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Countably metacompact spaces
in the constructible universe

by

Paul J. S z ep t y ck i (Toronto, Ont.)

Abstract. We present a construction from ♦∗ of a first countable, regular, countably
metacompact space with a closed discrete subspace that is not a Gδ . In addition some
nonperfect spaces with σ-disjoint bases are constructed.

1. Introduction. There is what may be called a metatheorem in
the arena of covering and separation properties of topological spaces. A
collection of theorems holds under V = L iff their appropriate variants hold
under PMEA. W. G. Fleissner and P. Nyikos were the first to establish this
theme when in 1974 and 1980 they respectively proved:

[F] (V = L) ⇒ Normal spaces of character ≤ 2ℵ0 are collectionwise
Hausdorff (henceforth abbreviated cwH).

[N1] (PMEA)⇒ Normal spaces of character < 2ℵ0 are collectionwise nor-
mal.

Soon after, S. Watson and D. K. Burke extended the analogy to the class of
regular, countably paracompact spaces.

[W] (V = L) ⇒ Countably paracompact regular spaces of character
< 2ℵ0 are cwH.

[B] (PMEA) ⇒ Countably paracompact regular spaces of character
< 2ℵ0 are strongly cwH.

In the same paper Burke also proved the interesting result that under
PMEA, in countably metacompact T1 spaces of character < 2ℵ0 closed dis-
crete subspaces are Gδ’s. Burke raised the natural question whether the
large cardinal inherent in the PMEA assumption was necessary. Recently
Nyikos proved that under V = L Burke’s result holds in the class of lo-
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cally countable spaces and asked if the full result holds in L (see [N2]). We
answer Nyikos’s question in the negative by constructing a counterexample
from ♦∗.

F. D. Tall and Fleissner proved the Easton forcing analogues of the nor-
mal and countably paracompact results mentioned above (see [T1] and [T2])
and it is shown in [S] that Nyikos’s result on locally countable, countably
metacompact spaces similarly extends. However, Burke’s original question
remains unanswered, and in particular it is an interesting open problem
to establish whether the Easton models answer it. For example, we were
unable to answer

Question 1.1. In the model obtained by adding ω2 many Cohen sub-
sets of ω1 over a model of CH (or V = L) in first countable, countably
metacompact , regular (or even T1) spaces of size ω1, are closed discrete sets
Gδ’s?

Note that ♦∗ does not hold in this model (see [K], VII, exercise J5). The
role of the continuum in this problem is not well understood. For example
it is not known whether the existence of an example implies the existence of
one of size c. Burke’s PMEA proof may be interpreted, as in [DTW], as a
forcing and reflection proof. If you add Random or Cohen reals over a model
of CH there will be no counterexamples of size less than the continuum.
Adding supercompact many reals assures that there are no examples of size
greater than or equal to the continuum. The supercompact cardinal allows
one to prove that if there were one of size greater than or equal to c, then
there would also be an example of size less than c. However, there may be
a weaker ZFC reflection result which would, along with a positive answer to
1.1, answer Burke’s question.

Question 1.2. If there is a regular , countably metacompact space with
a closed discrete set which is not a Gδ, then is there also one of size c?

In Section 4 we present a related construction of some spaces with σ-
disjoint bases and closed discrete sets that are not Gδ’s. We would like
to thank Steve Watson for pointing out the method of splitting points to
construct these examples which inspired many simplifications and the final
form of the main example of Sections 2 and 3.

2. Preliminaries. Our notation and terminology are fairly standard.
We refer the reader to [K] for any unfamiliar notions.

Let {gα : α < ω1} be a ♦ sequence on ω1×ωω. That is, for every g :
ω1×ω → ω, {α : g�α×ω = gα} is stationary. In addition, let {Bα : α < ω1}
be a ♦∗ sequence in the following sense. For each α < ω1, Bα is a countable
collection from αω such that for every countable partition H : ω1 → ω of
ω1, {α : H�α ∈ Bα} contains a club.



Countably metacompact spaces 223

For a subset F ⊆ Fn(ω1, ω, ω1) we define a topology on XF = ω1 ∪ F .
Declare each point of F isolated and for each α ∈ ω1 define

Un(α) = {α} ∪ {f ∈ F : α ∈ dom(f), f(α) ≥ n} .
And for each α we let {Un(α) : n < ω} be a local neighborhood base at α.
We will choose F with some care to ensure that the resulting XF will be
zero-dimensional and countably metacompact and ω1 will not be a Gδ.

