Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations

$\mathbf{b}\mathbf{y}$

Stanisław Kasjan (Toruń)

Abstract. A class of stratified posets I_{ϱ}^* is investigated and their incidence algebras KI_{ϱ}^* are studied in connection with a class of non-shurian vector space categories. Under some assumptions on I_{ϱ}^* we associate with I_{ϱ}^* a bound quiver (Q, Ω) in such a way that $KI_{\varrho}^* \simeq K(Q, \Omega)$. We show that the fundamental group of (Q, Ω) is the free group with two free generators if I_{ϱ}^* is rib-convex. In this case the universal Galois covering of (Q, Ω) is described. If in addition I_{ϱ} is three-partite a fundamental domain $I^{*+\times}$ of this covering is constructed and a functorial connection between $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times})$ and $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^*)$ is given.

1. Introduction. Socle projective representations of stratified posets introduced in [S1, S2] (see Definition 2.1 below) appear in a natural way in the study of vector space categories (see [S2], [S5, Chap. 17]) and lattices over orders (see [S5, Ch. 13], [S4]). The aim of this paper is to give some tools for studying these representations for a certain class of stratified posets.

Our main points of interest are the incidence algebra KI_{ϱ}^{*} over a field K of a three-separate stratified poset I_{ϱ}^{*} with a unique maximal element * (see Definition 3.1) and the representation type of the category $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*})$ of socle projective right KI_{ϱ}^{*} -modules. Following [S1, S2, S4] we associate with any such poset I_{ϱ}^{*} a bound quiver

$(Q(I_{\rho}^*), \Omega(I_{\rho}^*))$

in such a way that KI_{ϱ}^* is isomorphic to the bound quiver algebra $KQ(I_{\varrho}^*)/\Omega(I_{\varrho}^*)$. Under the assumption that I_{ϱ}^* is rib-convex (see Section 4) we show that the fundamental group $\Pi_1(Q(I_{\varrho}^*), \Omega(I_{\varrho}^*))$ is a free noncommutative group with two free generators and we give an explicit description of the universal covering $(\widetilde{Q}, \widetilde{\Omega})$ of $(Q(I_{\varrho}^*), \Omega(I_{\varrho}^*))$. If in addition I_{ϱ}^* is three-partite we define, by means of $(\widetilde{Q}, \widetilde{\Omega})$, a simply connected [AS]

¹⁹⁹¹ Mathematics Subject Classification: Primary 16A64.

Supported by Polish Scientific Grant KBN 1221/2/91.

finite-dimensional three-peak algebra $KI_{\rho}^{*+\times}$ and a functor

$$f_{+\times} : \operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times}) \to \operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*})$$

preserving the representation type. In the case when the Auslander–Reiten quiver $\Gamma_{\rm sp}(KI_{\varrho}^{*+\times})$ of $\operatorname{mod}_{\rm sp}(KI_{\varrho}^{*+\times})$ has a preprojective component we get a simple criterion for the finite representation type of $\operatorname{mod}_{\rm sp}(KI_{\varrho}^{*+\times})$ (see Theorems 5.5, 5.6). In particular, we solve a problem stated in [S4, Remark 4.33].

I would like to thank Professor Daniel Simson for calling my interest to this subject and useful remarks concerning the paper.

2. Preliminaries and notation. We consider a poset I with partial order \preccurlyeq . We suppose that $I = \{1, \ldots, n\}$ and if $i \preccurlyeq j$ then $i \leq_{\mathbb{N}} j$ for $i, j \in I$. Define

$$\begin{split} & \blacktriangle I := \left\{ (i,j) : i,j \in I \text{ and } i \preccurlyeq j \right\}, \\ & \bigtriangleup I := \left\{ (i,j) : i,j \in I \text{ and } i \prec j \right\}. \end{split}$$

Given $(i, j) \in \blacktriangle I$ we put $[i, j] := \{s \in I : i \preccurlyeq s \preccurlyeq j\}$ and $\langle i, j \rangle := \{s \in I : i \preccurlyeq s \preccurlyeq j\}$. Throughout we identify (i, i) with i.

DEFINITION 2.1 [S2, S4]. A stratification of I is an equivalence relation ϱ on $\blacktriangle I$ such that if $(i, j)\varrho(p, q)$ then there exists a poset isomorphism $\sigma : [i, j] \to [p, q]$ such that $(i, t)\varrho(p, \sigma(t))$ and $(t, j)\varrho(\sigma(t), q)$ for any $t \in [i, j]$. A stratified poset is a pair

$$I_{\varrho} = (I, \varrho)$$

where I is a poset and ρ is a stratification of I.

We denote by $r_{\varrho}(i, j)$ the cardinality of the ρ -coset of (i, j), and call (i, j)a *rib* if $r_{\varrho}(i, j) > 1$ and $i \neq j$. The number $r_{\varrho}(i, j)$ is then the *rib* rank of the rib (i, j).

The full stratified subposet $rsk(I_{\varrho})$ of I_{ϱ} consisting of all beginnings and ends of ribs in I_{ϱ} is called the *rib skeleton* of I_{ϱ} . We fix a decomposition

$$\operatorname{rsk}(I_{\rho}) = \Re_1 + \ldots + \Re_h$$

into rib-connected components with respect to the rib-equivalence relation generated by the following relation:

$$i - j \Leftrightarrow \text{either } (i, j) \text{ or } (j, i) \text{ is a rib.}$$

Fix a field K and a stratified poset $I_{\varrho}.$ We recall from [S4] that the K-algebra

(2.2)
$$KI_{\varrho} = \{b = (b_{pq}) \in \mathbb{M}_{n \times n}(K) : b_{pq} = 0 \text{ if } p \not\preccurlyeq q$$

and $b_{ij} = b_{pq} \text{ if } (i, j)\varrho(p, q)\}$

is called the *incidence algebra* of I_{ϱ} .

We denote by $I^* = I \cup \{*\}$ the enlargement of I by adjoining a unique maximal element * (called the *peak*) and we extend trivially the relation ρ from $\blacktriangle I$ to $\bigstar I^*$.

Thus we get a right peak algebra (see [S4]) of the form

(2.3)
$$KI_{\varrho}^{*} = \begin{pmatrix} KI_{\varrho} & M\\ 0 & K \end{pmatrix}$$

where

$$M = \binom{K}{\vdots}_{K} n$$

is a left KI_{ρ} -module with respect to the usual matrix multiplication.

For a more detailed discussion of stratified posets, examples and applications the reader is referred to [S2] and [S5, Section 17.16].

In Section 3 below we will use the notion of the fundamental group of a quiver Q with a set of relations Ω ([Gr, MP]). For the convenience of the reader we briefly recall this concept. We follow [S4].

With a connected quiver Q we associate its fundamental group $\Pi_1(Q,q)$ computed as the group of homotopy classes $[\omega]$ of walks ω in Q starting and ending at the fixed point q. By a *walk* we mean a formal composition $\alpha_1 \dots \alpha_r$ where α_p is an arrow of Q or its formal inverse and the sink of α_p is the source of α_{p+1} . Homotopy is the smallest equivalence relation \approx (on the set of walks) such that:

(1) $1_x \approx 1_x^{-1}$ for each vertex x of Q,

(2) $\alpha \alpha^{-1} \approx 1_x$ and $\alpha^{-1} \alpha \approx 1_y$ for each arrow $\alpha : x \to y$,

(3) if $w \approx v$ then $uw \approx uv$ and $wu' \approx vu'$ whenever the walks involved are composable.

By the fundamental group of a bound quiver (Q, Ω) we mean the group

(2.4)
$$\Pi_1(Q,\Omega) = \Pi_1(Q,q)/N_\Omega,$$

where N_{Ω} is the normal subgroup generated by the conjugacy classes C(u, v)of homotopy classes $[w^{-1}u^{-1}vw]$ in $\Pi_1(Q, q)$ where u, v are directed paths with a common sink and a common source, and there is a minimal relation

$$\omega = \lambda_1 \omega_1 + \ldots + \lambda_t \omega_t \in (\Omega), \quad \lambda_i \in K^*,$$

with $t \ge 2$ and $u = \omega_1$, $v = \omega_2$. Let us recall from [MP] that a relation ω of the above form is a *minimal relation* if for every nonempty proper subset $J \subset \{1, \ldots, t\}$ we have

$$\sum_{j\in J}\lambda_j\omega_j\notin(\Omega)$$

The following maximal tree lemma is a very useful method of computing the fundamental group. Before we formulate it we recall from [S4] that by an Ω -contour we mean a pair (u, v) of oriented paths with a common sink and a common source such that there is a minimal relation ω of the above form with $hug = \omega_1$ and $hvg = \omega_2$ for some oriented paths h, g such that the sink of h is the source of u and the source of g is the sink of u. We say that (u, v) is defined with respect to the set $\Omega' \subseteq (\Omega)$ if $\omega \in \Omega'$.

