Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations

by
Stanisław Kasjan (Toruń)

Abstract

A class of stratified posets I_{ϱ}^{*} is investigated and their incidence algebras $K I_{\varrho}^{*}$ are studied in connection with a class of non-shurian vector space categories. Under some assumptions on I_{ϱ}^{*} we associate with I_{ϱ}^{*} a bound quiver (Q, Ω) in such a way that $K I_{\varrho}^{*} \simeq K(Q, \Omega)$. We show that the fundamental group of (Q, Ω) is the free group with two free generators if I_{ϱ}^{*} is rib-convex. In this case the universal Galois covering of (Q, Ω) is described. If in addition I_{ϱ} is three-partite a fundamental domain $I^{*+\times}$ of this covering is constructed and a functorial connection between $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ and $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*}\right)$ is given.

1. Introduction. Socle projective representations of stratified posets introduced in [S1, S2] (see Definition 2.1 below) appear in a natural way in the study of vector space categories (see [S2], [S5, Chap. 17]) and lattices over orders (see [S5, Ch. 13], [S4]). The aim of this paper is to give some tools for studying these representations for a certain class of stratified posets.

Our main points of interest are the incidence algebra $K I_{\varrho}^{*}$ over a field K of a three-separate stratified poset I_{ϱ}^{*} with a unique maximal element $*$ (see Definition 3.1) and the representation type of the category $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*}\right)$ of socle projective right $K I_{\varrho}^{*}$-modules. Following [S1, S2, S4] we associate with any such poset I_{ϱ}^{*} a bound quiver

$$
\left(Q\left(I_{e}^{*}\right), \Omega\left(I_{e}^{*}\right)\right)
$$

in such a way that $K I_{\varrho}^{*}$ is isomorphic to the bound quiver algebra $K Q\left(I_{\varrho}^{*}\right) / \Omega\left(I_{\varrho}^{*}\right)$. Under the assumption that I_{ϱ}^{*} is rib-convex (see Section 4) we show that the fundamental group $\Pi_{1}\left(Q\left(I_{\varrho}^{*}\right), \Omega\left(I_{\varrho}^{*}\right)\right)$ is a free noncommutative group with two free generators and we give an explicit description of the universal covering $(\widetilde{Q}, \widetilde{\Omega})$ of $\left(Q\left(I_{\tilde{O}}^{*}\right), \Omega\left(I_{e}^{*}\right)\right)$. If in addition I_{e}^{*} is three-partite we define, by means of ($\widetilde{Q}, \widetilde{\Omega}$), a simply connected [AS]

[^0]finite-dimensional three-peak algebra $K I_{\varrho}^{*+\times}$ and a functor
$$
f_{+x}: \bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right) \rightarrow \bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*}\right)
$$
preserving the representation type. In the case when the Auslander-Reiten quiver $\Gamma_{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ of $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ has a preprojective component we get a simple criterion for the finite representation type of $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ (see Theorems 5.5, 5.6). In particular, we solve a problem stated in [S4, Remark 4.33].

I would like to thank Professor Daniel Simson for calling my interest to this subject and useful remarks concerning the paper.
2. Preliminaries and notation. We consider a poset I with partial order \preccurlyeq. We suppose that $I=\{1, \ldots, n\}$ and if $i \preccurlyeq j$ then $i \leq_{\mathbb{N}} j$ for $i, j \in I$. Define

$$
\begin{aligned}
& \mathbf{\Delta} I:=\{(i, j): i, j \in I \text { and } i \preccurlyeq j\}, \\
& \Delta I:=\{(i, j): i, j \in I \text { and } i \prec j\} .
\end{aligned}
$$

Given $(i, j) \in \boldsymbol{\Delta} I$ we put $[i, j]:=\{s \in I: i \preccurlyeq s \preccurlyeq j\}$ and $\langle i, j\rangle:=\{s \in I:$ $i \prec s \prec j\}$. Throughout we identify (i, i) with i.

Definition 2.1 [S2, S4]. A stratification of I is an equivalence relation ϱ on $\boldsymbol{\Delta} I$ such that if $(i, j) \varrho(p, q)$ then there exists a poset isomorphism $\sigma:[i, j] \rightarrow[p, q]$ such that $(i, t) \varrho(p, \sigma(t))$ and $(t, j) \varrho(\sigma(t), q)$ for any $t \in[i, j]$. A stratified poset is a pair

$$
I_{\varrho}=(I, \varrho)
$$

where I is a poset and ϱ is a stratification of I.
We denote by $r_{\varrho}(i, j)$ the cardinality of the ϱ-coset of (i, j), and call (i, j) a rib if $r_{\varrho}(i, j)>1$ and $i \neq j$. The number $r_{\varrho}(i, j)$ is then the rib rank of the rib (i, j).

The full stratified subposet $\operatorname{rsk}\left(I_{\varrho}\right)$ of I_{ϱ} consisting of all beginnings and ends of ribs in I_{ϱ} is called the rib skeleton of I_{ϱ}. We fix a decomposition

$$
\operatorname{rsk}\left(I_{\varrho}\right)=\Re_{1}+\ldots+\Re_{h}
$$

into rib-connected components with respect to the rib-equivalence relation generated by the following relation:

$$
i-j \Leftrightarrow \text { either }(i, j) \text { or }(j, i) \text { is a rib. }
$$

Fix a field K and a stratified poset I_{ϱ}. We recall from [S4] that the K-algebra

$$
\begin{align*}
K I_{\varrho}=\left\{b=\left(b_{p q}\right) \in \mathbb{M}_{n \times n}(K): b_{p q}\right. & =0 \text { if } p \nprec q \tag{2.2}\\
& \text { and } \left.b_{i j}=b_{p q} \text { if }(i, j) \varrho(p, q)\right\}
\end{align*}
$$

is called the incidence algebra of I_{ϱ}.

We denote by $I^{*}=I \cup\{*\}$ the enlargement of I by adjoining a unique maximal element $*$ (called the peak) and we extend trivially the relation ϱ from $\boldsymbol{\Delta} I$ to $\boldsymbol{\Delta} I^{*}$.

Thus we get a right peak algebra (see [S4]) of the form

$$
K I_{\varrho}^{*}=\left(\begin{array}{cc}
K I_{\varrho} & M \tag{2.3}\\
0 & K
\end{array}\right)
$$

where

$$
\left.M=\left(\begin{array}{c}
K \\
\vdots \\
K
\end{array}\right)\right\} n
$$

is a left $K I_{\varrho}$-module with respect to the usual matrix multiplication.
For a more detailed discussion of stratified posets, examples and applications the reader is referred to [S 2$]$ and [S5, Section 17.16].

