) | = € C} is uncountable, and hence
{W"(z) | z € X} is uncountable. The case o = s is similar.

Next, we shall show the existence of a nonempty o-striped set Z(o, 0).
By [20, Lemma 3], there is a nondegenerate subcontinuum A € VSU V"™
From now on, we assume that there is a nondegenerate subcontinuum A
such that lim;_, . diam f~%(A) = 0. In this case, V'(5,e) # 0 (see (3.3)).
Note that if A € V", then W"(z) = W"(y) for all z,y € A.

For any closed subset M of V" (¢), we define

M’ = {A € C(X) | for any neighborhood U of A in C(X) there is
A" € M such that A" € U and W"(a) N W"(a') = ()
foralla € Aand o’ € A'}.
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We can easily see that M/ C M is a closed subset of C(X) and (M7)f
C M. For any ordinal numbers, define My = M, M; = M/, My =
(M,)?, and My = M., where X is a limit ordinal. From now on, we
assume that

a<<

M = M(5) =V"(,e).
Now, we need the following claim which is directly proved by transfinite
induction.

CLAIM (N). Let A be a countable ordinal. If A € My, then there are two
subcontinua Ay and As of A such that d(Ay, As) > /3 and Ay, Ay € (M),
where M' = M(v) (= V"(v,€)) and 0 <y < /3.

By transfinite induction, we shall prove M, # () for any ordinal .
Choose v > 0 such that if A and B are any subsets of X with diam A > ¢
and diam B > 0, then there are @ € A and b € B such that d(a,b) > 3v. Let
N be a natural number such that if A € C(X) and diam A > ~, then either
diam f*(A) > (n > N) or diam f~"(A) > (n > N) (see (3.4)). We may
assume 7y < /3.

First, choose A € V"(§,¢). Since diam A = §, we can choose two sub-
continua Ay, By of A such that Ay, By € M’ = V'%(v,¢) and d(A;,By) >
§/3 > 7 (see Claim (0)). Since diam f¥(A;) > § and diam f™(B;) > 6, we
choose a subcontinuum A, of fV(A;) and a subcontinuum B, of fV(B)
such that Ay, By € V'(vy,¢) and d(As, B2) > 7. By induction, we can
choose two sequences {A,} and {B,} of C(X) such that A4, C f¥(A,_1),
B, c fN(B,_1), d(A,,B,) > v and A,,B, € V%(y,e). Also, choose a
subsequence n; < ng < ... of natural numbers such that lim; .. 4,,, = A’
and lim; o B,, = B’. Then d(f~N{4’), f~N{(B’)) > ~ for each i > 0.
By (3.2), d(f~%(a), f~%(b)) > n for alla € A’, b € B’ and i > 0, and hence
Wh(a) # W"(b). Note that for each a,, € A,, and b,, € B,,, W% (a,,) =
WH(b,,). Hence either A’ € (M) = (M'); or B’ € (M") = (M’");. We
assume that A’ € (M’);. By (3.3), fV(A’) contains a subcontinuum A;
such that A; € My, which implies that M; # ().

For a countable ordinal A, we may assume that for any a < A\, M, is not
empty. We must consider the following two cases.

(I) A = a+ 1. Claim («) and an argument similar to the above show
that M) is not empty.

(IT) A is a limit ordinal. In this case, take an increasing sequence ay <
oy < ... of countable ordinals such that lim; .., a; = A. Also, choose
A; € M,, for each i. We may assume that lim; .., A; = A. Then A €
ma<>\ Mo = My.

Thus we proved that M)y #() for any countable ordinal A\. Hence there is
a countable ordinal « such that M, =M,1 (#0). Put Z={J{A|Ae M,}.
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Since M, is closed in C(X), Z is also closed in X. We can easily see that
Z = Z(u,0) is a u-striped set of f. Put

An,e) = {(z,y) € Zx Z | d(f~(x), f(y)) < e for each i > n}.

Then A(n,¢) is a closed subset of Z x Z; put R = J,._, A(n,e). Note that
Intz A(n,e) = 0. Hence R is an F,-set of the first category in Z x Z. By the
theorem of K. Kuratowski on independent sets (see (2.4)), S = {S € 27 |
S is independent in R} = {S € 2Z | for any z,y € S with x # y, W' (x) #
W (y)} is a dense Gs-set in 2Z. By (2.4), almost every Cantor set of Z is
contained in S. This completes the proof.

(3.5) COROLLARY. Under the assumption of (3.1), if moreover V® and
VY contain nondegenerate subcontinua, then for both o = s and o = u, the
o-striped set Z(o, 0) of f is not empty for some o > 0.

By (2.7) and an argument similar to the above, we can prove the following
theorem on continuum-wise expansive homeomorphisms.