LEMMA 2.5 [S4, Remark 3.6, Lemma 3.7]. Suppose that (Q, Ω) is a bound quiver, let T be a maximal tree in Q and $q \in Q$.

(a) N_{Ω} is generated by the elements C(u, v), where (u, v) runs through all the Ω -contours defined with respect to a fixed set of generators of the ideal (Ω) .

(b) $\Pi_1(Q,q)$ is a free group generated by the elements $\widehat{\beta} = [a\beta b]$ where $\beta \in Q_1 \setminus T_1$ and a, b are walks in T connecting q with the sink and the source of β , respectively.

(c) If (u, v) is an Ω -contour and

$$u = u_0 \beta_1 u_1 \beta_2 \dots u_{s-1} \beta_s u_s, \quad v = v_0 \gamma_1 v_1 \gamma_2 \dots v_{r-1} \gamma_r v_r,$$

where $\beta_i, \gamma_j \in Q_1 \setminus T_1$ and u_i and v_j are oriented paths in T then

$$\widehat{\beta}_1 \widehat{\beta}_2 \dots \widehat{\beta}_s \equiv \widehat{\gamma}_1 \widehat{\gamma}_2 \dots \widehat{\gamma}_r \ (modulo \ N_\Omega) . \blacksquare$$

If the fundamental group of (Q, Ω) is nontrivial we construct the *universal Galois covering*

(2.6) $f: (\widetilde{Q}, \widetilde{\Omega}) \to (Q, \Omega)$

of (Q, Ω) in the following way (see [MP, Corollary 1.5], [Gr]).

Fix $q \in Q$. Let W be the topological universal cover of Q, i.e. a quiver W whose vertices are the homotopy classes $[\omega]$ of walks ω in Q starting at a fixed point p ([Sp]). There is an arrow $(\alpha, [\omega])$ from $[\omega]$ to $[\nu]$ in W if $[\nu] = [\omega\alpha]$ for an arrow α in Q. N_{Ω} acts on W in an obvious way. We take for \tilde{Q} the orbit quiver W/N_{Ω} and for $\tilde{\Omega}$ the set of liftings of relations in Ω from KQ to $K\tilde{Q}$. The bound quiver map f is defined by

$$f(N_{\Omega}(\alpha, [\omega])) = \alpha, \quad f(N_{\Omega}[\omega]) = \text{the sink of } \omega,$$

where $N_{\Omega}[\omega]$ (resp. $N_{\Omega}(\alpha, [\omega])$) denotes the orbit of $[\omega]$ (resp. $(\alpha, [\omega])$).

The group $\Pi_1(Q, \Omega)$ acts naturally on (Q, Ω) as a group of automorphisms. One can check that f is the universal Galois covering with group $\Pi_1(Q, \Omega)$ (see [Gr, MP]).

3. Three-separate stratified posets and the associated bound quivers. Let us start with our main definition which extends that given in [S1, S4].

DEFINITION 3.1. A three-separate stratified poset is a stratified poset I_{ϱ} such that I is the disjoint union of subsets $I^{(1)}, I^{(2)}, I^{(3)}$ and the following conditions hold:

(a) There is no relation $i \prec j$, where $i \in I^{(k)}$, $j \in I^{(l)}$ and k > l.

(b) $r_{\varrho}(i,j) \leq 3$ for all $(i,j) \in \blacktriangle I$.

(c) If $(i, j)\varrho(s, t)$ and $(i, j) \neq (s, t)$ then there exist $k, l \leq 3$ such that $k \neq l, i, j \in I^{(k)}$ and $s, t \in I^{(l)}$.

(d) If $r_{\rho}(i,j) = 2$ then $i,j \notin I^{(1)}$.

We say that the decomposition $I = I^{(1)} + I^{(2)} + I^{(3)}$ is a three-separation of I_{ϱ} .

We call a rib of rank 3 a 3-*rib* and a rib of rank 2 a 2-*rib*. A pair $(i,j) \in \Delta I$ is called *short* if $\{i,j\} = [i,j]$. In this case we write β_{ij} instead of (i,j). A pair (i,j) is called 3- ρ -extremal if it is not short, $r_{\rho}(i,j) \leq 2$ and (i,s), (s,j) are 3-ribs for all s such that $i \prec s \prec j$. A pair (i,j) is called 2- ρ -extremal if it is neither short nor 3- ρ -extremal, $r_{\rho}(i,j) = 1$ and (i,s), (s,j) are ribs for all s such that $i \prec s \prec j$. We say that (i,j) is ρ -extremal if it is either 2- ρ -extremal or 3- ρ -extremal.

EXAMPLE 3.2. Let I^* be the following poset:

and ρ be the relation given by

$$\begin{array}{l} 1\varrho 2 \,, \\ (3,6)\varrho(4,7)\varrho(5,8) \,, \\ (6,9)\varrho(7,10)\varrho(8,11) \,, \\ (4,10)\varrho(5,11) \,. \end{array}$$

Then I_{ϱ}^{*} is a three-separate poset with three-separation $I=I^{(1)}+I^{(2)}+I^{(3)},$ where

 $I^{(1)} = \{3, 6, 9\}, \quad I^{(2)} = \{1, 4, 7, 10\}, \quad I^{(3)} = \{2, 5, 8, 11, *\}.$

The pairs (3, 9), (4, 10) and (5, 11) are 3- ρ -extremal.

We associate with I_{ϱ} the bound quiver

 $(3.3) \qquad \qquad (Q(I_{\varrho}), \Omega(I_{\varrho}))$

as follows. The set $(Q(I_{\rho}))_0$ of vertices of $Q(I_{\rho})$ is the set

$$I/\varrho = \{\overline{1}, \overline{2}, \dots, \overline{n}\}$$

of the ρ -cosets \overline{q} of elements $q \in I$. We have the following arrows in $Q(I_{\rho})$.

(i) If (i, j) is short then the ρ -coset $\overline{\beta}_{ij}$ of β_{ij} is a unique arrow from \overline{i} to \overline{j} .

(ii) If $(i_k, j_k) \in \Delta I^{(k)}$ are 3- ϱ -extremal for $k = 1, 2, 3, i_1 \varrho i_2 \varrho i_3, j_1 \varrho j_2 \varrho j_3$ and $r_{\varrho}(i_k, j_k) = 1$ for k = 1, 2, 3 then we have exactly two arrows $\beta_{i_1 j_1}^*, \beta_{i_2 j_2}^* : \overline{i_1} \to \overline{j_1}$.

If $(i_k, j_k) \in \Delta I^{(k)}$ and $(i_l, j_l) \in \Delta I^{(l)}$ are 3- ϱ -extremal, $i_k \varrho i_l \varrho i_m$, $j_k \varrho j_l \varrho j_m$, $(i_m, j_m) \in \Delta I^{(m)}$ is not 3- ϱ -extremal and (i_k, j_k) and (i_l, j_l) are unrelated then we have a unique arrow $\beta^*_{i_x j_x} : \overline{i_1} \to \overline{j_1}$, where $x = \min(k, l)$.

If $(i_k, j_k) \in \Delta I^{(k)}$ are 3- ϱ -extremal for $k = 1, 2, 3, i_1 \varrho i_2 \varrho i_3, j_1 \varrho j_2 \varrho j_3$ and $(i_2, j_2) \varrho (i_3, j_3)$ then we have a unique arrow $\beta_{i_1 j_1}^* : \overline{i_1} \to \overline{j_1}$.

If $(i_2, j_2) \in \Delta I^{(2)}$ and $(i_3, j_3) \in \Delta I^{(3)}$ are 2- ϱ -extremal, $i_2 \varrho i_3$ and $j_2 \varrho j_3$ then we have a unique arrow $\beta_{i_2 j_2}^* : \overline{i_2} \to \overline{j_2}$.