In Section 3 below we will use the notion of the fundamental group of a quiver Q with a set of relations Ω ([Gr, MP]). For the convenience of the reader we briefly recall this concept. We follow [S4].

With a connected quiver Q we associate its fundamental group $\Pi_{1}(Q, q)$ computed as the group of homotopy classes $[\omega]$ of walks ω in Q starting and ending at the fixed point q. By a walk we mean a formal composition $\alpha_{1} \ldots \alpha_{r}$ where α_{p} is an arrow of Q or its formal inverse and the sink of α_{p} is the source of α_{p+1}. Homotopy is the smallest equivalence relation \approx (on the set of walks) such that:
(1) $1_{x} \approx 1_{x}^{-1}$ for each vertex x of Q,
(2) $\alpha \alpha^{-1} \approx 1_{x}$ and $\alpha^{-1} \alpha \approx 1_{y}$ for each arrow $\alpha: x \rightarrow y$,
(3) if $w \approx v$ then $u w \approx u v$ and $w u^{\prime} \approx v u^{\prime}$ whenever the walks involved are composable.

By the fundamental group of a bound quiver (Q, Ω) we mean the group

$$
\begin{equation*}
\Pi_{1}(Q, \Omega)=\Pi_{1}(Q, q) / N_{\Omega} \tag{2.4}
\end{equation*}
$$

where N_{Ω} is the normal subgroup generated by the conjugacy classes $C(u, v)$ of homotopy classes $\left[w^{-1} u^{-1} v w\right.$] in $\Pi_{1}(Q, q)$ where u, v are directed paths with a common sink and a common source, and there is a minimal relation

$$
\omega=\lambda_{1} \omega_{1}+\ldots+\lambda_{t} \omega_{t} \in(\Omega), \quad \lambda_{i} \in K^{*}
$$

with $t \geq 2$ and $u=\omega_{1}, v=\omega_{2}$. Let us recall from [MP] that a relation ω of the above form is a minimal relation if for every nonempty proper subset $J \subset\{1, \ldots, t\}$ we have

$$
\sum_{j \in J} \lambda_{j} \omega_{j} \notin(\Omega) .
$$

The following maximal tree lemma is a very useful method of computing the fundamental group. Before we formulate it we recall from [S4] that by an Ω-contour we mean a pair (u, v) of oriented paths with a common sink and a common source such that there is a minimal relation ω of the above form with $h u g=\omega_{1}$ and $h v g=\omega_{2}$ for some oriented paths h, g such that the sink of h is the source of u and the source of g is the sink of u. We say that (u, v) is defined with respect to the set $\Omega^{\prime} \subseteq(\Omega)$ if $\omega \in \Omega^{\prime}$.

Lemma 2.5 [S4, Remark 3.6, Lemma 3.7]. Suppose that (Q, Ω) is a bound quiver, let T be a maximal tree in Q and $q \in Q$.
(a) N_{Ω} is generated by the elements $C(u, v)$, where (u, v) runs through all the Ω-contours defined with respect to a fixed set of generators of the ideal (Ω).
(b) $\Pi_{1}(Q, q)$ is a free group generated by the elements $\widehat{\beta}=[a \beta b]$ where $\beta \in Q_{1} \backslash T_{1}$ and a, b are walks in T connecting q with the sink and the source of β, respectively.
(c) If (u, v) is an Ω-contour and

$$
u=u_{0} \beta_{1} u_{1} \beta_{2} \ldots u_{s-1} \beta_{s} u_{s}, \quad v=v_{0} \gamma_{1} v_{1} \gamma_{2} \ldots v_{r-1} \gamma_{r} v_{r}
$$

where $\beta_{i}, \gamma_{j} \in Q_{1} \backslash T_{1}$ and u_{i} and v_{j} are oriented paths in T then

$$
\widehat{\beta}_{1} \widehat{\beta}_{2} \ldots \widehat{\beta}_{s} \equiv \widehat{\gamma}_{1} \widehat{\gamma}_{2} \ldots \widehat{\gamma}_{r}\left(\text { modulo } N_{\Omega}\right)
$$

If the fundamental group of (Q, Ω) is nontrivial we construct the universal Galois covering

$$
\begin{equation*}
f:(\widetilde{Q}, \widetilde{\Omega}) \rightarrow(Q, \Omega) \tag{2.6}
\end{equation*}
$$

of (Q, Ω) in the following way (see [MP, Corollary 1.5], [Gr]).
Fix $q \in Q$. Let W be the topological universal cover of Q, i.e. a quiver W whose vertices are the homotopy classes $[\omega]$ of walks ω in Q starting at a fixed point $p([\mathrm{Sp}])$. There is an arrow $(\alpha,[\omega])$ from $[\omega]$ to $[\nu]$ in W if $[\nu]=[\omega \alpha]$ for an arrow α in $Q . N_{\Omega}$ acts on W in an obvious way. We take for \widetilde{Q} the orbit quiver W / N_{Ω} and for $\widetilde{\Omega}$ the set of liftings of relations in Ω from $K Q$ to $K \widetilde{Q}$. The bound quiver map f is defined by

$$
f\left(N_{\Omega}(\alpha,[\omega])\right)=\alpha, \quad f\left(N_{\Omega}[\omega]\right)=\text { the sink of } \omega
$$

where $N_{\Omega}[\omega]\left(\operatorname{resp} . N_{\Omega}(\alpha,[\omega])\right)$ denotes the orbit of $[\omega]$ (resp. $(\alpha,[\omega])$).
The group $\Pi_{1}(Q, \Omega)$ acts naturally on $(\widetilde{Q}, \widetilde{\Omega})$ as a group of automorphisms. One can check that f is the universal Galois covering with group $\Pi_{1}(Q, \Omega)$ (see [Gr, MP]).