(3.6) THEOREM. Let f : X — X be a continuum-wise expansive homeo-
morphism of a compactum X with dim X > 0. Then the decompositions
{Vo(x) |z € X} (6 = s and u) are uncountable. Moreover, there is o (0 =
s or u) and a positive number o > 0 such that there is a nonempty closed
set Z' of X such that (i) for each x € Z' there is a subcontinuum A, of X
with diam A, > ¢ and x € A, C V7(x), (ii) for any neighborhood U of x
in X, there isy € Z' NU such that V°(xz) # Vo (y). In particular, almost
every Cantor set C of Z (o) has the property that for any x € C, there is a
nondegenerate subcontinuum A, of X withx € A, C V7(x), and if z,y € C
and x # vy, then V7 (z) # V7 (y).

(3.7) THEOREM. Let X be a locally connected continuum (= Peano con-
tinuum). If f : X — X is an expansive homeomorphism (resp. a conti-
nuum-wise expansive homeomorphism) of X, then there is an uncountable

subset Z of X such that C1(Z) = X, and

(1) for each x € Z and 0 = s and u, there is a nondegenerate subcontin-
uum A, € V7 with x € A, and diam A, > § for some § > 0,

(2) if x,y € Z and x # y, then W7 (x) # W (y) (resp. V7 (z) # V7 (y))
for both 0 = s and u.

To prove (3.7), we need the following.

(3.8) LEMMA ([16, (1.6)]). Let f : X — X be a continuum-wise expansive
homeomorphism of a Peano continuum X . Then there is 6 > 0 such that for
each x € X, there are two subcontinua A, and B, such that x € A,NB,, A,
e Vs B, € V¥ diam A, = 0 and diam B, = §. In particular, Intx (W (x))
= for each x € X and o = s, u.
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Proof of (3.7). Suppose that f is an expansive homeomorphism. The
case of continuum-wise expansive homeomorphism is similarly proved. Let
B = {U;}2; be a base of X. We use the Baire category theorem. By
induction, we obtain a countable subset Z, of X such that U; N Z,, # () and
ifx,y € Z,, then W7 (x) # W?(y) for o = s and u, because Intx (W (x)) =
() and W(x) is an F,-set (see (2.6)). By transfinite induction, for any
countable ordinal A we have a countable set Z such that (1) if z,y € Z)
and z # y, then W7(x) # W7(y) for both ¢ = s and u, and (2) if o < 3,
then Z, & Zg. Put Z =, _,,, Z. Clearly, Z is the desired set.

Let f : X — X be a homeomorphism of a compactum X. For ¢ = s
and u, let M, (f) be the maximal element of the family {Z | Z is a closed
subset of X such that for any x € Z and any neighborhood U of z in X there
is y € ZNU such that W7(x) # W7(y)}. Clearly, M,(f) is f-invariant. It
is called the o-mixed set of f.

By (3.1) and (3.7), we have the following corollary.

(3.9) COROLLARY. If f:X — X is an expansive homeomorphism of a
compactum X with dim X > 0, then the o-mized set M,(f) is not empty
and hence it is a perfect set. Moreover, if X is a Peano continuum, then

Mo(f) = X.

Proof. By (3.1), there is an uncountable subset H, of X such that if
x,y € H, and x # y, then W7 (x) # W(y). Then CI(H,) is a closed and
uncountable set, hence it contains a Cantor set C. Then C' C M, (f).

For the case of inverse limits of graphs, we have the following theorem.

(3.10) THEOREM. Let f:G — G be a map of a graph G (= finite con-
nected 1-dimensional polyhedron). Suppose that the shift map j“v: (G, f) —
(G, f) is expansive. Then for each T € (G, f), (a) W™(x) is equal to the arc
component A(x) of (G, f) containing =, and (b) W*(x) is 0-dimensional.

To prove (3.10), we need the following notations. Let A be a closed
subset of a compactum X. A map f: X — X is called positively expansive
on A if there is ¢ > 0 such that if z,y € A and x # y, then there is a natural
number n > 0 such that d(f™(x), f"(y)) > ¢. Ifamap f: X — X is
positively expansive on the whole space X, we say f is positively expansive.
Let A be a finite closed covering of X. A map f : X — X is positively
pseudo-expansive with respect to A if the following conditions hold:

(P1) f is positively expansive on A for each A € A.

(Py) For all A,B € A with AN B # (), either f is positively expansive
on AU B, or there is a natural number k£ > 1 such that for any A’, A” € A
with A’ N A" # (), either

FEAUAYNA-B) =0 or fHAUA)N(B-A)=0.
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(3.11) THEOREM ([13, (2.5)]). Let G be a graph and let f : G — G be an

onto map. Then the shift map f : (G, f) — (G, f) is expansive if and only
if f is positively pseudo-expansive with respect to A, where A = {e | e is an
edge of some simplicial complex K with |K| = G}.