A directed path ω in $Q(I_{\varrho})$ is called a *rib path* if ω is a composition of arrows which are the ϱ -cosets of ribs in I_{ϱ} . It is called a 3-*rib path* if it is a composition of the ϱ -cosets of 3-ribs in I_{ϱ} . A path ω is called a 2-*rib path* if it is not a 3-rib path and it is a composition of ϱ -cosets of 3-ribs and 2-ribs in I_{ϱ} . A path ω is called a *nonrib path* if it is not a rib path. A nonrib path is called an $I^{(k)}$ -*path* if it is a composition of arrows $\tilde{\beta}_{ij}$ with $i, j \in I^{(k)}$, where $\tilde{\beta}_{ij}$ denotes either $\bar{\beta}_{ij}$ or β^*_{ij} . An arrow $\bar{\beta}_{ij}$ is called 1-2-*skew* (resp. 2-3-*skew*, 1-3-*skew*) if $i \in I^{(1)}$ and $j \in I^{(2)}$ (resp. $i \in I^{(2)}$ and $j \in I^{(3)}$; $i \in I^{(1)}$ and $j \in I^{(3)}$). A directed path ω in Q is called 1-2-*skew* (resp. 2-3-*skew*; 1-3-*skew*) if ω contains a 1-2-skew arrow (resp. contains a 2-3-skew arrow; either contains a 1-3-skew arrow, or contains a 1-2-skew arrow and a 2-3-skew arrow).

We define the set of relations $\Omega = \Omega(I_{\varrho})$ to consist of the following elements of the path algebra $KQ(I_{\varrho})$:

(a) $\widetilde{\beta}_{i_1 j_1} \widetilde{\beta}_{i_2 j_2} \dots \widetilde{\beta}_{i_r j_r}$ if there is no sequence $\beta_{t_0 t_1}, \beta_{t_1 t_2}, \dots, \beta_{t_{r-1} t_r}$ such that $(i_k, j_k) \varrho(t_{k-1}, t_k)$ for $k = 1, \dots, r$. (Recall that $\widetilde{\beta}_{ij}$ is either $\overline{\beta}_{ij}$ or β_{ij}^* .) (b) $\widetilde{\beta}_{i_0 i_1} \widetilde{\beta}_{i_1 i_2} \dots \widetilde{\beta}_{i_r i_{r+1}} - \widetilde{\beta}_{j_0 j_1} \widetilde{\beta}_{j_1 j_2} \dots \widetilde{\beta}_{j_s j_{s+1}}$, where $i_0 = j_0, i_{r+1} = j_{s+1}$,

 $p_{i_0i_1}p_{i_1i_2}\dots p_{i_ri_{r+1}} - p_{j_0j_1}p_{j_1j_2}\dots p_{j_sj_{s+1}}, \text{ where } i_0 - j_0, i_{r+1} - j_{s+1}$

 $i_0 \prec i_1 \prec \ldots \prec i_r \prec i_{r+1}, \quad j_0 \prec j_1 \prec \ldots \prec j_s \prec j_{s+1}$

and there exist p, q such that (i_p, i_{p+1}) and (j_q, j_{q+1}) are not ribs.

(c) w - u for all 3-rib paths (resp. 2-rib paths) w and u with a common sink and a common source.

(d) $w - w_1 - w_2 - w_3$, where w is a 3-rib path, w_k is an $I^{(k)}$ -path for k = 1, 2, 3 and w, w_1, w_2, w_3 have a common sink and a common source.

(e) w - u for all $I^{(k)}$ -paths w, u with a common sink and a common source for k = 1, 2, 3.

(f) $w - u_2 - u_3$, where w is a 2-rib path, u_k is an $I^{(k)}$ -path for k = 2, 3 and w, u_2, u_3 have a common sink and a common source.

(g) w - w' - u where w is a 3-rib path, w' is a 2-rib path, u is an $I^{(1)}$ -path and w, w', u have a common sink and a common source.

In our example we have:

$$\begin{split} \Omega(I_{\varrho}^{*}) &= \{ \bar{\beta}_{42} \bar{\beta}_{14}, \bar{\beta}_{25} \bar{\beta}_{42}, \bar{\beta}_{14} \beta_{39}^{*}, \bar{\beta}_{25} \beta_{39}^{*}, \bar{\beta}_{10,5} \bar{\beta}_{42}, \beta_{39}^{*} \bar{\beta}_{11*}, \\ &\beta_{39}^{*} \bar{\beta}_{10,5}, \bar{\beta}_{94} \beta_{39}^{*}, \bar{\beta}_{10,5} \beta_{39}^{*}, \bar{\beta}_{36} \bar{\beta}_{69} \bar{\beta}_{10,5} - \bar{\beta}_{42} \bar{\beta}_{25}, \\ &\beta_{39}^{*} \bar{\beta}_{94} - \bar{\beta}_{36} \bar{\beta}_{69} \bar{\beta}_{94} \} \,. \end{split}$$

Consider the K-algebra homomorphism

$$(3.4) g: KQ(I_{\varrho}) \to KI_{\varrho}$$

defined by the formulas (compare with [S4]):

$$g(\overline{i}) = \begin{cases} e_{ii} & \text{if } r_{\varrho}(i) = 1, \\ e_{ii} + e_{i'i'} & \text{if } r_{\varrho}(i) = 2, \ i\varrho i', \ i \neq i', \\ e_{ii} + e_{i'i'} + e_{i''i''} & \text{if } i\varrho i'\varrho i'', \ i \neq i' \neq i'' \neq i, \end{cases}$$

$$g(\overline{\beta}_{ij}) = \begin{cases} e_{ij} & \text{if } r_{\varrho}(i,j) = 1, \\ e_{ij} + e_{i'j'} & \text{if } r_{\varrho}(i,j) = 2, (i,j)\varrho(i',j') \\ & \text{and } (i,j) \neq (i',j'), \end{cases}$$

$$e_{ij} + e_{i'j'} + e_{i''j''} & \text{if } (i,j)\varrho(i',j')\varrho(i'',j'') \text{ and } \\ & (i,j) \neq (i',j') \neq (i'',j'') \neq (i,j), \end{cases}$$

and

$$g(\beta_{ij}^*) = e_{ij}$$

where e_{ij} denotes the matrix with 1 in the (i, j)-entry and zeros elsewhere.

A connection between $(Q(I_{\varrho}), \Omega(I_{\varrho}))$ and I_{ϱ} is given by the following proposition (compare with [S4, Proposition 2.8]).

PROPOSITION 3.5. Let I_{ϱ} be a three-separate stratified poset with a threeseparation $I^{(1)} + I^{(2)} + I^{(3)}$. If $(Q(I_{\varrho}), \Omega(I_{\varrho}))$ is the bound quiver of I_{ϱ} (see (3.3)) then the homomorphism g of (3.4) induces a K-algebra isomorphism

$$\overline{g}: K(Q(I_{\varrho}), \Omega(I_{\varrho})) \to KI_{\varrho}$$

where $K(Q(I_{\varrho}), \Omega(I_{\varrho})) = KQ(I_{\varrho})/(\Omega(I_{\varrho})).$

For the proof we will need the following technical lemma.

LEMMA 3.6. Suppose $(s,t) \in \Delta I^{(k)}, (s',t') \in \Delta I^{(l)}, k \neq l, s\varrho s' and t\varrho t'$.

(a) If (s',t') is not 3- ϱ -extremal and (s,t) is 3- ϱ -extremal then there exists a sequence $s_0 \prec s_1 \prec \ldots \prec s_r$, where $s_0 = s'$, $s_r = t'$, the pair (s_i, s_{i+1}) is short for any $i = 0, \ldots, r-1$, and there exists $i = 0, \ldots, r-1$ such that there is no relation $(s_i, s_{i+1})\varrho(u, v)$ with $(u, v) \in \Delta I^{(k)}$.

(b) If $k, l \neq 1$, (s', t') is not 2- ϱ -extremal and (s, t) is 2- ϱ -extremal then there exists a sequence $s_0 \prec s_1 \prec \ldots \prec s_r$, where $s_0 = s'$, $s_r = t'$, the pair (s_i, s_{i+1}) is short for any $i = 0, \ldots, r-1$, and there exists $i = 0, \ldots, r-1$ such that $r_{\varrho}(s_i, s_{i+1}) = 1$.