3. Three-separate stratified posets and the associated bound

 quivers. Let us start with our main definition which extends that given in [S1, S4].Definition 3.1. A three-separate stratified poset is a stratified poset I_{ϱ} such that I is the disjoint union of subsets $I^{(1)}, I^{(2)}, I^{(3)}$ and the following conditions hold:
(a) There is no relation $i \prec j$, where $i \in I^{(k)}, j \in I^{(l)}$ and $k>l$.
(b) $r_{\varrho}(i, j) \leq 3$ for all $(i, j) \in \mathbf{\Delta} I$.
(c) If $(i, j) \varrho(s, t)$ and $(i, j) \neq(s, t)$ then there exist $k, l \leq 3$ such that $k \neq l, i, j \in I^{(k)}$ and $s, t \in I^{(l)}$.
(d) If $r_{\varrho}(i, j)=2$ then $i, j \notin I^{(1)}$.

We say that the decomposition $I=I^{(1)}+I^{(2)}+I^{(3)}$ is a three-separation of I_{ϱ}.

We call a rib of rank 3 a 3 -rib and a rib of rank 2 a 2 -rib. A pair $(i, j) \in \Delta I$ is called short if $\{i, j\}=[i, j]$. In this case we write $\beta_{i j}$ instead of (i, j). A pair (i, j) is called 3 - ϱ-extremal if it is not short, $r_{\varrho}(i, j) \leq 2$ and $(i, s),(s, j)$ are 3 -ribs for all s such that $i \prec s \prec j$. A pair (i, j) is called $2-\varrho$-extremal if it is neither short nor 3 - ϱ-extremal, $r_{\varrho}(i, j)=1$ and $(i, s),(s, j)$ are ribs for all s such that $i \prec s \prec j$. We say that (i, j) is ϱ-extremal if it is either 2 - ϱ-extremal or 3 - ϱ-extremal.

Example 3.2. Let I^{*} be the following poset:

3		1		
\downarrow		\downarrow		
6		4	\rightarrow	2
\downarrow	\nearrow	\downarrow		\downarrow
9		7		5
		\downarrow	\nearrow	\downarrow
		10		8
			\downarrow	
			11	
			\downarrow	

and ϱ be the relation given by

$$
\begin{aligned}
& 1 \varrho 2 \\
& (3,6) \varrho(4,7) \varrho(5,8) \\
& (6,9) \varrho(7,10) \varrho(8,11), \\
& (4,10) \varrho(5,11)
\end{aligned}
$$

Then I_{ϱ}^{*} is a three-separate poset with three-separation $I=I^{(1)}+I^{(2)}+I^{(3)}$, where

$$
I^{(1)}=\{3,6,9\}, \quad I^{(2)}=\{1,4,7,10\}, \quad I^{(3)}=\{2,5,8,11, *\} .
$$

The pairs $(3,9),(4,10)$ and $(5,11)$ are 3 - ϱ-extremal.

We associate with I_{ϱ} the bound quiver

$$
\begin{equation*}
\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right) \tag{3.3}
\end{equation*}
$$

as follows. The set $\left(Q\left(I_{\varrho}\right)\right)_{0}$ of vertices of $Q\left(I_{\varrho}\right)$ is the set

$$
I / \varrho=\{\overline{1}, \overline{2}, \ldots, \bar{n}\}
$$

of the ϱ-cosets \bar{q} of elements $q \in I$. We have the following arrows in $Q\left(I_{\varrho}\right)$.
(i) If (i, j) is short then the ϱ-coset $\bar{\beta}_{i j}$ of $\beta_{i j}$ is a unique arrow from \bar{i} to \bar{j}.
(ii) If $\left(i_{k}, j_{k}\right) \in \Delta I^{(k)}$ are $3-\varrho$-extremal for $k=1,2,3, i_{1} \varrho i_{2} \varrho i_{3}, j_{1} \varrho j_{2} \varrho j_{3}$ and $r_{\varrho}\left(i_{k}, j_{k}\right)=1$ for $k=1,2,3$ then we have exactly two arrows $\beta_{i_{1} j_{1}}^{*}, \beta_{i_{2} j_{2}}^{*}$: $\bar{i}_{1} \rightarrow \bar{j}_{1}$.

If $\left(i_{k}, j_{k}\right) \in \Delta I^{(k)}$ and $\left(i_{l}, j_{l}\right) \in \Delta I^{(l)}$ are 3 - ϱ-extremal, $i_{k} \varrho i_{l} \varrho i_{m}$, $j_{k} \varrho j_{l} \varrho j_{m},\left(i_{m}, j_{m}\right) \in \Delta I^{(m)}$ is not 3 - ϱ-extremal and $\left(i_{k}, j_{k}\right)$ and $\left(i_{l}, j_{l}\right)$ are unrelated then we have a unique arrow $\beta_{i_{x} j_{x}}^{*}: \bar{i}_{1} \rightarrow \bar{j}_{1}$, where $x=\min (k, l)$.

If $\left(i_{k}, j_{k}\right) \in \Delta I^{(k)}$ are 3 - ϱ-extremal for $k=1,2,3, i_{1} \varrho i_{2} \varrho i_{3}, j_{1} \varrho j_{2} \varrho j_{3}$ and $\left(i_{2}, j_{2}\right) \varrho\left(i_{3}, j_{3}\right)$ then we have a unique arrow $\beta_{i_{1} j_{1}}^{*}: \bar{i}_{1} \rightarrow \bar{j}_{1}$.

If $\left(i_{2}, j_{2}\right) \in \Delta I^{(2)}$ and $\left(i_{3}, j_{3}\right) \in \Delta I^{(3)}$ are 2- ϱ-extremal, $i_{2} \varrho i_{3}$ and $j_{2} \varrho j_{3}$ then we have a unique arrow $\beta_{i_{2} j_{2}}^{*}: \bar{i}_{2} \rightarrow \bar{j}_{2}$.

A directed path ω in $Q\left(I_{\varrho}\right)$ is called a rib path if ω is a composition of arrows which are the ϱ-cosets of ribs in I_{ϱ}. It is called a 3 -rib path if it is a composition of the ϱ-cosets of 3 -ribs in I_{ϱ}. A path ω is called a 2 -rib path if it is not a 3 -rib path and it is a composition of ϱ-cosets of 3 -ribs and 2 -ribs in I_{ϱ}. A path ω is called a nonrib path if it is not a rib path. A nonrib path is called an $I^{(k)}$-path if it is a composition of arrows $\widetilde{\beta}_{i j}$ with $i, j \in I^{(k)}$, where $\widetilde{\beta}_{i j}$ denotes either $\bar{\beta}_{i j}$ or $\beta_{i j}^{*}$. An arrow $\bar{\beta}_{i j}$ is called 1-2-skew (resp. 2-3-skew, 1-3-skew) if $i \in I^{(1)}$ and $j \in I^{(2)}$ (resp. $i \in I^{(2)}$ and $j \in I^{(3)} ; i \in I^{(1)}$ and $\left.j \in I^{(3)}\right)$. A directed path ω in Q is called 1-2-skew (resp. 2-3-skew; 1-3-skew) if ω contains a 1 -2-skew arrow (resp. contains a 2 -3-skew arrow; either contains a 1 -3-skew arrow, or contains a $1-2$-skew arrow and a $2-3$-skew arrow).

