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The Nielsen coincidence theory on topological manifolds

by

Jerzy J e z i e r s k i (Warszawa)

Abstract. We generalize the coincidence semi-index introduced in [D-J] to pairs of
maps between topological manifolds. This permits extending the Nielsen theory to this
class of maps.

Introduction. In this paper we generalize the coincidence semi-index
theory, introduced in [D-J] in the smooth case, to pairs of maps between
topological manifolds. It will be based on the topological transversality
lemma (1.1). To show that this new theory generalizes the previous one
it will be necessary to reformulate [D-J] since the graphs of any two maps
are never topologically transverse. This is done in Section 2: we give three
equivalent versions of the semi-index in the smooth case and then we show
that one of them coincides with the semi-index defined in Section 1. In
Section 3 we prove a Wecken type theorem on realizing the above Nielsen
number.

1. The coincidence semi-index on topological manifolds.
Throughout this paper we consider pairs of maps f, g : M → N such that
M,N are topological separable manifolds without boundary and the coinci-
dence set Φ(f, g) = {x ∈ M : fx = gx} is compact. The construction of the
semi-index we present is based on the transversality lemma (1.1) below.

Let P ⊂ W and V be topological manifolds and ξ a normal microbundle
of P in W , i.e. the total space of ξ is an open subset of W containing
P . Recall that a map h : V → W is called topologically transverse (briefly
t-transverse) to ξ if h−1P is a topological submanifold in V admitting a
normal microbundle ν such that for any x ∈ h−1P a neighbourhood of x
in νx is mapped by h homeomorphically onto a neighbourhood of hx in
ξhx [K-S].
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Lemma (1.1). Let V,W be topological manifolds, and P ⊂ W a subman-
ifold with a normal microbundle ξ. Let C,D ⊂ V be closed subsets and
h : V → W a continuous map transverse to ξ near C. Then there is a
homotopy {ht} based in a given neighbourhood of D − C such that h0 = h
and h1 is transverse to ξ near C ∪D. Moreover , if d is a metric on W , and
ε : V → (0,∞) any function then we may require d(ht(x), h(x)) < ε(x) for
any x ∈ V and 0 ≤ t ≤ 1.

P r o o f. Let p, v, w denote the dimensions of P, V, W respectively. For
v 6= 4 6= w − p the assertion follows from Thm. (1.1) in Essay III of [K-S].
The assumption v 6= 4 is not necessary now since by [F] every 4-manifold is
almost smoothable.

The case w − p = 4 follows from Thm. (5.3) of [Sc] since by [F] the
Rokhlin theorem fails in the TOP category.

It will be convenient to start with a more general situation. For given
manifolds V , W , P ⊂ W and a map h : V → W we define a relation on
h−1P which will also be called the Nielsen relation: x ' y iff there is a path
ω joining these points in V such that hω is homotopic in W to a path in
P . ( Let f, g : M → N be a pair of maps: we put h = (f, g) : V = M →
W = N × N , P = ∆N . Then Φ(f, g) = h−1∆N and the above relation
coincides with the classical Nielsen relation [S], [D-J].) Moreover, we will
always assume h−1P to be compact.

Now suppose that the dimensions of the manifolds V, P ⊂ W satisfy
v + p = w, ξ is a normal microbundle of P in W and h : V → W a map
t-transverse to ξ. Since dim h−1P = v + p− w = 0, h−1P is discrete and ν
splits into open sets, each projected into a point in h−1P .

Let α, β denote two microbundles of the same dimension r and let αx

denote the fibre over a point x of the zero section of α. Then any generator
zx ∈ Hr(αx, αx − x) will be called a (local) orientation of the microbundle
α at x. Let k : α → β be a microbundle map such that the restriction
k|αx

is a homeomorphism near x ∈ αx. Then this restriction determines an
orientation (k|)∗zx ∈ Hr(βkx, βkx−kx) which by abuse of notation will also
be denoted by k∗zx.