The following is a standard formulation of countable metacompactness.

Lemma. XF is countably metacompact if and only if for every partition
H : ω1 → ω of ω1, there is a point finite family {Wn : n < ω} of open sets
such that for each n < ω, Wn ⊇ H−1(n).

Notice that by definition XF is first countable and T1; moreover, F
consists of isolated points and ω1 is closed discrete.

To assure later that the space will be zero-dimensional we fix two func-
tions ∆, e : ω2

1 → ω. For each α, ∆ will tell us for β < α which neighborhood
of β is disjoint from U1(α) while e will tell us the same for those β > α.
This will be encapsulated in clauses (d) and (e) of Definition 3.1.

For each limit ordinal α < ω1, fix an increasing sequence {ξn : n < ω}
cofinal with α and for each β < α let

e(β, α) = n iff β ∈ [ξn, ξn+1) .

For each successor ordinal α and each β < α, let

e(β, α) = 0 .

For β ≥ α, e(β, α) is neither defined nor used.
For the definition of ∆ we need to fix an enumeration A = {aα : α < ω1}

of any uncountable subset of ωω and let

∆(β, α) = min{n < ω : aα(n) 6= aβ(n)} .

3. The construction

Definition 3.1. For each gα from the ♦ sequence and Bα from the ♦∗
sequence we say that f diagonalizes (gα,Bα) if

(a) dom(f) = {αn : n < ω} is an increasing sequence of limit ordinals
and sup{αn : n < ω} = α.

(b) For each n < ω, f(αn) = gα(αn, n).
(c) If H ∈ Bα then either H eventually dominates f , or is eventually

constant on the domain of f , i.e., either ∃N < ω such that ∀n > N, f(αn) <
H(αn), or ∃M < ω, dom(f) ⊆∗ H−1(M).

(d) ∀n < m, f(αn) < ∆(αn, αm).
(e) ∀n < m, f(αm) < e(αn, αm).
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Let G = {α : ∃f , f diagonalizes (gα,Bα)}. For each α ∈ G fix fα
witnessing it and let F = {fα : α ∈ G}.

First note that by construction every successor ordinal in ω1 is isolated
in XF . This follows from the fact that the domain of any diagonalizing
function consists entirely of limit ordinals.

Lemma 3.2. XF is zero-dimensional. Furthermore, it is pseudonormal ,
i.e., any two disjoint closed sets, one of which is countable, can be separated
by open sets.

P r o o f. To prove that XF is zero-dimensional, it suffices to show that
for any α < ω1 and i ≥ 1, Ui(α) is clopen.

C l a i m 1. For β < α and i ≥ 1, Ui(α) ∩ U∆(β,α)(β) = ∅.
Suppose not and fix γ ∈ G and suppose fγ ∈ Ui(α) ∩ U∆(β,α)(β). Let

{γm : m < ω} be the increasing enumeration of dom(fγ). There must be
integers n < m such that β = γn and α = γm. Since fγ is a diagonalizing
function, fγ(γn) < ∆(γn, γm) must hold by (d). But this implies that
fγ 6∈ U∆(β,α)(β). Contradiction.

C l a i m 2. For β > α and i ≥ 1, Ue(α,β)(β) ∩ Ui(α) = ∅.
As in Claim 1, suppose for some γ ∈ G, fγ ∈ Ue(α,β)(β) ∩ Ui(α). Fix

n < m such that γn = β and γm = η. Then by (e), we have fγ(γm) <
e(γn, γm) = e(α, β), which implies that fγ 6∈ Ue(α,β)(β). Contradiction.

Finally, to see that XF is pseudonormal, it suffices to show that for every
α < ω1, there is a clopen U such that U ∩ ω1 = α. Fix α < ω1 and let

U =
⋃
β<α

U∆(β,α)(β) .

Clearly, by Claim 1, U1(α) ∩ U = ∅. For each β < α and each η > α,

e(β, η) ≤ e(α, η) .

Therefore, along with Claim 2, this implies that for each η > α, U ∩
Ue(α,η)(η) = ∅. Therefore U is clopen and clearly U ∩ ω1 = α.

Lemma 3.3. XF is countably metacompact.

P r o o f. Fix H : ω1 → ω. It suffices to find open sets W (n) ⊇ H−1(n)
such that {W (n) : n < ω} is point finite.