We define the set of relations $\Omega=\Omega\left(I_{\varrho}\right)$ to consist of the following elements of the path algebra $K Q\left(I_{\varrho}\right)$:
(a) $\widetilde{\beta}_{i_{1} j_{1}} \widetilde{\beta}_{i_{2} j_{2}} \ldots \widetilde{\beta}_{i_{r} j_{r}}$ if there is no sequence $\beta_{t_{0} t_{1}}, \beta_{t_{1} t_{2}}, \ldots, \beta_{t_{r-1} t_{r}}$ such that $\left(i_{k}, j_{k}\right) \varrho\left(t_{k-1}, t_{k}\right)$ for $k=1, \ldots, r$. (Recall that $\widetilde{\beta}_{i j}$ is either $\bar{\beta}_{i j}$ or $\beta_{i j}^{*}$.)
(b) $\widetilde{\beta}_{i_{0} i_{1}} \widetilde{\beta}_{i_{1} i_{2}} \ldots \widetilde{\beta}_{i_{r} i_{r+1}}-\widetilde{\beta}_{j_{0} j_{1}} \widetilde{\beta}_{j_{1} j_{2}} \ldots \widetilde{\beta}_{j_{s} j_{s+1}}$, where $i_{0}=j_{0}, i_{r+1}=j_{s+1}$,

$$
i_{0} \prec i_{1} \prec \ldots \prec i_{r} \prec i_{r+1}, \quad j_{0} \prec j_{1} \prec \ldots \prec j_{s} \prec j_{s+1}
$$

and there exist p, q such that $\left(i_{p}, i_{p+1}\right)$ and $\left(j_{q}, j_{q+1}\right)$ are not ribs.
(c) $w-u$ for all 3-rib paths (resp. 2-rib paths) w and u with a common sink and a common source.
(d) $w-w_{1}-w_{2}-w_{3}$, where w is a 3 -rib path, w_{k} is an $I^{(k)}$-path for $k=1,2,3$ and w, w_{1}, w_{2}, w_{3} have a common sink and a common source.
(e) $w-u$ for all $I^{(k)}$-paths w, u with a common sink and a common source for $k=1,2,3$.
(f) $w-u_{2}-u_{3}$, where w is a 2-rib path, u_{k} is an $I^{(k)}$-path for $k=2,3$ and w, u_{2}, u_{3} have a common sink and a common source.
(g) $w-w^{\prime}-u$ where w is a 3-rib path, w^{\prime} is a 2-rib path, u is an $I^{(1)}$-path and w, w^{\prime}, u have a common sink and a common source.

In our example we have:

$$
\begin{aligned}
\Omega\left(I_{\varrho}^{*}\right)=\{ & \bar{\beta}_{42} \bar{\beta}_{14}, \bar{\beta}_{25} \bar{\beta}_{42}, \bar{\beta}_{14} \beta_{39}^{*}, \bar{\beta}_{25} \beta_{39}^{*}, \bar{\beta}_{10,5} \bar{\beta}_{42}, \beta_{39}^{*} \bar{\beta}_{11 *}, \\
& \beta_{39}^{*} \bar{\beta}_{10,5}, \bar{\beta}_{94} \beta_{39}^{*}, \bar{\beta}_{10,5} \beta_{39}^{*}, \bar{\beta}_{36} \bar{\beta}_{69} \bar{\beta}_{10,5}-\bar{\beta}_{42} \bar{\beta}_{25} \\
& \left.\beta_{39}^{*} \bar{\beta}_{94}-\bar{\beta}_{36} \bar{\beta}_{69} \bar{\beta}_{94}\right\} .
\end{aligned}
$$

Consider the K-algebra homomorphism

$$
\begin{equation*}
g: K Q\left(I_{\varrho}\right) \rightarrow K I_{\varrho} \tag{3.4}
\end{equation*}
$$

defined by the formulas (compare with [S4]):

$$
\begin{aligned}
& g(\bar{i})= \begin{cases}e_{i i} & \text { if } r_{\varrho}(i)=1, \\
e_{i i}+e_{i^{\prime} i^{\prime}} & \text { if } r_{\varrho}(i)=2, i \varrho i^{\prime}, i \neq i^{\prime}, \\
e_{i i}+e_{i^{\prime} i^{\prime}}+e_{i^{\prime \prime} i^{\prime \prime}} & \text { if } i \varrho i^{\prime} \varrho i^{\prime \prime}, i \neq i^{\prime} \neq i^{\prime \prime} \neq i,\end{cases} \\
& g\left(\bar{\beta}_{i j}\right)= \begin{cases}e_{i j} & \text { if } r_{\varrho}(i, j)=1, \\
e_{i j}+e_{i^{\prime} j^{\prime}} & \text { if } r_{\varrho}(i, j)=2,(i, j) \varrho\left(i^{\prime}, j^{\prime}\right) \\
& \text { and }(i, j) \neq\left(i^{\prime}, j^{\prime}\right), \\
e_{i j}+e_{i^{\prime} j^{\prime}}+e_{i^{\prime \prime} j^{\prime \prime}} & \text { if }(i, j) \varrho\left(i^{\prime}, j^{\prime}\right) \varrho\left(i^{\prime \prime}, j^{\prime \prime}\right) \text { and } \\
& (i, j) \neq\left(i^{\prime}, j^{\prime}\right) \neq\left(i^{\prime \prime}, j^{\prime \prime}\right) \neq(i, j),\end{cases}
\end{aligned}
$$

and

$$
g\left(\beta_{i j}^{*}\right)=e_{i j}
$$

where $e_{i j}$ denotes the matrix with 1 in the (i, j)-entry and zeros elsewhere.
A connection between $\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right)$ and I_{ϱ} is given by the following proposition (compare with [S4, Proposition 2.8]).