Let ω be a path establishing the Nielsen relation between x, y ∈ h−1P .
Let γ0 ∈ Hv(V, V − x) be an orientation of the manifold V at x. Then
h∗γ0 ∈ Hv(ξhx, ξhx − hx) is an orientation of the microbundle ξ at hx ∈ P .
Let γt denote the translation of γ0 along ω(t).

Definition (1.2). We will say that two points x, y ∈ h−1P are R-related
(xRy) iff there is a path ω establishing the Nielsen relation between them
such that the translation of the orientation h∗γ0 along a path in P homotopic
to hω in W is opposite to h∗γ1.
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Let A ⊂ h−1P be a subset. It can be represented as A = {a1, b1, . . . ,
ak, bk : c1, . . . , cs} where aiRbi for any i and ciRcj for no i 6= j. We will call
the elements {c1, . . . , cs} free in this decomposition.

Lemma (1.3). The number of free elements does not depend on the de-
composition of A.

P r o o f. See the proof of (1.3) in [D-J].

We define the semi-index of the set A ⊂ h−1P with respect to ξ to be
the number of free elements in any decomposition of A, and we denote this
number by |ind|t(h, ξ : A).

Lemma (1.4) (Homotopy invariance). Let H : V × [0, 1] → W be a map
t-transverse to a normal microbundle ξ of P in W (v + p = w). Let A be a
clopen subset of H−1P and set At = {x ∈ V : (x, t) ∈ A}, Ht(x) = H(x, t)
for 0 ≤ t ≤ 1. Then |ind|t(H0, ξ : A0) = |ind|t(H1, ξ : A1).

P r o o f. By transversality, H−1P is a one-dimensional manifold. Con-
sider first a connected component of H−1P with ends (x, 0), (x′, 0). We will
show that x, x′ ∈ H−1

0 P are R-related. Then we will show that if (x, 0), (y, 1)
are ends of a connected component and (x′, 0), (y′, 1) are ends of another
one then x, x′ ∈ H−1

0 P are R-related iff y, y′ ∈ H−1
1 P are R-related. The

above facts show that there are decompositions of A0 and A1 with the same
number of free points, which proves our lemma.

Let ν be a normal microbundle over H−1P from the transversality as-
sumption. Consider a connected component A with ends (x, 0), (y, 0) ∈
V × 0. We will show that xRy in H−1

0 P .
Let ω(t) = (ω1(t), ω2(t)) ⊂ V ×I be a parametrization of this component.

Then (t, s) → H(ω1(t), sω2(t)) is a homotopy between H(ω1(t), 0) = H0ω1

and the path Hω ⊂ P . Now ω1 establishes the Nielsen relation between
x = ω1(0) and y = ω1(1) in H−1

0 P .
We show that ω1 also establishes the R-relation. Let γ0 be a local orien-

tation of the manifold M × 0 at (x, 0) and let γt be its translation along the
path (ω1, 0). Then γ0 is also an orientation of the microbundle ν at (x, 0).
Let γ̂t denote its translation along ω. Notice that then γ̂1 = −γ1. On the
other hand, H∗γ̂t is the translation of the orientation of ξ along the path
Hω (which is contained in P and homotopic to H0ω1 in N). For t = 1 we
obtain H∗γ̂1 = H0∗γ̂1 = −H0∗γ1, proving xRy in H−1

0 P .
Now we consider the second case: let ω(t) = (ω1(t), ω2(t)), ω′(t) =

(ω′
1(t), ω

′
2(t)) be parametrizations of the two components with ends ω(0) =

(x, 0), ω(1) = (y, 1), ω′(0) = (x′, 0), ω′(1) = (y′, 1). Suppose that a path
u ⊂ V establishes the R-relation between x, x′ ∈ H−1

0 P . We will show that
−ω1 +u+ω′

1 establishes the R-relation between y, y′ ∈ H−1
1 P . Let u denote
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a path in P homotopic in W to H0u. Since

H1(−ω1 + u + ω′
1) ' H(−ω + (u, 0) + ω′) ' H(−ω) + u + Hω′ ⊂ P ,

−ω1 + u + ω′
1 establishes the Nielsen relation between y, y′ ∈ H−1P .