Fix a club C such that ∀α ∈ C, H�α ∈ Bα. For each α ∈ C let α(+)
be the successor of α in C. For each α ∈ C, [α, α(+)) is a countable closed
discrete subset of XF , so we can separate it by open sets. Therefore fix
Fα : [α, α(+))→ ω such that both

(i) for each β 6= γ in [α, α(+)), UFα(β)(β) ∩ UFα(γ) = ∅, and
(ii) for each β ∈ [α, α(+)), Fα(β) > H(β).
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Let F =
⋃
α∈C Fα. Then F codes a neighborhood assignment by

W (n) =
⋃
{UF (β)(β) : H(β) = n} .

Clearly, for each n, W (n) ⊇ H−1(n) so it suffices to verify that {W (n) :
n < ω} is point finite. If not, there is a fγ ∈ F such that

B = {n < ω : fγ ∈W (n)}
is infinite. For each n ∈ B there is a γ(n) such that fγ ∈ UF (γ(n))(γ(n))
and H(γ(n)) = n. This implies that for no M < ω is it the case that
dom(fγ) ⊆∗ H−1(M), and

(iii) ∀n ∈ B, fγ(γ(n)) > F (γ(n)).

Furthermore, (i) implies that

(iv) ∀α ∈ C, |[α, α(+)) ∩ {γ(n) : n ∈ B}| ≤ 1.

Now, (iv) implies that sup{γ(n) : n ∈ B} ∈ C, hence that γ ∈ C. Therefore,
since fγ diagonalizes (gγ ,Bγ) and since H�γ ∈ Bγ , (c) implies that for all
but finitely many n∈B, fγ(γ(n))<H(γ(n)). This contradicts (ii) and (iii).

Lemma 3.4. ω1 is not a Gδ in XF .

P r o o f. If {W (n) : n < ω} is a sequence of open neighborhoods of ω1,
then for each α ∈ ω1 and n < ω, fix g(α, n) minimal so that Ug(α,n)(α) ⊆
W (n). This defines g : ω1 × ω → ω. Suppose we could find an α ∈ G
such that if {αn : n < ω} is the increasing enumeration of dom(fα) then
for each n < ω, fα(αn) = g(αn, n). This would imply that for each n < ω,
fα ∈ Ug(αn,n)(αn) and in particular fα ∈

⋂
n<ωW (n). Therefore it suffices

to prove

Lemma 3.5. There is an α ∈ G such that g�α× ω = gα.

Proof of 3.5. Let (∗)α be the following statement:

(∗)α There is an increasing sequence {βn : n < ω} of limit ordinals cofinal
in α such that

(i) ∀i ≤ n, gα(βn, i) = gα(βi, i).
(ii) ∀j ≤ i < n, gα(βj , j) < ∆(βi, βn).
(iii) ∀j ≤ n ∀i < n, gα(βj , j) < e(βi, βn).

The proof of 3.5 splits up into two steps.

Lemma 3.6. For any g : ω1 × ω → ω, {α : g�α = gα and (∗)α holds}
is stationary.

Lemma 3.7. If (∗)α holds then α ∈ G.

Proof of 3.6. We will construct sequences of

• stationary sets Y0 ⊇ Y1 ⊇ . . . ⊇ Yi ⊇ . . . ,
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• ordinals γ0 < γ1 < . . . < γi < . . . , and
• integers {ni : i < ω}

so that, letting Ni = max{nj : j ≤ i}:
(1) ∀i ∀α ∈ Yi, g(α, i) = ni.
(2) ∀i, there is an s ∈ Niω such that for all α ∈ Yi, s ⊆ aα.
(3) ∀i, for every limit ordinal α ∈ Yi, e−1

α ({0, . . . , ni}) ⊆ γi.
Note that clause (2) says that ∆(α, β) > Ni for every α, β ∈ Yi.

Pick n0 so that g−1(n0)∩ω1×{0} = X0×{0} is stationary. Fix γ0 by the
pressing down lemma so that Z0 = {α ∈ X0 : α is a limit and e−1

α ({0, . . .
. . . , n0}) ⊆ γ0} is stationary. Pick an s ∈ n0+1ω so that Y0 = {α ∈ Z0 : s ⊆
aα} is stationary. Having defined Yk−1, nk−1, and γk−1, define Yk similarly.
Pick nk so that g−1(nk)∩Yk−1×{k} = Xk×{k} is stationary. Fix γk > γk−1

by the pressing down lemma so that Zk = {α ∈ Xk : e−1
α ({0, . . . , nk}) ⊆ γk}

is stationary. Pick an s ∈ Nkω so that Yk = {α ∈ Zk : s ⊆ aα} is stationary.
Clearly by the construction, (1)–(3) are satisfied.