Proposition 3.5. Let I_{ϱ} be a three-separate stratified poset with a threeseparation $I^{(1)}+I^{(2)}+I^{(3)}$. If $\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right)$ is the bound quiver of I_{ϱ} (see (3.3)) then the homomorphism g of (3.4) induces a K-algebra isomorphism

$$
\bar{g}: K\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right) \rightarrow K I_{\varrho}
$$

where $K\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right)=K Q\left(I_{\varrho}\right) /\left(\Omega\left(I_{\varrho}\right)\right)$.
For the proof we will need the following technical lemma.
Lemma 3.6. Suppose $(s, t) \in \Delta I^{(k)},\left(s^{\prime}, t^{\prime}\right) \in \Delta I^{(l)}, k \neq l$, s@s s^{\prime} and t ϱt^{\prime}.
(a) If $\left(s^{\prime}, t^{\prime}\right)$ is not 3-@-extremal and (s, t) is 3- ϱ-extremal then there exists a sequence $s_{0} \prec s_{1} \prec \ldots \prec s_{r}$, where $s_{0}=s^{\prime}$, $s_{r}=t^{\prime}$, the pair $\left(s_{i}, s_{i+1}\right)$ is short for any $i=0, \ldots, r-1$, and there exists $i=0, \ldots, r-1$ such that there is no relation $\left(s_{i}, s_{i+1}\right) \varrho(u, v)$ with $(u, v) \in \triangle I^{(k)}$.
(b) If $k, l \neq 1,\left(s^{\prime}, t^{\prime}\right)$ is not 2 - ϱ-extremal and (s, t) is 2 - ϱ-extremal then there exists a sequence $s_{0} \prec s_{1} \prec \ldots \prec s_{r}$, where $s_{0}=s^{\prime}$, $s_{r}=t^{\prime}$, the pair $\left(s_{i}, s_{i+1}\right)$ is short for any $i=0, \ldots, r-1$, and there exists $i=0, \ldots, r-1$ such that $r_{\varrho}\left(s_{i}, s_{i+1}\right)=1$.

Proof. We will prove (a); the proof of (b) is similar. Let

$$
s_{0} \prec s_{1} \prec \ldots \prec s_{r}
$$

be a sequence such that $s_{0}=s^{\prime}, s_{r}=t^{\prime}$, the pair $\left(s_{i}, s_{i+1}\right)$ is short for any $i=0, \ldots, r-1$, and for some $i=1, \ldots, r-1$ we have $r_{\varrho}\left(s^{\prime}, s_{i}\right)<3$ or $r_{\varrho}\left(s_{i}, t^{\prime}\right)<3$. The existence of such a sequence is obvious. Assume that for any $i=0, \ldots, r-1$ there exist $(u, v) \in \Delta I^{(k)}$ such that $\left(s_{i}, s_{i+1}\right) \varrho(u, v)$. Then it is easy to construct a sequence

$$
s_{0}^{\prime} \prec s_{1}^{\prime} \prec \ldots \prec s_{r}^{\prime}
$$

such that $s_{0}^{\prime}=s, s_{r}^{\prime}=t$ and for any $i=0, \ldots, r$ we have $s_{i}^{\prime} \varrho s_{i}$. But it follows from 3- ϱ-extremality of (s, t) that for any $i=1, \ldots, r-1$ we have $r_{\varrho}\left(s, s_{i}^{\prime}\right)=3$ and $r_{\varrho}\left(s_{i}^{\prime}, t\right)=3$. This implies that for any $i=1, \ldots, r-1$ we have $r_{\varrho}\left(s^{\prime}, s_{i}\right)=3$ and $r_{\varrho}\left(s_{i}, t^{\prime}\right)=3$, a contradiction.

Proof of Proposition 3.5. We set $(Q, \Omega)=\left(Q\left(I_{\varrho}\right), \Omega\left(I_{\varrho}\right)\right)$ and $R=K I_{\varrho}$. Note that the idempotents $\widehat{e}_{i}:=g(\bar{i}), i \in I^{*}$, form a complete set of primitive orthogonal idempotents of R. Moreover, the matrices $\widehat{e}_{i j}$,
$i \preccurlyeq j \preccurlyeq *$, defined as follows:

$$
\widehat{e}_{i j}= \begin{cases}e_{i j} & \text { if } r_{\varrho}(i, j)=1, \\ e_{i j}+e_{i^{\prime} j^{\prime}} & \text { if } r_{\varrho}(i, j)=2,(i, j) \varrho\left(i^{\prime}, j^{\prime}\right) \\ & \text { and }(i, j) \neq\left(i^{\prime}, j^{\prime}\right), \\ e_{i j}+e_{i^{\prime} j^{\prime}}+e_{i^{\prime \prime} j^{\prime \prime}} & \text { if }(i, j) \varrho\left(i^{\prime}, j^{\prime}\right) \varrho\left(i^{\prime \prime}, j^{\prime \prime}\right) \text { and } \\ & (i, j) \neq\left(i^{\prime}, j^{\prime}\right) \neq\left(i^{\prime \prime}, j^{\prime \prime}\right) \neq(i, j)\end{cases}
$$

form a K-basis of R. We shall show that $\widehat{e}_{s t} \in \operatorname{Im}(g)$ for $(s, t) \in \mathbf{\Delta} I$. This is obvious if $s=t$. Assume that $s \neq t$. We proceed by induction on $m_{s t}:=|\langle s, t\rangle|$.
(1) If $m_{s t}=0$, i.e. (s, t) is short then $\widehat{e}_{s t}=g\left(\bar{\beta}_{s t}\right) \in \operatorname{Im}(g)$.