Let γ1 be an orientation of M × 1 at (y, 1). It is also an orientation
of the microbundle ν at (y, 1) = ω(1); let γt be its translation along ω(t).
Then γ0 is an orientation of M × 0 at (x, 0); let γ′

t be its translation along
(u, 0) to (x′, 0). Then γ′

1 is an orientation of ν at (x′, 0) = ω′(0); let γ′′
t be

its translation along ω′. Notice that γ′′
1 is the translation of the orientation

γ1 of M × 1 along −ω1 + u + ω′
1.

It remains to show that H1∗γ
′′
1 is opposite to the translation of the

orientation H1∗γ1 of ξ along a path lying in P and homotopic in W to
H1(−ω1 + u + ω′

1). Notice that H(−ω) + u + Hω′ is such a path. Now

• the translation of H∗γ1 along −Hω gives H∗γ0 = H0∗γ0,
• the translation of H0∗γ0 along u gives −H0∗γ

′
0 = −H∗γ

′′
0 since xRx′,

• the translation of −H∗γ
′′ along Hω′ gives −H∗γ

′′
1 = −H1∗γ

′′
1

hence we obtain the orientation opposite to H1∗γ
′′
1 , which proves yRy′ in

H−1
1 P .

Let A0 from the above lemma be a Nielsen class of H0. Then A1 is
contained in a Nielsen class A′

1 of H1 and A′
1 − A1 is the union of pairs

of points where each pair is the boundary of a component of H−1P . Thus
A′

1 − A1 splits into pairs of R-related points, which implies that the semi-
indices of A0 and A1 are the same. Since by (1.1) any homotopy between
transverse maps may be deformed to a transverse homotopy, we obtain:

Lemma (1.5). Let H : V × I → W be a Φ-compact homotopy between
the maps H0,H1 : V → W transverse to a normal bundle ξ of P in W. Let
Ai ⊂ H−1

i P be Nielsen classes corresponding under this homotopy (i = 0, 1).
Then

|ind|t(H0, ξ : A0) = |ind|t(H1, ξ : A1) .

A Nielsen class A of a t-transverse map h will be called essential if
|ind|t(h, ξ : A) 6= 0. Define the Nielsen number N(h) of h to be the number
of essential classes; in fact, N(h) also depends on P and ξ. By Lemma (1.5),
N(h) is a correctly defined Φ-homotopy invariant. This definition implies
#h−1P ≥ N(h).

Let h : V → W be a Φ-compact map (not necessarily transverse). We
define N(h) = N(h′) where h′ is any transverse map Φ-compactly homotopic
to h. By (1.5) this is a correctly defined Φ-compact homotopy invariant.

Theorem (1.6). Let h : V → W be Φ-compact. Then h−1P contains at
least N(h) points.
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P r o o f. This is evident when h is transverse to P . In the general case
suppose that #h−1P = k < N(h). For any x ∈ h−1P take a contractible
neighbourhood Whx of hx in W such that Whx ∩P is a deformation retract
of Whx. Then take a neighbourhood Vx of x in V such that h(cl Vx) ⊂ Whx.
Let {ht} be a compact homotopy, supported in

⋃
{Vx : x ∈ h−1P}, from h

to a map t-transverse to ξ. Since this homotopy may be arbitrarily small, we
may assume ht(Vx) ⊂ Whx hence h−1

1 P ∩Vx belongs to a Nielsen class. Now
h−1

1 P contains at most k nonempty Nielsen classes, contradicting N(h1) =
N(h) > k.

Now we may apply the above results to coincidences: let f, g : M →
N be a Φ-compact map of n-manifolds. We put V = M , W = N × N ,
h(x) = (fx, gx), P = ∆N and ξ the microbundle N × N 3 (x, y) →
(x, x) ∈ ∆N . We define the coincidence Nielsen number of the pair f, g
by N(f, g) = N(h). Since Φ(f, g) = h−1(∆N) and both Nielsen relations
coincide, Thm. (1.6) implies

Corollary (1.7). N(f, g) is a Φ-compact homotopy invariant and
Φ(f, g) contains at least N(f, g) points.