Proof. We will prove (a); the proof of (b) is similar. Let

$$s_0 \prec s_1 \prec \ldots \prec s_s$$

be a sequence such that $s_0 = s'$, $s_r = t'$, the pair (s_i, s_{i+1}) is short for any $i = 0, \ldots, r-1$, and for some $i = 1, \ldots, r-1$ we have $r_{\varrho}(s', s_i) < 3$ or $r_{\varrho}(s_i, t') < 3$. The existence of such a sequence is obvious. Assume that for any $i = 0, \ldots, r-1$ there exist $(u, v) \in \Delta I^{(k)}$ such that $(s_i, s_{i+1})\varrho(u, v)$. Then it is easy to construct a sequence

$$s'_0 \prec s'_1 \prec \ldots \prec s'_r$$

such that $s'_0 = s$, $s'_r = t$ and for any $i = 0, \ldots, r$ we have $s'_i \rho s_i$. But it follows from 3- ρ -extremality of (s,t) that for any $i = 1, \ldots, r-1$ we have $r_{\rho}(s,s'_i) = 3$ and $r_{\rho}(s'_i,t) = 3$. This implies that for any $i = 1, \ldots, r-1$ we have $r_{\rho}(s',s_i) = 3$ and $r_{\rho}(s_i,t') = 3$, a contradiction.

Proof of Proposition 3.5. We set $(Q, \Omega) = (Q(I_{\varrho}), \Omega(I_{\varrho}))$ and $R = KI_{\varrho}$. Note that the idempotents $\hat{e}_i := g(i), i \in I^*$, form a complete set of primitive orthogonal idempotents of R. Moreover, the matrices \hat{e}_{ij} ,

 $i \preccurlyeq j \preccurlyeq *$, defined as follows:

$$\hat{e}_{ij} = \begin{cases} e_{ij} & \text{if } r_{\varrho}(i,j) = 1, \\ e_{ij} + e_{i'j'} & \text{if } r_{\varrho}(i,j) = 2, \ (i,j)\varrho(i',j') \\ & \text{and } (i,j) \neq (i',j'), \\ e_{ij} + e_{i'j'} + e_{i''j''} & \text{if } (i,j)\varrho(i'',j')\varrho(i'',j'') \text{ and} \\ & (i,j) \neq (i',j') \neq (i'',j'') \neq (i,j) \end{cases}$$

form a K-basis of R. We shall show that $\hat{e}_{st} \in \text{Im}(g)$ for $(s,t) \in \blacktriangle I$. This is obvious if s = t. Assume that $s \neq t$. We proceed by induction on $m_{st} := |\langle s, t \rangle|$.

(1) If $m_{st} = 0$, i.e. (s,t) is short then $\hat{e}_{st} = g(\bar{\beta}_{st}) \in \text{Im}(g)$.

Assume that m > 0 and $\hat{e}_{st} \in \text{Im}(g)$ for $(s,t) \in \Delta I$ such that $m_{st} < m$. Suppose that $m_{st} = m$.

(2) If (s,t) is not ρ -extremal then there exists $p \in \langle s,t \rangle$ such that $r_{\varrho}(s,p) = r_{\varrho}(s,t)$ or $r_{\varrho}(p,t) = r_{\varrho}(s,t)$. Then $\hat{e}_{st} = \hat{e}_{sp}\hat{e}_{pt}$ and since by the induction hypothesis $\hat{e}_{sp}, \hat{e}_{pt} \in \text{Im}(g)$ we get $\hat{e}_{st} \in \text{Im}(g)$.

(3) Suppose that $r_{\varrho}(s,t) = 2$ and (s,t) is 3- ϱ -extremal. Then there exist $s',t' \in I^{(1)}$ such that $s' \varrho s$ and $t' \varrho t$. It is easy to see that $s' \prec t'$. If (s',t') is not 3- ϱ -extremal then it follows from Lemma 3.6 and (1) that $\hat{e}_{s't'} \in \text{Im}(g)$. Indeed, we take a sequence $s_0 \prec s_1 \prec \ldots \prec s_r$ such that $s_0 = s, s_r = t$, the pairs (s_j, s_{j+1}) are short for $j = 0, \ldots, r-1$ and there is no relation $(s_i, s_{i+1})\varrho(u, v)$ with $u, v \in I^{(2)} \cup I^{(3)}$, for some $i = 0, \ldots, r-1$. Since $s', t' \in I^{(1)}$ we get $r_{\varrho}(s_i, s_{i+1}) = 1$ for some $i = 0, \ldots, r-1$. Then

$$\widehat{e}_{s't'} = \widehat{e}_{s_0s_1}\widehat{e}_{s_1s_2}\dots\widehat{e}_{s_{r-1}s_r}.$$

The right side of this equality belongs to Im(g) by (1). Thus $\hat{e}_{s't'} \in \text{Im}(g)$.

If (s',t') is 3- ϱ -extremal then $\hat{e}_{s't'} = g(\beta_{s't'}^*) \in \operatorname{Im}(g)$ as well. Since by the induction hypothesis we have $\hat{e}_{sp}\hat{e}_{pt} \in \operatorname{Im}(g)$, where $p \in \langle s,t \rangle$, we conclude that

$$\widehat{e}_{st} = \widehat{e}_{sp}\widehat{e}_{pt} - \widehat{e}_{s't'} \in \operatorname{Im}(g).$$

(4) Suppose that $r_{\varrho}(s,t) = 1$ and (s,t) is 3- ϱ -extremal. Let $s\varrho s'\varrho s''$ and $t\varrho t' \varrho t''$, where $s,t \in I^{(k)}, s',t' \in I^{(l)}, s'',t'' \in I^{(n)}$, and k,l,n are pairwise different. It is easy to check that $s' \prec t'$ and $s'' \prec t''$. Consider the following cases.

(a) If both (s',t') and (s'',t'') are 3- ρ -extremal and $k \neq 3$ then $\hat{e}_{st} = g(\beta_{st}^*) \in \text{Im}(g)$. If k = 3 then by the same argument (since $l, n \neq 3$) we get $\hat{e}_{s't'}, \hat{e}_{s''t''} \in \text{Im}(g)$. By the induction hypothesis for any $p \in \langle s, t \rangle$ we have

$$\widehat{e}_{st} + \widehat{e}_{s't'} + \widehat{e}_{s''t''} = \widehat{e}_{sp}\widehat{e}_{pt} \in \mathrm{Im}(g)$$

and hence we conclude that $\hat{e}_{st} \in \text{Im}(g)$.

(b) Suppose that (s', t') is 3- ρ -extremal but (s'', t'') is not. If k < l then $\widehat{e}_{st} = g(\beta_{st}^*) \in \operatorname{Im}(g)$. If k > l then by the same reason $\widehat{e}_{s't'} \in \operatorname{Im}(g)$. Moreover, using Lemma 3.6 and arguments similar to those used in (3) we prove that $\widehat{e}_{s't''} \in \operatorname{Im}(g)$. Then as in (a) we conclude that $\widehat{e}_{st} \in \operatorname{Im}(g)$.

(c) Suppose that (s', t'), (s'', t'') are not 3- ϱ -extremal. Then using Lemma 3.6 one can show that $e_{s't'} + e_{s''t''} \in \text{Im}(g)$. Then as above we get

$$\widehat{e}_{st} = \widehat{e}_{sp}\widehat{e}_{pt} - e_{s't'} - e_{s''t''} \in \operatorname{Im}(g)$$

if $p \in \langle s, t \rangle$.

(5) Suppose that $r_{\varrho}(s,t) = 1$ and (s,t) is 2- ϱ -extremal. Let $s\varrho s'$ and $t\varrho t'$, where $s,t \in I^{(k)}, s',t' \in I^{(l)}$, and $\{k,l\} = \{1,2\}$. Then $s' \prec t'$ and $r_{\varrho}(s',t') = 1$. It is easy to check that (s',t') is not 3- ϱ -extremal. If (s',t') is 2- ϱ -extremal and k < l then $\hat{e}_{st} = g(\beta_{st}^*) \in \text{Im}(g)$. If k > l then by the same reason $\hat{e}_{s't'} \in \text{Im}(g)$. Taking $p \in \langle s,t \rangle$ such that $r_{\varrho}(s,p) = 2$ or $r_{\varrho}(p,t) = 2$ we obtain

$$\widehat{e}_{st} + \widehat{e}_{s't'} = \widehat{e}_{sp}\widehat{e}_{pt} \in \mathrm{Im}(g)$$

by the induction hypothesis and hence $\hat{e}_{st} \in \text{Im}(g)$.