Assume that $m>0$ and $\widehat{e}_{s t} \in \operatorname{Im}(g)$ for $(s, t) \in \Delta I$ such that $m_{s t}<m$. Suppose that $m_{s t}=m$.
(2) If (s, t) is not ϱ-extremal then there exists $p \in\langle s, t\rangle$ such that $r_{\varrho}(s, p)=r_{\varrho}(s, t)$ or $r_{\varrho}(p, t)=r_{\varrho}(s, t)$. Then $\widehat{e}_{s t}=\widehat{e}_{s p} \widehat{e}_{p t}$ and since by the induction hypothesis $\widehat{e}_{s p}, \widehat{e}_{p t} \in \operatorname{Im}(g)$ we get $\widehat{e}_{s t} \in \operatorname{Im}(g)$.
(3) Suppose that $r_{\varrho}(s, t)=2$ and (s, t) is 3 - ϱ-extremal. Then there exist $s^{\prime}, t^{\prime} \in I^{(1)}$ such that $s^{\prime} \varrho s$ and $t^{\prime} \varrho t$. It is easy to see that $s^{\prime} \prec t^{\prime}$. If $\left(s^{\prime}, t^{\prime}\right)$ is not 3 - ϱ-extremal then it follows from Lemma 3.6 and (1) that $\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g)$. Indeed, we take a sequence $s_{0} \prec s_{1} \prec \ldots \prec s_{r}$ such that $s_{0}=s, s_{r}=t$, the pairs $\left(s_{j}, s_{j+1}\right)$ are short for $j=0, \ldots, r-1$ and there is no relation $\left(s_{i}, s_{i+1}\right) \varrho(u, v)$ with $u, v \in I^{(2)} \cup I^{(3)}$, for some $i=0, \ldots, r-1$. Since $s^{\prime}, t^{\prime} \in I^{(1)}$ we get $r_{\varrho}\left(s_{i}, s_{i+1}\right)=1$ for some $i=0, \ldots, r-1$. Then

$$
\widehat{e}_{s^{\prime} t^{\prime}}=\widehat{e}_{s_{0} s_{1}} \widehat{e}_{s_{1} s_{2}} \ldots \widehat{e}_{s_{r-1} s_{r}}
$$

The right side of this equality belongs to $\operatorname{Im}(g)$ by (1). Thus $\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g)$.
If $\left(s^{\prime}, t^{\prime}\right)$ is 3 - ϱ-extremal then $\widehat{e}_{s^{\prime} t^{\prime}}=g\left(\beta_{s^{\prime} t^{\prime}}^{*}\right) \in \operatorname{Im}(g)$ as well. Since by the induction hypothesis we have $\widehat{e}_{s p} \widehat{e}_{p t} \in \operatorname{Im}(g)$, where $p \in\langle s, t\rangle$, we conclude that

$$
\widehat{e}_{s t}=\widehat{e}_{s p} \widehat{e}_{p t}-\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g)
$$

(4) Suppose that $r_{\rho}(s, t)=1$ and (s, t) is $3-\varrho$-extremal. Let $s \varrho s^{\prime} \varrho s^{\prime \prime}$ and tot' $\varrho t^{\prime \prime}$, where $s, t \in I^{(k)}, s^{\prime}, t^{\prime} \in I^{(l)}, s^{\prime \prime}, t^{\prime \prime} \in I^{(n)}$, and k, l, n are pairwise different. It is easy to check that $s^{\prime} \prec t^{\prime}$ and $s^{\prime \prime} \prec t^{\prime \prime}$. Consider the following cases.
(a) If both $\left(s^{\prime}, t^{\prime}\right)$ and $\left(s^{\prime \prime}, t^{\prime \prime}\right)$ are 3 - ϱ-extremal and $k \neq 3$ then $\widehat{e}_{s t}=$ $g\left(\beta_{s t}^{*}\right) \in \operatorname{Im}(g)$. If $k=3$ then by the same argument (since $l, n \neq 3$) we get $\widehat{e}_{s^{\prime} t^{\prime}}, \widehat{e}_{s^{\prime \prime}} t^{\prime \prime} \in \operatorname{Im}(g)$. By the induction hypothesis for any $p \in\langle s, t\rangle$ we have

$$
\widehat{e}_{s t}+\widehat{e}_{s^{\prime} t^{\prime}}+\widehat{e}_{s^{\prime \prime} t^{\prime \prime}}=\widehat{e}_{s p} \widehat{e}_{p t} \in \operatorname{Im}(g)
$$

and hence we conclude that $\widehat{e}_{s t} \in \operatorname{Im}(g)$.
(b) Suppose that $\left(s^{\prime}, t^{\prime}\right)$ is 3 - ϱ-extremal but $\left(s^{\prime \prime}, t^{\prime \prime}\right)$ is not. If $k<l$ then $\widehat{e}_{s t}=g\left(\beta_{s t}^{*}\right) \in \operatorname{Im}(g)$. If $k>l$ then by the same reason $\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g)$. Moreover, using Lemma 3.6 and arguments similar to those used in (3) we prove that $\widehat{e}_{s^{\prime \prime} t^{\prime \prime}} \in \operatorname{Im}(g)$. Then as in (a) we conclude that $\widehat{e}_{s t} \in \operatorname{Im}(g)$.
(c) Suppose that $\left(s^{\prime}, t^{\prime}\right),\left(s^{\prime \prime}, t^{\prime \prime}\right)$ are not 3 - ϱ-extremal. Then using Lemma 3.6 one can show that $e_{s^{\prime} t^{\prime}}+e_{s^{\prime \prime}} t^{\prime \prime} \in \operatorname{Im}(g)$. Then as above we get

$$
\widehat{e}_{s t}=\widehat{e}_{s p} \widehat{e}_{p t}-e_{s^{\prime} t^{\prime}}-e_{s^{\prime \prime} t^{\prime \prime}} \in \operatorname{Im}(g)
$$

if $p \in\langle s, t\rangle$.
(5) Suppose that $r_{\varrho}(s, t)=1$ and (s, t) is 2 - ϱ-extremal. Let $s \varrho s^{\prime}$ and $t \varrho t^{\prime}$, where $s, t \in I^{(k)}, s^{\prime}, t^{\prime} \in I^{(l)}$, and $\{k, l\}=\{1,2\}$. Then $s^{\prime} \prec t^{\prime}$ and $r_{\varrho}\left(s^{\prime}, t^{\prime}\right)=1$. It is easy to check that $\left(s^{\prime}, t^{\prime}\right)$ is not $3-\varrho$-extremal. If $\left(s^{\prime}, t^{\prime}\right)$ is 2 - ϱ-extremal and $k<l$ then $\widehat{e}_{s t}=g\left(\beta_{s t}^{*}\right) \in \operatorname{Im}(g)$. If $k>l$ then by the same reason $\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g)$. Taking $p \in\langle s, t\rangle$ such that $r_{\varrho}(s, p)=2$ or $r_{\varrho}(p, t)=2$ we obtain

$$
\widehat{e}_{s t}+\widehat{e}_{s^{\prime} t^{\prime}}=\widehat{e}_{s p} \widehat{e}_{p t} \in \operatorname{Im}(g)
$$

by the induction hypothesis and hence $\widehat{e}_{s t} \in \operatorname{Im}(g)$.
If $\left(s^{\prime}, t^{\prime}\right)$ is not 2 - ϱ-extremal then using Lemma 3.6 we prove that $\widehat{e}_{s^{\prime} t^{\prime}} \in$ $\operatorname{Im}(g)$. Thus again we see that

$$
\widehat{e}_{s t}=\widehat{e}_{s p} \widehat{e}_{p t}-\widehat{e}_{s^{\prime} t^{\prime}} \in \operatorname{Im}(g) .
$$