Next we show that in the oriented case our semi-index equals the absolute
value of the ordinary coincidence index [S], [V], [D-K].

Lemma (1.8). Let f, g : M → N be a Φ-compact pair , M,N oriented
manifolds, and A ⊂ Φ(f, g) a Nielsen class. Then

|ind(f, g : A)| = |ind|t(f, g : A) .

P r o o f. Since both ind and |ind|t are Φ-homotopy invariant, we may
assume that the pair f, g is transverse. Consider x0, x1 ∈ Φ(f, g). We will
show that x0Rx1 iff ind(f, g : x0) = − ind(f, g : x1). Let u be a path
establishing the Nielsen relation between x0 and x1. We notice that in the
oriented case the translation of a local orientation α0 ∈ Hn(M,M − x0)
along u gives α1 ∈ Hn(M,M − x1) such that both α0, α1 determine the
same global orientation α ∈ HnM . Similarly, the translation of a generator
β0 ∈ Hn(y0 × (N,N − y0)) (along a path in ∆N from (y0, y0) to (y1, y1))
gives β1 ∈ Hn(y1 × (N,N − y0)) such that β0 and β1 correspond to the
same generator β ∈ Hn(N ×N,N ×N −∆N). Thus the points x0, x1 are
R-related iff the fixed global orientations are preserved by the pair f, g at
one of these points and reversed at the other. But the last means exactly
ind(f, g : x0) = − ind(f, g : x1) as claimed.

2. The semi-index on smooth manifolds. In [D-J] we considered
pairs of maps f, g : M → N between two smooth closed n-manifolds. For
each Nielsen class we defined a semi-index which we will denote here by
|ind|d. To do this we replaced the given pair by a transverse one (in the
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smooth category), here called a d-transverse pair , and we defined on Φ(f, g)
a reducibility relation (here termed the Rd-relation). Then any Nielsen class
A ⊂ Φ(f, g) was represented as A = {a1, b1, . . . , ak, bk; c1, . . . , cs} where
aiRdbi for any i = 1, . . . , k, but ciRdcj for no i, j = 1, . . . , s, i 6= j, and
we defined |ind|d(f, g : A) = s. However, the approach from [D-J] is not
convenient for comparison with the method from Section 1 of the present
paper: in [D-J] we considered transversality in M×N , while here in N×N .
To overcome this difference we will give three equivalent versions (A), (B),
(C), of d-transversality and of the Rd-relation. Method (A) is the easiest to
formulate: it does not involve any product spaces. Method (B) is the one
given in [D-J]. We will show that in the smooth case, |ind|t coincides with
|ind|d obtained by using method (C). Then the equivalence of (B) and (C)
implies the desired equality |ind|d = |ind|t.

Consider a Φ-compact, smooth pair of maps f, g : M → N between
smooth n-manifolds. Then for any x ∈ Φ(f, g) the following three conditions
are equivalent:

(A) The difference of the tangent homomorphisms f∗−g∗ : TxM → TfxN
is an isomorphism.

(B) Let Γf = {(x, y) ∈ M × N : y = fx} denote the graph of f . Then
the tangent spaces T(x,fx)Γf , T(x,gx)Γg span the whole T(x,fx)M ×N .

(C) The intersection of the subspaces im(f, g)∗ and T(fx,gx)∆N in
T(fx,gx)N ×N is zero.