If (s', t') is not 2- ϱ -extremal then using Lemma 3.6 we prove that $\hat{e}_{s't'} \in \text{Im}(g)$. Thus again we see that

$$\widehat{e}_{st} = \widehat{e}_{sp}\widehat{e}_{pt} - \widehat{e}_{s't'} \in \operatorname{Im}(g) \,.$$

We have shown that g is an epimorphism. It is easy to check that $g(\Omega) = 0$. Thus g induces a K-algebra epimorphism

$$\overline{g}: K(Q, \Omega) = KQ/(\Omega) \to R$$

Now we show that \overline{g} is injective. It is enough to prove that for all $i, j \in I$ we have

$$\dim_K e(i)(KQ/\Omega)e(j) \le \dim_K \widehat{e}_{ii}R\widehat{e}_{jj},$$

where e(i) denotes the idempotent corresponding to the trivial path at \overline{i} . As an example consider the case when $r_{\varrho}(i) = 2$, $r_{\varrho}(j) = 1$. Then \overline{i} can be joined to \overline{j} by paths of the following kinds:

(1) $I^{(2)}$ -paths,

- (2) 2-3-skew paths,
- (3) $I^{(3)}$ -paths.

Paths of the same kind are equal modulo Ω . Thus $e(i)K(Q,\Omega)e(j)$ has a basis \mathfrak{B} consisting of paths of pairwise different kinds. Moreover, all the kinds (1)–(3) cannot appear in \mathfrak{B} simultaneously. One can check that $g(\mathfrak{B})$ is a linearly independent set and the required inequality holds. The proof in the remaining cases is analogous.

4. A covering for $(Q(I_{\varrho}^*), \Omega(I_{\varrho}^*))$. Suppose that I_{ϱ} is a three-separate stratified poset and I_{ϱ}^* is its one-peak enlargement (see Section 2). Let

$$I^* = I^{(1)} + I^{(2)} + I^{(3)}$$

be a three-separation of I^* . Note that $* \in I^{(3)}$.

Let $(Q, \Omega) = (Q(I_{\varrho}^*), \Omega(I_{\varrho}^*))$ be the bound quiver associated with I_{ϱ}^* (see (3.3)). Let

$$a_{i} = \overline{\beta}_{p_{i}q_{i}} : \overline{p}_{i} \to \overline{q}_{i}, \quad i = 1, \dots, k_{1},$$

$$b_{i} = \overline{\beta}_{r_{i}s_{i}} : \overline{r}_{i} \to \overline{s}_{i}, \quad i = 1, \dots, k_{2},$$

$$d_{i} = \overline{\beta}_{t_{i}u_{i}} : \overline{t}_{i} \to \overline{u}_{i}, \quad i = 1, \dots, k_{3},$$

be all the 1-2-skew, 2-3-skew and 1-3-skew arrows respectively, where $p_i \in I^{(1)}$, $q_j \in I^{(2)}$, $r_i \in I^{(2)}$, $s_j \in I^{(3)}$, $t_i \in I^{(1)}$, $u_j \in I^{(3)}$. Denote by Q^- the quiver obtained from Q by removing all arrows a_i, b_i, d_i , and by Ω^- the set of relations in Ω which do not involve skew arrows.

Let $G = \mathbb{Z}\alpha * \mathbb{Z}\beta$ be the free noncommutative group with two free generators α, β . Following [S1, S4] we define a Galois covering

(4.1)
$$f: (Q, \Omega) \to (Q, \Omega)$$

with group G as follows.

Let $\widetilde{Q}^{(x)} = Q^- \times \{x\}$ for $x \in G$. We put $j^{(x)} = (j, x)$ and $\gamma_{ij}^{(x)} = (\gamma_{ij}, x)$ where j is a vertex of Q^- and γ_{ij} is an arrow in Q^- . We define \widetilde{Q} to be the disjoint union of $\widetilde{Q}^{(x)}$ over all $x \in G$ connected by the edges

$$\begin{aligned} a_i^{(x)} &: \overline{p}_i^{(x)} \to \overline{q}_i^{(\alpha x)}, \quad i = 1, \dots, k_1, \\ b_i^{(x)} &: \overline{r}_i^{(x)} \to \overline{s}_i^{(\beta x)}, \quad i = 1, \dots, k_2, \\ d_i^{(x)} &: \overline{t}_i^{(x)} \to \overline{u}_i^{(\beta \alpha x)}, \quad i = 1, \dots, k_3 \end{aligned}$$

(see Fig. 4.2). We define f by setting $f(j^{(x)}) = j$ and $f(\gamma_{ij}^{(x)}) = \gamma_{ij}$. We take for $\tilde{\Omega}$ the natural lift of Ω along f. The group G acts on \tilde{Q} in the following way:

$$y * j^{(x)} = j^{(yx)}, \quad y * \gamma_{ij}^{(x)} = \gamma_{ij}^{(yx)} \text{ for } y \in G.$$

We note that f induces a bound quiver isomorphism

$$(Q/G, \Omega/G) \simeq (Q, \Omega)$$
.

In general I_{ϱ} admits many different three-separations. However, it is easy to see that the isomorphism class of the covering (4.1) does not depend on the choice of the three-separation.

We are especially interested in the case when the covering (4.1) is the universal cover of (Q, Ω) . For this purpose we need the following definition.

Fig. 4.2

DEFINITION 4.3. We call a three-separate poset I_{ϱ} a *rib convex poset* if the following hold.

(1) The rib skeleton $\operatorname{rsk}(I_{\varrho})$ of I_{ϱ} has exactly three rib-connected components \Re_1 , \Re_2 , \Re_3 ; we assume that $\Re_i \subseteq I^{(i)}$ for i = 1, 2, 3.

(2) If $r_{\rho}(i) > 1$ then $i \in \operatorname{rsk}(I_{\rho})$.

(3) For any $(i, j) \in \Delta \Re_k$ for some k there exists a rib path from \overline{i} to \overline{j} .

PROPOSITION 4.4 (compare [S4, Proposition 3.8]). Let I_{ϱ} be a rib convex three-separate poset and $(Q, \Omega) = (Q(I_{\varrho}^*), \Omega(I_{\varrho}^*))$ be the bound quiver associated with I_{ϱ}^* (see (3.3)).

(a) The fundamental group $\Pi_1(Q, \Omega)$ of (Q, Ω) is a free group with two free generators.

(b) The covering $f : (\widetilde{Q}, \widetilde{\Omega}) \to (Q, \Omega)$ defined in (4.1) is the universal Galois covering of (Q, Ω) .

Proof. (a) Note that we can assume that the three-separation $I^{(1)} + I^{(2)} + I^{(3)}$ of I_{ρ}^* is such that

$$I^{(1)} = \{i \in I : i \preccurlyeq x \text{ for some } x \in \Re_1\},\$$

$$I^{(2)} = \{i \in I \setminus I^{(1)} : i \preccurlyeq x \text{ for some } x \in \Re_2\},\$$

$$I^{(3)} = I \setminus (I^{(1)} \cup I^{(2)}) \text{ and } * \in I^{(3)}.$$

We keep the notation of skew arrows introduced above. Note that the quiver Q^- obtained from Q by removing all the skew arrows has no oriented cycles and has the following property:

 $(*_{Q^{-}}) \quad \text{for each vertex } \overline{i} \in Q^{-} \text{ there exists an oriented path } \omega : \overline{i} \to * \text{ in } Q^{-}.$

We denote by Q'' the full subquiver of Q^- consisting of the vertices \overline{i} for $i \in I^{(3)}$, and by Q' the full subquiver of Q^- consisting of the vertices \overline{i} for $i \in I^{(2)} \cup I^{(3)}$. We have quiver embeddings $Q'' \subseteq Q' \subseteq Q^- \subseteq Q$. Note that Q' and Q'' have the property $(*_{Q'})$ and $(*_{Q''})$ respectively and they are closed under taking successors in Q^- .

First we construct a maximal tree $T'' \subseteq Q''$ with the property $(*_{T''})$ by induction on $|Q''_0|$.