We have shown that g is an epimorphism. It is easy to check that $g(\Omega)$ $=0$. Thus g induces a K-algebra epimorphism

$$
\bar{g}: K(Q, \Omega)=K Q /(\Omega) \rightarrow R
$$

Now we show that \bar{g} is injective. It is enough to prove that for all $i, j \in I$ we have

$$
\operatorname{dim}_{K} e(i)(K Q / \Omega) e(j) \leq \operatorname{dim}_{K} \widehat{e}_{i i} R \widehat{e}_{j j}
$$

where $e(i)$ denotes the idempotent corresponding to the trivial path at \bar{i}. As an example consider the case when $r_{\varrho}(i)=2, r_{\varrho}(j)=1$. Then \bar{i} can be joined to \bar{j} by paths of the following kinds:
(1) $I^{(2)}$-paths,
(2) 2 -3-skew paths,
(3) $I^{(3)}$-paths.

Paths of the same kind are equal modulo Ω. Thus $e(i) K(Q, \Omega) e(j)$ has a basis \mathfrak{B} consisting of paths of pairwise different kinds. Moreover, all the kinds (1)-(3) cannot appear in \mathfrak{B} simultaneously. One can check that $g(\mathfrak{B})$ is a linearly independent set and the required inequality holds. The proof in the remaining cases is analogous.
4. A covering for $\left(Q\left(I_{\varrho}^{*}\right), \Omega\left(I_{\varrho}^{*}\right)\right)$. Suppose that I_{ϱ} is a three-separate stratified poset and I_{ϱ}^{*} is its one-peak enlargement (see Section 2). Let

$$
I^{*}=I^{(1)}+I^{(2)}+I^{(3)}
$$

be a three-separation of I^{*}. Note that $* \in I^{(3)}$.
Let $(Q, \Omega)=\left(Q\left(I_{\varrho}^{*}\right), \Omega\left(I_{\varrho}^{*}\right)\right)$ be the bound quiver associated with I_{ϱ}^{*} (see (3.3)). Let

$$
\begin{aligned}
& a_{i}=\bar{\beta}_{p_{i} q_{i}}: \bar{p}_{i} \rightarrow \bar{q}_{i}, \quad i=1, \ldots, k_{1}, \\
& b_{i}=\bar{\beta}_{r_{i} s_{i}}: \bar{r}_{i} \rightarrow \bar{s}_{i}, \quad i=1, \ldots, k_{2}, \\
& d_{i}=\bar{\beta}_{t_{i} u_{i}}: \bar{t}_{i} \rightarrow \bar{u}_{i}, \quad i=1, \ldots, k_{3},
\end{aligned}
$$

be all the 1 -2-skew, 2 -3-skew and 1 -3-skew arrows respectively, where $p_{i} \in$ $I^{(1)}, q_{j} \in I^{(2)}, r_{i} \in I^{(2)}, s_{j} \in I^{(3)}, t_{i} \in I^{(1)}, u_{j} \in I^{(3)}$. Denote by Q^{-}the quiver obtained from Q by removing all arrows a_{i}, b_{i}, d_{i}, and by Ω^{-}the set of relations in Ω which do not involve skew arrows.

Let $G=\mathbb{Z} \alpha * \mathbb{Z} \beta$ be the free noncommutative group with two free generators α, β. Following [S1, S4] we define a Galois covering

$$
\begin{equation*}
f:(\widetilde{Q}, \widetilde{\Omega}) \rightarrow(Q, \Omega) \tag{4.1}
\end{equation*}
$$

with group G as follows.
Let $\widetilde{Q}^{(x)}=Q^{-} \times\{x\}$ for $x \in G$. We put $j^{(x)}=(j, x)$ and $\gamma_{i j}^{(x)}=\left(\gamma_{i j}, x\right)$ where j is a vertex of Q^{-}and $\gamma_{i j}$ is an arrow in Q^{-}. We define \widetilde{Q} to be the disjoint union of $\widetilde{Q}^{(x)}$ over all $x \in G$ connected by the edges

$$
\begin{array}{rlr}
a_{i}^{(x)}: \bar{p}_{i}^{(x)} \rightarrow \bar{q}_{i}^{(\alpha x)}, & & i=1, \ldots, k_{1}, \\
b_{i}^{(x)}: \bar{r}_{i}^{(x)} \rightarrow \bar{s}_{i}^{(\beta x)}, & & i=1, \ldots, k_{2}, \\
d_{i}^{(x)}: \bar{t}_{i}^{(x)} \rightarrow \bar{u}_{i}^{(\beta \alpha x)}, & & i=1, \ldots, k_{3}
\end{array}
$$

(see Fig. 4.2). We define f by setting $f\left(j^{(x)}\right)=j$ and $f\left(\gamma_{i j}^{(x)}\right)=\gamma_{i j}$. We take for $\widetilde{\Omega}$ the natural lift of Ω along f. The group G acts on \widetilde{Q} in the following way:

$$
y * j^{(x)}=j^{(y x)}, \quad y * \gamma_{i j}^{(x)}=\gamma_{i j}^{(y x)} \text { for } y \in G .
$$

We note that f induces a bound quiver isomorphism

$$
(\widetilde{Q} / G, \widetilde{\Omega} / G) \simeq(Q, \Omega)
$$

In general I_{ϱ} admits many different three-separations. However, it is easy to see that the isomorphism class of the covering (4.1) does not depend on the choice of the three-separation.

We are especially interested in the case when the covering (4.1) is the universal cover of (Q, Ω). For this purpose we need the following definition.