Notice that (B) means that the pair f, g is transverse in the sense of [D-J];
here we will call it d-transverse. Assume that f, g : M → N is d-transverse
and ω is a path establishing the Nielsen relation between the points x, y ∈
Φ(f, g). Fix an ordered basis a0

1, . . . , a
0
n of TxM and let at

1, . . . , a
t
n ∈ Tr(t)M

be its translation along ω. Then

(A′) (f∗ − g∗)a0
1, . . . , (f∗ − g∗)a0

n form a basis of TfxN ,

(f∗ − g∗)a1
1, . . . , (f∗ − g∗)a1

n form a basis of TgxN .

Let α0 and α1 denote the orientations determined by these bases.

(B′) (at
1, f∗a

t
1), . . . , (a

t
n, f∗a

t
n) form a basis of T(ω(t),fω(t))Γf ,

(at
1, g∗a

t
1), . . . , (a

t
n, g∗a

t
n) form a basis of T(ω(t),gω(t))Γg .

Let βt(f) and βt(g) denote the orientations determined by these bases. Let
β0 = β0(f) ∧ β0(g) and β1 = β1(f) ∧ β1(g).

(C′) (f∗a0
1, g∗a

0
1), . . . , (f∗a

0
n, g∗a

0
n) form a basis of the fibre of the normal

bundle ν = T (N×N)/T (∆N) of ∆N ⊂ N×N at the point (fx, gx),
and (f∗a1

1, g∗a
1
1), . . . , (f∗a

1
n, g∗a

1
n) form a basis of the fibre of ν at

(fy, gy).
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Let γ0, γ1 denote the orientations determined by these bases.

Theorem (2.1). Under the above notations the following three conditions
are equivalent :

(A′′) α1 is opposite to the translation of α0 along fω ⊂ N .
(B′′) β1 is opposite to the translation of β0 along (ω, fω) ⊂ M ×N .
(C′′) γ1 is opposite to the translation of γ0 along (fω, fω) ⊂ N ×N .

P r o o f. The proof will be based on the following

Lemma (2.2). Let V,W be n-dimensional real linear spaces, a1, . . . , an,
a basis of V and b1, . . . , bn, c1, . . . , cn ∈ W such that b1 − c1, . . . , bn − cn is
a basis of W . Then the orientations of V × W given by the ordered bases
(a1, b1), . . . , (an, bn), (a1, c1), . . . , (an, cn) and (0, b1 − c1), . . . , (0, bn − cn),
(a1, 0), . . . , (an, 0) coincide.

P r o o f. Consider the homotopies

t → (a1, b1 − tc1), . . . , (an, bn − tcn), (a1, (1− t)c1), . . . , (an, (1− t)cn)

and
t → (ta1, b1 − c1), . . . , (tan, bn − cn), (a1, 0), . . . , (an, 0)

in the Stiefel space of ordered bases.

P r o o f o f T h e o r e m (2.1). (A′′)⇔(B′′). We compare β1 and the
translation of β0. The orientation β1 is given by the basis

(a1
1, f#a1

1), . . . , (a
1
n, f#a1

n), (a1
1, g#a1

1), . . . , (a
1
n, g#a1

n) ,

which by (2.2) is equivalent to

(0, (f# − g#)a1
1), . . . , (0, (f# − g#)a1

n), (a1
1, 0), . . . , (a1

n, 0) .

For the same reasons β0 is equivalent to

(0, (f# − g#)a0
1), . . . , (0, (f# − g#)a0

n), (a0
1, 0), . . . , (a0

n, 0) .

Now let (0, bt
1), . . . , (0, bt

n), (at
1, 0), . . . , (at

n, 0) denote the translation of the
last basis along (ω, fω) in M × N . For t = 1 we obtain (0, b1

1), . . . , (0, b1
n),

(a1
1, 0), . . . , (a1

n, 0), which agrees with β1 iff the orientations of TfyN given
by the bases (f# − g#)a1

1, . . . , (f# − g#)a1
n and b1

1, . . . , b
1
n are equal, i.e. α1

equals the translation of α0.
(A′′)⇔(C′′). We compare γ1 and the translation of γ0 along (fω, fω).