If $|Q_0''| = 2$ then we take T'' = Q''.

Suppose that if $|Q_0''| < m$ then there exists T'' with the required properties. Let $|Q_0''| = m$ and \overline{a} be a minimal element in Q'' (i.e. a source in Q''). Let T''_+ be the maximal tree in the quiver obtained from Q'' by removing the vertex \overline{a} . Let $\overline{\beta}_{at}$ be an arrow in Q'' from \overline{a} to some $\overline{t} \in T''_+$. Then $T'' = T''_+ \cup \{\overline{a}\} \cup \{\overline{\beta}_{at}\}$ is a tree with the required property.

Next, just as above, by induction on $|Q'_0 \setminus Q''_0|$ we construct a maximal tree T' in Q' with the property $(*_{T'})$ and such that $T' \cap Q'' = T''$. Finally,

applying an induction on $|Q_0^- \setminus Q_0'|$ we extend T' to a maximal tree T in Q^- having the property $(*_T)$. Note that T is a maximal tree in Q.

Suppose that $(Q^-)_0$ consists of the elements i_k , $k = 0, \ldots, m$, where $i_0 = \overline{*}$. Since Q^- has no oriented cycle, without loss of generality we can suppose that if there exists a directed path from i_k to i_j in Q^- then k > j.

(1) We show by induction on k that if $b = \overline{\beta}_{st} \in Q''$ is an arrow beginning at $i_k = \overline{s}$ then $\widehat{b} \in N_{\Omega}$ (we keep the notation of Lemma 2.5). For k = 0 this is obvious. Suppose that for k < m the statement is proved. Let k = mand $s, t \in I^{(3)}$. If $b \in T$ then $\widehat{b} \in N_{\Omega}$. Suppose that $b \notin T$. Then there exists an arrow $\overline{\beta}_{ss_1}$ in T such that $s_1 \in I^{(3)}$. Consider two sequences $\beta_{ss_1}, \beta_{s_1s_2}, \ldots, \beta_{s_m*}$ and $\beta_{tt_1}, \beta_{t_1t_2}, \ldots, \beta_{t_{l^*}}$ of short pairs in $I^{(3)}$. Then

$$(b\overline{\beta}_{tt_1}\overline{\beta}_{t_1t_2}\ldots\overline{\beta}_{t_l*},\overline{\beta}_{ss_1}\overline{\beta}_{s_1s_2},\ldots,\overline{\beta}_{s_m*})$$

is an $\varOmega\text{-}\mathrm{contour.}$

Since $\overline{\beta}_{ss_1} \in T$ and by the induction hypothesis $\widehat{\overline{\beta}}_{t_it_{i+1}}, \widehat{\overline{\beta}}_{s_js_{j+1}} \in N_{\Omega}$ for $i = 0, \ldots, l$ and $j = 1, \ldots, m$, we get $\widehat{b} \in N_{\Omega}$. (Here we put $t_{l+1} = s_{m+1} = *$ and $t_0 = t$.)

In particular, we have shown that $\hat{b} \in N_{\Omega}$ if b is the ρ -coset of a rib.

(2) Now we are going to prove that for skew arrows b_p , b_q with r_p , $r_q \in \Re_2$ we have $\hat{b}_p \equiv \hat{b}_q$ (modulo N_{Ω}). By our assumptions on I_{ϱ} there exist points $x_1, \ldots, x_l \in \Re_2$ and rib paths u_i, v_i for $i = 1, \ldots, l$ as in the figure:

where \overline{r}_{p_i} is the source of the 2-3-skew arrow $b_{p_i}, p_0 = p$ and $p_l = q$. Denote by w_i an $I^{(3)}$ -path from the sink \overline{s}_{p_i} of b_{p_i} to $\overline{*}$ for $i = 1, \ldots, l$. Then $(u_i b_{i-1} w_{i-1}, v_i b_i w_i)$ is an Ω -contour for $i = 1, \ldots, l$. By (1) above we get $\widehat{v}_i, \widehat{w}_i, \widehat{w}_i \in N_{\Omega}$, hence $\widehat{b}_p \widehat{b}_q^{-1} \in N_{\Omega}$.

(3) By induction on k we shall show that if $b = \overline{\beta}_{st} \in Q'$ is not a skew arrow and it begins at $i_k = \overline{s}$ then $\widehat{b} \in N_{\Omega}$. For k = 0 this is obvious. Suppose that for k < m the statement is proved. Let k = m. Suppose that $b \notin T$. Let $\overline{\beta}_{s's_1}$ be an arrow in $T' \subseteq T$ beginning at i_k and $s', s_1 \in I^{(2)} \cup I^{(3)}$.

If $s = s' \in I^{(3)}$ then $s_1, t \in I^{(3)}$ and we prove the statement as in (1). Suppose that $s = s' \in I^{(2)}$. Then $s_1, t \in I^{(2)}$. Let

$$\beta_{s_1s_2},\ldots,\beta_{s_mr_p}$$
 and $\beta_{tt_1},\ldots,\beta_{t_lr_q}$

be sequences of short pairs in $I^{(2)}$ ending at $r_p, r_q \in \Re_2$ whose ρ -cosets are the sources of the arrows b_p, b_q respectively. The sinks of these arrows are $\overline{s}_p, \overline{s}_q$. Let u_p and u_q be paths composed of the ρ -cosets of short pairs in $I^{(3)}$ connecting \overline{s}_p and \overline{s}_q with $\overline{*}$ respectively. Then

$$(b\overline{\beta}_{tt_1},\ldots,\overline{\beta}_{t_lr_q}b_qu_q,\overline{\beta}_{s's_1}\overline{\beta}_{s_1s_2},\ldots,\overline{\beta}_{s_mr_p}b_pu_p)$$

is an Ω -contour and since $\overline{\beta}_{s's_1} \in T$, $\widehat{b}_p \equiv \widehat{b}_q \pmod{N_\Omega}$ and by the induction hypothesis we get $\widehat{b} \in N_\Omega$.

Suppose now that $s \neq s'$. Then $r_{\varrho}(s) > 1$, hence $s \in \operatorname{rsk}(I_{\varrho})$. If $s \in \Re_2$ then, since $b \in Q'$, $t \in I^{(2)}$. We have a path u_p composed of the ϱ -cosets of short pairs from $I^{(2)}$ connecting \overline{t} with the source \overline{r}_p of a skew arrow b_p such that $r_p \in \Re_2$. From the rib convexity of \Re_2 we get the existence of a rib path v from \overline{s} to \overline{r}_p . Then

$$(vb_p, bu_pb_p)$$

is an Ω -contour and since $\hat{v} \in N_{\Omega}$ and by the induction hypothesis $\hat{u}_p \in N_{\Omega}$, we get $\hat{b} \in N_{\Omega}$.

If $s \in \Re_3$ then $s, t \in I^{(3)}$ and we prove the statement as in (1).

(4) We show that $\hat{b}_p \equiv \hat{b}_q$ (modulo N_Ω) for any p, q. Note that it is enough to show that $\hat{b}_p \equiv \hat{b}_q$ (modulo N_Ω) if $r_p \notin \Re_2, r_q \in \Re_2$ and $r_p \prec r_q$. Let v be a path composed of the ρ -cosets of short pairs in $I^{(2)}$ from \overline{r}_p to \overline{r}_q , and u_p, u_q be the paths in Q'' composed of the ρ -cosets of short pairs connecting \overline{s}_p and \overline{s}_q with $\overline{*}$ respectively. Then $(b_p u_p, v b_q u_q)$ is an Ω -contour and by (1) and (3) we get $\hat{b}_p \hat{b}_q^{-1} \in N_\Omega$.

(5) We show as in (2) that $\hat{d}_p \equiv \hat{d}_r$ (modulo N_Ω) for all 1-3-skew arrows d_p, d_r whose sources are the ρ -cosets of elements of \Re_1 ; $\hat{d}_p \equiv \hat{a}_r \hat{b}_q$ (modulo N_Ω) for any 1-3-skew arrow d_p , 1-2-skew arrow a_r and 2-3-skew arrow b_q such that the sources of d_p and a_r are the ρ -cosets of elements of \Re_1 , and $\hat{a}_p \equiv \hat{a}_r$ (modulo N_Ω) for any 1-2-skew paths \hat{a}_p, \hat{a}_r whose sources are the ρ -cosets of elements of \Re_1 .