If γ = sup{γn : n < ω} and β0 < β1 < . . . is any sequence of limit
ordinals such that β0 > γ and for each i, βi ∈ Yi, then by (1) we have

∀i < k < ω, g(βk, i) = g(βi, i) = ni .

By (3) and the fact that for each j < k, e−1
βk

({0, . . . , nj}) ⊆ γj < βi, we
have

∀j < k ∀i < k, e(βi, βk) > Nk > g(βj , j) ,
and finally by (2), since for i < k both βi and βk are in Yi,

∀j ≤ i < k, ∆(βi, βk) > Ni ≥ g(βj , j) .

Now if we let Ci = {α : the limit ordinals in Yi are unbounded in α} and
let C =

⋂
i<ω Ci, then C is a club and for any α ∈ C we may find a sequence

of limit ordinals βi ∈ Yi cofinal in α. Therefore since {gα : α < ω1} is a ♦
sequence, the set of α from C such that f�α = gα is stationary.

Proof of 3.7. Assume that α < ω1 is such that (∗)α holds and fix {βm :
m < ω} witnessing it. Enumerate Bα as {Hn : n < ω}. Now we will choose
a subsequence {αm : m < ω} of {βm : m < ω} so that if f is defined by

f(αm) = gα(αm,m)

then f diagonalizes (gα,Bα). To do this it suffices to find a subsequence
{αm : m < ω} ⊆ {βm : m < ω} such that ∀n < ω either

(iv) ∃M, {αm : m < ω} ⊆∗ H−1
n (M), or

(v) ∃Nn ∀m > Nn, Hn(αm) > g(αm,m).

Note that (iv) and (v) imply clause (c) of the definition of a diagonalizing
function; (ii) and (iii) of (∗)α imply that any subsequence of {βm : m < ω}
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will satisfy clauses (d) and (e) respectively. The rest of the proof is devoted
to the construction of the subsequence.

Notice that if {ηm : m < ω} is any subsequence of {βm : m < ω}
listed in increasing order then, by assumption on {βm : m < ω}, we have
g(βm,m) = g(ηm,m).

First, by induction on n, define a sequence of infinite subsets of {βm :
m < ω}:

X0 ⊇ X1 ⊇ . . . ⊇ Xn

so that for each n either
∃i, Xn ⊆ H−1

n (i), or ∀i, Xn ∩H−1
n (i) is finite .

Choose X so that ∀n, X ⊆∗ Xn, and let Z = {kj : j < ω} = {n :
∀i, X ∩ H−1

n (i) is finite}. Then for each n 6∈ Z there is an i such that
X ⊆∗ H−1

n (i). By induction choose αn ∈ X so that α0 < . . . < αn < . . . as
follows. Choose α0 ∈ X so that Hk0(α0) > g(β0, 0). Having αn−1 choose
αn ∈ X above αn−1 so that ∀j ≤ n, Hkj (αn) > g(βn, n): as X ∩H−1

kj
(i) is

finite for each i, this is easily done. It is easy for the reader to check that (v)
holds for those n ∈ Z and (iv) holds otherwise. This completes the proof.

4. First countable spaces with σ-disjoint bases. In [D] Peter
Davies constructed two first countable nonperfect spaces settling a question
of Fleissner and Reed. One, constructed in ZFC, had a point countable base
and a closed discrete set which witnessed that the space was nonperfect,
while the other, constructed under 2ℵ0 < 2ℵ1 , had a σ-disjoint base but no
uncountable closed discrete subsets. Fleissner and Reed [FR] proved that
under MA every first countable space of cardinality less than the continuum
possessing a σ-point finite base is perfect. These results leave open the
status of closed discrete sets in spaces with σ-disjoint bases.

In this section we construct in ZFC a regular first countable space of
cardinality c with a σ-disjoint base containing a closed discrete set that is
not a Gδ. Furthermore, we prove it consistent that there is such an example
of cardinality less than c (1).

Let X = D ∪ I be a first countable regular space of scattered height 2,
where I is the set of isolated points, and D is closed discrete; for example,
Ψ(A) where A is a maximal almost disjoint family of countable subsets of ω1

(see [vD]). For another example see [D]. For each d ∈ D let {Un(d) : n < ω}
be a neighborhood base at d. We let F ⊆ ωD and “split” the points of X
to define a topology on XF = (D × ω) ∪ (I ×F) as follows.