The homotopy t → (. . . , (f#a0
i − tg#a0

i , (1− t)g#a0
i ), . . .) shows that γ0 may

also be represented by (b0
1, 0), . . . , (b0

n, 0) where b0
1, . . . , b

0
n represents α0. Let

bt
1, . . . , b

t
n denote again the translation of the last basis along fω. Then

(bt
1, 0), . . . , (bt

n, 0) represents the translation of γ0 along (fω, fω). On the
other hand, γ1 is represented by (. . . , ((f# − g#)a1

i , 0), . . .), which agrees
with the above translation iff α1 agrees with the translation of α0.
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We will say that two points x, y ∈ Φ(f, g) are Rd-related if there is
a path establishing the Nielsen relation between them and for which one
(hence each) of the conditions (A′′), (B′′), (C′′) from (2.1) holds. We no-
tice that (C′′) coincides with the reducibility relation from [D-J]. Now we
are in a position to prove equality of |ind|d and |ind|t. This will be done in
the following theorem where we approximate the given pair by a pair simul-
taneously d- and t-transverse and use the version (C) to prove the equality
of the semi-indices in this case.

Theorem (2.3). Let A be a Nielsen class of a Φ-compact pair f, g : M →
N . Then |ind|t(f, g : A) = |ind|d(f, g : A).

P r o o f. Since both semi-indices are homotopy invariants we may assume
that f, g is a smooth d-transverse pair. Then Φ(f, g) = {x1, . . . , xk} is finite.
We will show that f, g may be replaced by a pair which is simultaneously d-
and t-transverse. Fix euclidean neighbourhoods Ui such that fxi = gxi =
0 ∈ Ui ⊂ N (i = 1, . . . , k). Since d-transversality of f, g means that the
difference of the tangent maps f∗ − g∗ is an isomorphism, by the Implicit
Function Theorem there exist disjoint balls U ′

i in M such that xi ∈ U ′
i =

B(xi, 2εi) ⊂ M , g − f is a diffeomorphism on U ′
i and fU ′

i ∪ gU ′
i ⊂ Ui. Let

ηi : R → R be a non-increasing smooth function satisfying ηi(−∞, εi] = 1,
ηi[2εi,∞) = 0.

Define

(f ′, g′) =

 ((1− ηi(|x− xi|))f(x), g(x)− ηi(|x− xi|)f(x))
for x ∈ U ′

i , i = 1, . . . , k ,
(fx, gx) otherwise.

The pair f ′, g′ is homotopic to f, g, Φ(f ′, g′) = Φ(f, g) and moreover f ′, g′

is simultaneously t-transverse and d-transverse. It remains to show that for
f ′, g′ the relations Rt and Rd coincide. Until the end of this proof we will
write f, g instead of f ′, g′. Let x0, x1 ∈ Φ(f, g) and let a path ω establish the
Nielsen relation between these points. Set yi = fxi = gxi (i = 0, 1) and fix
an orientation of M at x0: γ0 ∈ Hn(M,M − x0) ' Hn(Tx0M,Tx0M − x0).
Then

((f, g)∗γ0)t ∈ Hn(y0 ×N, y0 × (N − y0))

and

((f, g)∗γ0)d

∈ Hn((T (N ×N)/T (∆N))(y0,y0), (T (N ×N)− T (∆N)/T (∆N))(y0,y0))

= Hn(T (N ×N)(y0,y0), (T (N ×N)− T (∆N))(y0,y0))

= Hn(U0 × U0, U0 × U0 −∆U0)
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(where U0 is a euclidean neighbourhood of x0) are orientations of the mi-
crobundle N × N → ∆N and of the normal bundle T (N × N)/T (∆N) at
(y0, y0). Then the inclusion y0 × U0 ⊂ U0 × U0 induces a homomorphism