(3.12) PrROPOSITION ([13, (2.9)]). Let f : G — G be an onto map of a
graph G. If the shift map ]?: (G, f) — (G, f) is expansive, then there is
a > 0 such that if A is a subcontinuum of (G, f) with dlam A < «, then
Ae V" de., lim,_ o diam f_”(A) =0.

Proof of (3.10). We may assume that f : G — G is an onto map,
since so is f|G' : G' — G, where G' = p,,((G, f)) and p,, : (G, f) — G is
the natural projection.

(a) Let y be any point of the arc component A(z) of (G, f) containing .
Choose an arc A from 7 to y in A(Z). Choose points T = g, T1,...,Tm =Y
of A such that diam[Z;, Z;y1] < a for each ¢ = 0,1,...,m — 1, where a > 0
is as in (3.12) and [z;, Z;+1] denotes the arc from z; to 7,11 in A. By (3.12),
[T;, Tit1] € V" for each ¢, hence y € W"(z). This implies that A(z) C
WH(z).

We show the converse inclusion. Let y € W"(z). Suppose that z =
()2 and ¥ = (y;)72,. Since lim;_,o d(x;,y;) = 0, there is m > 0 such
that if n > m, then x,, € e,, and y,, € €},, where K is a simplicial complex as
in (3.11) and e, €/, are edges of K such that e, Ne. # (. Also, we assume
that d(x,,,y,) < min{d(e,e’) | e and €’ are edges of K with e Ne’ = ()} for
each n > m.

Since f : G — G is positively pseudo-expansive with respect to 4 = {e | e
is an edge of K}, it is positively expansive on e,,Ue,, for each n > m. We may
assume that f([z,, y,]) does not contain a simple closed curve, where [x,,, ¥y, ]
is the arc in e, Uel, from z,, to y,. It follows that f([xn11,Yn+1]) = [Zn, Yn]
and f|[Tn+1,Yn+1] ¢ [Tnt1, Ynt1] = [Tn,Yn] is @ homeomorphism for each
n > m, because f|[x,,yy] is locally injective and f([x,, y,]) does not contain
a simple closed curve. Consider the subset A = {(2:)2, | z: € G, 2z, €
[, Yn] for each n > m and f(z;41) = z; for each i > 0} in (G, f). Clearly, A
is an arc from 7 to y in (G, f). Hence y € A(z). Note that V"(z) = W"(z).

(b) By (3.12), W*(Z) contains no nondegenerate subcontinuum. Since
W*(Z) is an F,-set in (G, f), W3(Z) = ;= F;, where each F; is closed.
Since dim F; = 0 for each 4, by the sum theorem of dimension theory we see
that dim W*(&) = 0.

(3.13) Remark. Of course (3.10) is not true for general expansive
homeomorphisms. Consider for example an arbitrary Anosov diffeomor-
phism. Even in the 1-dimensional case (3.10) is not true. Let g : G — G be
the map as in (a) of (2.3). Let Y = ((G,¢),0)V ((G,g)’,0’) be the one-point
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union of ((G,g),a) and ((G,g)’,ﬁ’), where ((G,g)’,ﬁ’) is a copy of ((G,g),ﬁ).
Define a homeomorphism f:Y — Y by

_Joly) ifye(G,g),
) = {ﬁ‘l(y) if y € (G,9)"

Then f is an expansive homeomorphism and for both o = s and u, W7(0)
is not equal to the arc component A(0).

Also, (3.10) is not true in the case that the shift map f : (G, f) —
(G, f) of f is continuum-wise expansive, where f : G — G is a map of a
graph G. In fact, there is a map f : I — I of the unit interval I such that
f:U,f)— (I, f)is a continuum-wise expansive homeomorphism and (I, f)
is a pseudo-arc (= hereditarily indecomposable arc-like continuum) (see [16,
(2.3)]). Since (I, f) contains no arc and W"(Z) contains a nondegenerate
subcontinuum of (I, f) for each z € (I, f) (see the proof of [15, (3.2)]),
W"(z) is not equal to the arc component A(z) = {z}.

In connection with (3.10), we have the following questions.

QUESTION 1. In the situation of (3.10), under what assumptions does
X = (G, f) admit a closed neighborhood base {B,,}>2; such that each B,
is the product of an arc in W" and a Cantor set in W7 Is the condition
that X is o-mixed sufficient? For Williams’ mixing expanding maps on
1-dimensional branched manifolds, the answer is positive [27].

QUESTION 2. Does “positive pseudo-expansiveness” imply “pseudo-

expanding” in a metric giving the same topology as the original metric
(cf. [3])7

The author wishes to thank the referee for his helpful and kind remarks.
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