(1) J. Chaber has informed us that the ZFC example is very similar to Example 2.4
in [C]; however, the example of size less than c is new.
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Declare the points of I × F isolated and for each (d, n) ∈ D × ω and
m < ω let

Um(d, n) = {(d, n)} ∪ {(i, f) : i ∈ Um(d), f ∈ F , f(n) = d} .
C l a i m. For any X and F as above, XF is first countable, zero-dimen-

sional and has a σ-disjoint base. Furthermore, if D is not a Gδ in X then
D × ω is not a Gδ in XF .

P r o o f. That XF is zero-dimensional follows easily from the assumption
that X is, and XF is first countable by definition. Notice that for each
n < ω and each e 6= d from D, U1(d, n) ∩ U1(e, n) = ∅. So, letting Bn,m =
{Um(d,m) : d ∈ D},

B =
⋃

n,m<ω

Bn,m ∪ (I ×F)

is clearly a σ-disjoint base for XF .
Suppose that D × ω is a Gδ and fix open sets Wn ⊇ D × ω such that⋂

n<ωWn = D × ω. Then we may define sets Vn ⊇ D open in X by

Vn =
⋃
{Umd(d) : md is the minimal integer k satisfying Uk(d, n) ⊆Wn} .

Assuming D is not a Gδ we may find an i ∈ I ∩
⋂
n<ω Vn. Therefore there

is a sequence {dn : n < ω} from D such that for each n < ω, i ∈ Umdn (dn).
Let f ∈ ωD be the function defined by f(n) = dn. Then (i, f) ∈

⋂
n<ωWn.

Contradiction.

To find an example of size less than the continuum we just take our
example and add more than c many Cohen or random reals. That our space
in the extension has all the requisite properties follows from the next lemma.
In the following, we say a topological property Φ is preserved by a notion
of forcing P if for every topological space X, if Φ(X) then 
P Φ(X).

Lemma 4.1. The following topological properties are preserved by Ran-
dom and Cohen forcing :

(1) X is first countable.
(2) X is zero-dimensional.
(3) X has a σ-disjoint base.
(4) X is not perfect.

P r o o f. The proofs of (1)–(3) are trivial. For (4) we need to use the
notion of endowments. For sake of brevity we present the Cohen real proof
leaving the proof for Random reals to the interested reader. The next lemma,
not stated in full generality, is due to Alan Dow. For a proof of it see [DTW].

Lemma 4.2. Let S be a set and n be a positive integer. For each p ∈
Fn(S, 2), there exists a family Ln of finite subsets of Fn(S, 2) such that :
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(i) for each maximal antichain A ⊆ Fn(S, 2) below p there is L ∈ Ln
such that L ⊆ A,

(ii) for any element f ∈ Fn(S, 2) below p with domain of size n and any
element L ∈ Ln there exists g ∈ L such that f and g are compatible.

We call the family Ln an n-dowment below p.

To apply 4.2 to a proof of (4), suppose that X is some topological space
and that for some set S and p ∈ Fn(S, 2),

p 
 X is perfect .

Fix H ⊆ X a closed set. For each x ∈ X let Vx be a neighborhood base at
x. Since it is forced by p that H is a Gδ, we may fix names {τn : n < ω}
such that

(i) for each n < ω, p 
 τn ⊇ H is open,
(ii) p 


⋂
n<ω τn = H.

For each n < ω fix an n-dowment Ln below p. For each x ∈ H and n < ω
we can find a maximal antichain Anx below p such that for each g ∈ Anx there
is a V (g, x) ∈ Vg such that g 
 V (g, x) ∈ τn. For each x ∈ H and n < ω
fix Ln(x) ∈ Ln such that Ln(x) ⊆ Anx and let Vn(x) =

⋂
g∈Ln(x) V (g, x).

Finally, we let Vn =
⋃
x∈H Vn(x) and claim that

⋂
n<ω Vn = H. Clearly this

will finish the proof.
So suppose not and fix y ∈ X \ H such that y ∈

⋂
n<ω Vn. For each

n < ω, pick xn ∈ H such that

(iii) y ∈ Vn(xn).

Since p 
 y 6∈
⋂
n<ω τn there is an f < p and an N < ω such that

(iv) f 
 for each i ≥ N, y 6∈ τi.
By extending f if necessary we may assume that if n = |dom(f)| then
n > N . Now pick g ∈ Ln(xn) such that g is compatible with f . Then since
g ∈ Anxn , g ∪ f 
 Vn(xn) ⊆ τn, which contradicts (iii) and (iv).
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