Hn(y0 ×N, y0 × (N − y0)) = Hn(y0 × U0, y0 × (U0 − y0))
→ Hn(U0 × U0, U0 × U0 −∆U0)

sending ((f, g)∗γ0)t to ((f, g)∗γ0)d. Let (ys, ys) be a path in ∆N homotopic
in N×N to (fω, gω) and Us be the translation of U0 along (ys, ys). Then the
translations of the above orientations ((f, g)∗γ0)ts, ((f, g)∗γ0)ds along (ys, ys)
are compatible under the maps induced by the inclusions ys×Us ⊂ Us×Us.
On the other hand, let γ1 be the translation of γ0 along ω ⊂ M . Then the
orientations ((f, g)∗γ1)t, ((f, g)∗γ1)d (defined as for γ0) correspond under
the inclusion y1 × U1 ⊂ U1 × U1, hence ((f∗, g∗)γ0)t1 = ((f∗, g∗)γ1)t iff
((f∗, g∗)γ0)d1 = ((f∗, g∗)γ1)d. This means that the relations Rt and Rd

coincide.

In particular, the Nielsen number introduced in Section 1 coincides, in
the smooth case, with the number from [D-J].

3. A Wecken type theorem. We will show that the Nielsen number
from Section 1 is the best lower bound on the number of coincidence points
in dimensions ≥ 3 (compare [Ji1], [D-K], [D-J]). We will follow the scheme
from [Ji1].

Consider the following setting:

(∗) P ⊂ W and V are topological manifolds whose dimensions satisfy
p + v = w, p ≥ 2, v ≥ 3, and ξ is a normal microbundle of P in W .

The crucial step is the folowing

Lemma (3.1) (A Whitney type lemma). Let D denote a v-dimensional
ball , h : D → W a map t-transverse to ξ, h−1P = {x0, x1} and suppose the
points x0, x1 are R-related. Then h is homotopic rel bd D to a map into
W − P .

P r o o f. We may assume that hx0 6= hx1 since otherwise we may com-
pose h near x1 with a local isotopy of W near hx1. Let ω : [0, 1] → D be
the straight line segment from x0 to x1. Then hω is homotopic (rel ends)
to a map ω′ into P . Since dim P ≥ 2 and hx0 6= hx1, we may assume that
ω′ is a locally flat (hence flat) regular arc in P . Let U denote a euclidean
neighbourhood of ω′ in W .

We will show that h is homotopic rel bdD to a map h′ satisfying h′−1P =
h−1P = {x0, x1} and h′(ω[0, 1]) ⊂ U . Then we take a euclidean neighbour-
hood U0 of ω′ ⊂ P and we put U = U0×Rd, a neighbourhood of the zero sec-
tion of ξ restricted to U0 ⊂ P . Since h′(ω[0, 1]) ⊂ U , a euclidean neighbour-
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hood D0 of ω[0, 1] ⊂ D is also sent by h′ into U . We consider the composition

ĥ : D0
h′

→ U = U0 × Rd → Rd. The zeros of ĥ correspond to the elements
of h′−1P , hence ĥ−1(0) = {x0, x1} and ĥ is t-transverse to 0 ⊂ Rd. The
assumption x0Rx1 implies that the degrees of ĥ at x0 and x1 are opposite,
hence the induced homomorphism ĥ∗ : Hd(D0,bd D0) → Hd(Rd, Rd − 0) is
zero and by the Hopf lemma ĥ is homotopic rel bd D0 to a map into Rd−0.
The last gives a homotopy rel bdD0 from h′ to a map into W − P .

It remains to construct h′. Fix ball neighbourhoods Ki of xi ∈ intD so
small that h(Ki) ⊂ U and let x′

i = ω(ti) be the unique common point of
ω[0, 1] and bdKi (i = 0, 1).