(6) We show as in (3) that if $b = \overline{\beta}_{st}$ is an arrow in Q^- then $\widehat{b} \in N_{\Omega}$.

(7) We show as in (4) that

$$\hat{d}_p \equiv \hat{d}_r, \quad \hat{a}_q \equiv \hat{a}_r, \quad \hat{d}_p \equiv \hat{a}_r \hat{b}_q \pmod{N_\Omega}$$

for arbitrary p, q, r. Note that there exists at least one 2-3-skew arrow and at least one 1-3-skew arrow or 1-2-skew arrow.

(8) We show that $\widehat{\beta}_{ij}^* \in N_{\Omega}$ for any i, j such that the arrow β_{ij}^* exists. There is a rib path u from \overline{i} to \overline{j} and a nonzero path v from \overline{j} to $\overline{*}$ composed of the ρ -cosets of short pairs in I^* . Then (uv, β_{ij}^*v) is an Ω -contour and since $\widehat{u}, \widehat{v} \in N_{\Omega}$ we get $\widehat{\beta}_{ij}^* \in N_{\Omega}$ as well.

We have shown that $\hat{a}_1 N_{\Omega}$, $\hat{b}_1 N_{\Omega}$ generate the group $\Pi_1(Q, \Omega)$ if there exists a 1-2-skew arrow a_1 , and $\hat{d}_1 N_{\Omega}$, $\hat{b}_1 N_{\Omega}$ generate $\Pi_1(Q, \Omega)$ if there exists a 1-3-skew arrow d_1 .

(9) Now we prove that $\{\hat{a}_1 N_\Omega, \hat{b}_1 N_\Omega\}$ (or $\{\hat{d}_1 N_\Omega, \hat{b}_1 N_\Omega\}$) is a set of free generators of $\Pi_1(Q, \Omega)$.

Suppose that a_1 exists. We have to show that no word of the form

$$\kappa = \widehat{a}_1^{s_1} \widehat{b}_1^{t_1} \dots \widehat{a}_1^{s_l} \widehat{b}_1^{t_l}$$

such that $s_{i+1} \neq 0 \neq t_i$ for $i = 1, \dots, l-1$ or $s_1 \neq 0$ or $t_l \neq 0$ belongs to N_{Ω} .

Suppose that $\omega = \lambda_1 \omega_1 + \ldots + \lambda_m \omega_m$ is a minimal relation in Ω such that $m \geq 2$. Then all the ω_i have a common sink and a common source. Moreover, ω is a sum of elements of the form a_1ba_2 where $a_1, a_2 \in KQ$ and b is a relation of type (a), (b), (c), (d), (e), (f) or (g) (see (3.3)). Since ω is minimal and $m \geq 2$ we have $\omega = a_1ba_2$ where $a_1, a_2 \in KQ$ are paths in Q and b is a relation of one of the above types. Thus the following types of Ω -contours are possible:

• $(\gamma_1, \gamma_2), \quad (\gamma_1 b_i \gamma_2, \gamma_3 b_j \gamma_4), \quad (\gamma_1 a_i \gamma_2, \gamma_3 a_j \gamma_4), \\ (\gamma_1 d_i \gamma_2, \gamma_3 d_j \gamma_4), \quad (\gamma_1 d_i \gamma_2, \gamma_3 a_j \gamma_4 b_k \gamma_5)$

(induced by relations of type (b)), and

• $(\gamma_i, \gamma_j),$

(induced by relations of types (c) to (g)), where the γ_s denote paths in Q which do not contain skew arrows.

Hence we get the following types of generators of N_{Ω} :

$$\widehat{\gamma}, \quad \widehat{\gamma}_1 \widehat{b}_i^{-1} \widehat{\gamma}_2 \widehat{b}_j \widehat{\gamma}_3, \quad \widehat{\gamma}_1 \widehat{a}_i^{-1} \widehat{\gamma}_2 \widehat{a}_j \widehat{\gamma}_3, \quad \widehat{\gamma}_1 \widehat{d}_i^{-1} \widehat{\gamma}_2 \widehat{d}_j \widehat{\gamma}_3, \quad \widehat{\gamma}_1 \widehat{d}_i \widehat{\gamma}_2 \widehat{b}_j^{-1} \widehat{\gamma}_3 \widehat{a}_k^{-1} \widehat{\gamma}_4,$$

where the $\hat{\gamma}_i$ are elements of the free group $\Pi_1(Q)$ which are words without the letters \hat{a}_i , \hat{b}_i , \hat{d}_i .

Consider the group homomorphism

$$h: \Pi_1(Q) \to \mathbb{Z}a * \mathbb{Z}b$$

defined by $h(\widehat{\gamma}_i) = 1$, $h(\widehat{a}_i) = a$, $h(\widehat{b}_i) = b$, $h(\widehat{d}_i) = ab$. Note that all the generators of N_{Ω} listed above are contained in Ker(h). Hence $N_{\Omega} \subseteq \text{Ker}(h)$. If κ is as above then $h(\kappa) \neq 1$, so $\kappa \notin N_{\Omega}$.

If there is no 1-2-skew arrow a_i in Q then we prove in a similar way that $\{\hat{d}_1 N_\Omega, \hat{b}_1 N_\Omega\}$ freely generates $\Pi_1(Q, \Omega)$. This finishes the proof of (a).

The statement (b) follows from the above considerations and from the construction of the universal cover described in (2.6). Since $\Pi_1(Q, \Omega) = \mathbb{Z}\alpha * \mathbb{Z}\beta$ it is easy to see that the construction in our case coincides with the construction (4.1) applied to $G = \Pi_1(Q, \Omega)$.

5. Three-partite posets and the associated three-peak bound quivers. In this section we discuss some special case of three-separate posets, namely the three-partite posets in the sense of Definition 5.1 below.

If $I_1, I_2 \subseteq I$ are subposets then we write $I_1 < I_2$ if for all $i_1 \in I_1$ and $i_2 \in I_2$ we have $i_1 \prec i_2$. We say that I_1 is *connected* if it is connected with respect to the equivalence relation generated by the following relation:

 $i \prec \succ j \Leftrightarrow$ either $i \prec j$ or $j \prec i$ is a minimal relation in I.

DEFINITION 5.1 (compare with [S4, Def. 4.1]). A three-separate poset I_{ϱ}^{*} with a three-separation $I^{(1)} + I^{(2)} + I^{(3)}$ and a unique maximal element * is called *three-partite* if

(a) $I^{(k)}$ is the disjoint union of subposets $C^{(k)}$ and $J^{(k)}$ such that $C^{(k)}$ is either empty or it is a chain

$$C^{(k)}: c_1^{(k)} \to c_2^{(k)} \to \ldots \to c_{m_k}^{(k)}$$

for $k = 2, 3, I^{(1)} < J^{(2)} < J^{(3)}$ and $C^{(2)} < C^{(3)}$.

(b) The stratified poset I_{ρ} is rib-convex.

(c) There exist connected subposets $I_0^{(1)} \subseteq I^{(1)}, I_0^{(2)} \subseteq J_0^{(2)} \subseteq J^{(2)}, I_0^{(3)} \subseteq J_0^{(3)} \subseteq J^{(3)}$ and poset isomorphisms $\sigma_1 : I_0^{(1)} \to I_0^{(2)}, \sigma_2 : I_0^{(2)} \to I_0^{(3)}$ and $\sigma_3 : J_0^{(2)} \to J_0^{(3)}$ satisfying the following conditions:

(i) σ_2 is the restriction of σ_3 to $I_0^{(2)}$,

(ii) $r_{\varrho}(i) = 3$ if and only if *i* belongs to $I_0^{(k)}$ for some k = 1, 2, 3, and $r_{\varrho}(i) = 2$ if and only if *i* belongs to $J_0^{(k)} \setminus I_0^{(k)}$ for some k = 2, 3,

(iii) $(i, j)\varrho(\sigma_1(i), \sigma_1(j))\varrho(\sigma_2\sigma_1(i), \sigma_2\sigma_1(j))$ provided $i \preccurlyeq j, i, j \in I_0^{(1)}, [i, j] = \{i, j\}$, and $(i, j)\varrho(\sigma_3(i), \sigma_3(j))$ provided $i \preccurlyeq j, i, j \in J_0^{(2)}, [i, j] = \{i, j\}$.