The assumption that hω is homotopic to ω′ ⊂ P implies a homotopy
from hω|[t0,t1] rel {t0, t1} to a map into U (if only K0,K1 are small enough).
Let H : [t0, t1] × [0, 1] → W denote this homotopy. We may assume that
H((t0, t1)×(0, 1))∩P = ∅: we apply Lemma (1.1) to V = D = (t0, t1)×(0, 1),
C = ∅ and

ε(x, t) = dist((x, t),bd([t0, t1]× [0, 1])) .

We may, moreover, assume that H(t, 1) 6∈ P for any t ∈ [t0, t1] (consider H
restricted to [t0, t1]× [0, s0] for some s0 close enough to 1). Then we define
a homotopy

H ′ : D × 0 ∪ (K0 ∪ ω[t0, t1] ∪K1)× I → W

by

H ′(x, s) =
{

h(x) for x ∈ K0 ∪K1 or s = 0,
H(t, s) for x = ω(t), t ∈ [t0, t1].

Let % : D × I → D × 0 ∪ (K0 ∪ ω[t0, t1] ∪ K1) × I be a retraction
satisfying %−1(x, t) = (x, t) for x ∈ int(K0 ∪ K1). Then the composition
H ′′ = H ′% : D×I → W satisfies H ′′(x, 0) = h(x), H ′′−1P = {x0, x1}×[0, 1],
H ′′(ω[0, 1], 1) ⊂ U . If δ : D → [0, 1] is an Urysohn function satisfying
δ(ω[t0, t1]) = 1, δ(bdD) = 0 then H(x, t) = H ′′(x, δ(x)t) is moreover a
homotopy rel bdD. We put h′(x) = H(x, 1).

Now following the Creating and Cancelling Procedures from [Ji1] we
obtain

Theorem (3.2) (A Wecken type theorem). Under the assumptions (∗)
any Φ-compact map h : V → W is Φ-compactly homotopic to a map h′ so
that h′−1P contains exactly N(h) coincidence points.

We may assume that the homotopy from (3.2) has compact carrier, i.e.
is constant outside a compact set. To see this let ht be a homotopy from
(3.2) and let λ : V → [0, 1] be a function equal to 1 on the compact set
{x ∈ V : htx ∈ P for some t ∈ [0, 1]} and to zero outside a compact set. We
put h′

t = hλ(x)t(x).
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Corollary (3.3). Let f, g : M → N be a Φ-compact pair of maps
between n-manifolds, n ≥ 3. Then there is a homotopy {ft} starting from
f0 = f , constant outside a compact set and such that Φ(f1, g) contains
exactly N(f, g) elements.

P r o o f. We put in (3.2): V = M , W = N×N , h = (f, g), P = ∆N , ξ =
(N ×N 3 (x, y) → (x, x) ∈ ∆N). We get a homotopy (ft, gt) with compact
carrier from f, g to a pair with exactly N(f, g) coincidence points. Now
Theorem 1 of [B] yields a homotopy f ′

t such that f ′
1 = f1 and #Φ(f ′

0, g) =
N(f, g). It remains to show that the homotopy f ′

t has a compact carrier. But
we notice that if the carrier of the homotopy gt from the Lemma in Section 2
of [B] is compact then so is the carrier of the homotopy ht constructed
there.

Finally, let us notice that all the results of [Je1] and [Je2] remain valid
after replacing smooth manifolds by topological manifolds. In particular,
we obtain a theorem expressing the Nielsen number of a fibre map by the
Nielsen numbers of pairs between base spaces and fibres ([Je1], Thm. (4.3))
as well as a theorem expressing N(f, g) by N(f̃ , g̃) where f̃ , g̃ are lifts to
finite coverings ([Je2], Thm. (2.5)). These generalizations are evident, ex-
cept possibly for Section 3 of [Je1]; but in fact the main result of that
section (Thm. (3.13)) can be proved in a much simpler way in the TOP
category.
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