We visualize this notion in Fig. 5.2.

Following an idea in [S4] we associate with any three-partite stratified poset I_{ρ}^{*} a three-peak bound quiver

(5.3)
$$I_{\varrho}^{*+\times} = (Q^{+\times}, \Omega^{+\times})$$

defined as follows:

For the quiver $Q^{+\times}$ we take the disjoint union of Q^{-} (see (4.1)) and two chains:

$$C^{+}: c_{1}^{(3)+} \to c_{2}^{(3)+} \to \dots \to c_{m_{3}}^{(3)+} \to +,$$

$$C^{\times}: c_{1}^{(2)\times} \to \dots \to c_{m_{2}}^{(2)\times} \to c_{1}^{(3)\times} \to \dots \to c_{m_{3}}^{(3)\times} \to \times,$$

connected by the following arrows (we use the notation from Section 4):

(i) $\beta_{r_i+}: \overline{r}_i \to +$ if r_i and $c_{m_3}^{(3)}$ are unrelated,

(ii) $\beta_{p_i \times} : \overline{p}_i \to \times$ if p_i and $c_{m_3}^{(3)}$ are unrelated and $\beta_{t_i \times} : \overline{t}_i \to \times$ if t_i and $c_{m_3}^{(3)}$ are unrelated, (iii) $a_i^{\times} : \overline{p}_i \to \overline{q}_i^{(\times)}$ if $q_i \in C^{(2)}$, (iv) $b_i^+ : \overline{r}_i \to \overline{s}_i^{(+)}$ if $s_i \in C^{(3)}$, (v) $d_i^{\times} : \overline{t}_i \to \overline{u}_i^{(\times)}$ if $u_i \in C^{(3)}$

(see Fig. 5.2).

For $\Omega^{+\times}$ we take the set Ω^{-} with the following additional relations:

(1) $w\beta_{r_i+}$ and wb_j^+ if w is neither a 3-rib path nor a 2-rib path nor an $I^{(2)}$ -path,

(2) $w\beta_{t_i\times}$, $w\beta_{p_i\times}$, wa_i^{\times} and wd_i^{\times} if w is neither a 3-rib path nor an $I^{(1)}$ -path,

(3) wu - vu', where $w : \overline{p} \to \overline{r}_i$ is a 3-rib path, a 2-rib path or an $I^{(2)}$ -path, and where $v : \overline{p} \to \overline{r}_j$ and u and u' have a common sink in C^+ .

(4) wu - vu', where $w : \overline{p} \to \overline{p}_i$ is a 3-rib path or an $I^{(1)}$ -path, and where $v : \overline{p} \to \overline{p}_i, u$ and u' have a common sink in C^{\times} .

Analogously to the bipartite case [S4] there is an algebra isomorphism

$$KI_{\varrho}^{*+\times} \simeq \xi \widetilde{R} \xi \,,$$

where $\widetilde{R} = K(\widetilde{Q}, \widetilde{\Omega})$ and

$$\xi = \sum_{t \in Q_0^{(e)}} e_t + \sum_{t \in C^{(2)}} e_{(t,\alpha)} + \sum_{t \in C^{(3)}} (e_{(t,\beta)} + e_{(t,\beta\alpha)}) + e_{(*,\beta)} + e_{(*,\beta\alpha)}$$

and we consider the diagram

$$(5.4) \qquad \begin{array}{ccc} \operatorname{mod}_{\operatorname{sp}}(\xi \widetilde{R}\xi) & \xrightarrow{L_{\xi}} & \operatorname{mod}_{\operatorname{sp}}(\nu \widetilde{R}\nu) & \xrightarrow{T_{\nu}} & \operatorname{mod}_{\operatorname{sp}}(\widetilde{R}) \\ & \uparrow^{\iota} & & \downarrow^{f_{\operatorname{sp}}} \\ & \operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times}) & \xrightarrow{f_{+\times}} & \operatorname{mod}_{\operatorname{sp}}(R) \end{array}$$

where ι is the natural equivalence, $f_{\rm sp}$ is the covering functor (see [Ga], [S4, 4.20]), $\nu = \sum_t e_t$ where t runs over the set of vertices of the union of all quivers $Q_0^{(\omega)}$ for ω of the form $\omega = \alpha^{s_1}\beta^{t_1}\dots\alpha^{s_m}\beta^{t_m}$, where $s_i, t_i \ge 0$ for $i = 1, \dots, m$, L_{ξ} and T_{ν} are the lower and upper induction functors respectively (see [S4, S5]), $f_{+\times}$ is the composed functor $f_{\rm sp} \circ T_{\nu} \circ L_{\xi} \circ \iota$.

By the Splitting Theorem of [S3], Proposition 4.3 above, Theorem 4.19 and Remark 4.21 of [S4] we get the following.

THEOREM 5.5. If I_{ρ}^{*} is a three-partite stratified poset then:

(a) The functor $f_{+\times} : \operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times}) \to \operatorname{mod}_{\operatorname{sp}}(R)$ is exact, faithful, dense and preserves indecomposability.

(b) The category $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times})$ is of finite representation type if and only if so is the category $\operatorname{mod}_{\operatorname{sp}}(R)$.

(c) If K is an algebraically closed field then $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^{*+\times})$ is of tame (resp. wild) representation type if and only if $\operatorname{mod}_{\operatorname{sp}}(R)$ is of tame (resp. wild) representation type.

Applying arguments similar to those used in [S4, Proposition 4.9] and Proposition 4.3 above one can prove the following.

THEOREM 5.6. Let I_{ϱ}^* be a three-partite poset and let $I_{\varrho}^{*+\times}$ be the associated three-peak bound quiver (5.3).

(a) The fundamental group $\Pi_1(I_{\varrho}^{*+\times})$ is trivial. If in addition every vertex of $I_{\varrho}^{*+\times}$ is separating then the Auslander–Reiten quiver $\Gamma_{\rm sp}(KI_{\varrho}^{*+\times})$ of $\operatorname{mod}_{\rm sp}(KI_{\varrho}^{*+\times})$ has a preprojective component.

(b) If the Auslander-Reiten quiver $\Gamma_{\rm sp}(KI_{\varrho}^{*+\times})$ of $\operatorname{mod}_{\rm sp}(KI_{\varrho}^{*+\times})$ has a preprojective component then $\operatorname{mod}_{\rm sp}(KI_{\varrho}^{*})$ is of finite representation type if and only if $I_{\varrho}^{*+\times}$ contains no Weichert's critical forms (see [W]).

Let us finish with a simple corollary from the above considerations.

COROLLARY 5.7. If I_{ϱ}^* is a three-partite stratified poset and $\operatorname{mod}_{\operatorname{sp}}(KI_{\varrho}^*)$ is of finite representation type then I_{ϱ} does not contain any rib.

Proof. It is easy to check that if I_{ϱ} contains a rib then $I_{\varrho}^{*+\times}$ contains a subquiver of type $\widetilde{\mathbb{D}}_4$ which is of infinite representation type. Thus the statement follows from Theorem 5.6 above.

References

- [AS] I. Assem and A. Skowroński, On some class of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417–450.
- [Ga] P. Gabriel, The universal cover of a representation finite algebra, in: Lecture Notes in Math. 903, Springer, 1981, 68–105.
- [Gr] E. L. Green, Group graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, 1981, 106-115.
- [MP] R. Martínez-Villa and J. A. de la Peña, *The universal cover of a quiver with relations*, J. Pure Appl. Algebra 30 (1983), 277–292.
- [S1] D. Simson, On the representation type of stratified posets, C. R. Acad. Sci. Paris 311 (1990), 5–10.
- [S2] —, Representations of bounded stratified posets, coverings and socle projective modules, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 499–533.
- [S3] —, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 113–137.
- [S4] —, Right peak algebras of two-separate stratified posets, their Galois covering and socle projective modules, Comm. Algebra 20 (1992), 3541–3591.

- [S5] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic Appl. 4, Gordon & Breach, 1992.
- [Sp] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- [W] Th. Weichert, Darstellungstheorie von Algebren mit projektivem Sockel, Doctoral Thesis, Universität Stuttgart, 1989.

INSTITUTE OF MATHEMATICS NICHOLAS COPERNICUS UNIVERSITY CHOPINA 12/18 87-100 TORUŃ, POLAND

> Received 16 November 1992; in revised form 29 March 1993