Fig. 4.2

Definition 4.3. We call a three-separate poset I_{ϱ} a rib convex poset if the following hold.
(1) The rib skeleton $\operatorname{rsk}\left(I_{\varrho}\right)$ of I_{ϱ} has exactly three rib-connected components $\Re_{1}, \Re_{2}, \Re_{3}$; we assume that $\Re_{i} \subseteq I^{(i)}$ for $i=1,2,3$.
(2) If $r_{\varrho}(i)>1$ then $i \in \operatorname{rsk}\left(I_{\varrho}\right)$.
(3) For any $(i, j) \in \triangle \Re_{k}$ for some k there exists a rib path from \bar{i} to \bar{j}.

Proposition 4.4 (compare [S4, Proposition 3.8]). Let I_{ϱ} be a rib convex three-separate poset and $(Q, \Omega)=\left(Q\left(I_{\varrho}^{*}\right), \Omega\left(I_{\varrho}^{*}\right)\right)$ be the bound quiver associated with $I_{\varrho}^{*}($ see (3.3)).
(a) The fundamental group $\Pi_{1}(Q, \Omega)$ of (Q, Ω) is a free group with two free generators.
(b) The covering $f:(\widetilde{Q}, \widetilde{\Omega}) \rightarrow(Q, \Omega)$ defined in (4.1) is the universal Galois covering of (Q, Ω).

Proof. (a) Note that we can assume that the three-separation $I^{(1)}+$ $I^{(2)}+I^{(3)}$ of I_{ϱ}^{*} is such that

$$
\begin{aligned}
& I^{(1)}=\left\{i \in I: i \preccurlyeq x \text { for some } x \in \Re_{1}\right\} \\
& I^{(2)}=\left\{i \in I \backslash I^{(1)}: i \preccurlyeq x \text { for some } x \in \Re_{2}\right\}, \\
& I^{(3)}=I \backslash\left(I^{(1)} \cup I^{(2)}\right) \text { and } * \in I^{(3)}
\end{aligned}
$$

We keep the notation of skew arrows introduced above. Note that the quiver Q^{-}obtained from Q by removing all the skew arrows has no oriented cycles and has the following property:
$\left(*_{Q^{-}}\right)$for each vertex $\bar{i} \in Q^{-}$there exists an oriented path $\omega: \bar{i} \rightarrow *$ in Q^{-}.
We denote by $Q^{\prime \prime}$ the full subquiver of Q^{-}consisting of the vertices \bar{i} for $i \in I^{(3)}$, and by Q^{\prime} the full subquiver of Q^{-}consisting of the vertices \bar{i} for $i \in I^{(2)} \cup I^{(3)}$. We have quiver embeddings $Q^{\prime \prime} \subseteq Q^{\prime} \subseteq Q^{-} \subseteq Q$. Note that Q^{\prime} and $Q^{\prime \prime}$ have the property $\left(*_{Q^{\prime}}\right)$ and $\left(*_{Q^{\prime \prime}}\right)$ respectively and they are closed under taking successors in Q^{-}.

First we construct a maximal tree $T^{\prime \prime} \subseteq Q^{\prime \prime}$ with the property $\left(*_{T^{\prime \prime}}\right)$ by induction on $\left|Q_{0}^{\prime \prime}\right|$.

If $\left|Q_{0}^{\prime \prime}\right|=2$ then we take $T^{\prime \prime}=Q^{\prime \prime}$.
Suppose that if $\left|Q_{0}^{\prime \prime}\right|<m$ then there exists $T^{\prime \prime}$ with the required properties. Let $\left|Q_{0}^{\prime \prime}\right|=m$ and \bar{a} be a minimal element in $Q^{\prime \prime}$ (i.e. a source in $Q^{\prime \prime}$). Let $T_{+}^{\prime \prime}$ be the maximal tree in the quiver obtained from $Q^{\prime \prime}$ by removing the vertex \bar{a}. Let $\bar{\beta}_{a t}$ be an arrow in $Q^{\prime \prime}$ from \bar{a} to some $\bar{t} \in T_{+}^{\prime \prime}$. Then $T^{\prime \prime}=T_{+}^{\prime \prime} \cup\{\bar{a}\} \cup\left\{\bar{\beta}_{a t}\right\}$ is a tree with the required property.

Next, just as above, by induction on $\left|Q_{0}^{\prime} \backslash Q_{0}^{\prime \prime}\right|$ we construct a maximal tree T^{\prime} in Q^{\prime} with the property $\left(*_{T^{\prime}}\right)$ and such that $T^{\prime} \cap Q^{\prime \prime}=T^{\prime \prime}$. Finally,
applying an induction on $\left|Q_{0}^{-} \backslash Q_{0}^{\prime}\right|$ we extend T^{\prime} to a maximal tree T in Q^{-}having the property $\left(*_{T}\right)$. Note that T is a maximal tree in Q.

Suppose that $\left(Q^{-}\right)_{0}$ consists of the elements $i_{k}, k=0, \ldots, m$, where $i_{0}=\bar{\mp}$. Since Q^{-}has no oriented cycle, without loss of generality we can suppose that if there exists a directed path from i_{k} to i_{j} in Q^{-}then $k>j$.
(1) We show by induction on k that if $b=\bar{\beta}_{s t} \in Q^{\prime \prime}$ is an arrow beginning at $i_{k}=\bar{s}$ then $\widehat{b} \in N_{\Omega}$ (we keep the notation of Lemma 2.5). For $k=0$ this is obvious. Suppose that for $k<m$ the statement is proved. Let $k=m$ and $s, t \in I^{(3)}$. If $b \in T$ then $\widehat{b} \in N_{\Omega}$. Suppose that $b \notin T$. Then there exists an arrow $\bar{\beta}_{s s_{1}}$ in T such that $s_{1} \in I^{(3)}$. Consider two sequences $\beta_{s s_{1}}, \beta_{s_{1} s_{2}}, \ldots, \beta_{s_{m} *}$ and $\beta_{t t_{1}}, \beta_{t_{1} t_{2}}, \ldots, \beta_{t_{l} *}$ of short pairs in $I^{(3)}$. Then

$$
\left(b \bar{\beta}_{t t_{1}} \bar{\beta}_{t_{1} t_{2}} \ldots \bar{\beta}_{t_{l} *}, \bar{\beta}_{s s_{1}} \bar{\beta}_{s_{1} s_{2}}, \ldots, \bar{\beta}_{s_{m} *}\right)
$$

is an Ω-contour.
Since $\bar{\beta}_{s s_{1}} \in T$ and by the induction hypothesis $\widehat{\bar{\beta}}_{t_{i} t_{i+1}}, \widehat{\bar{\beta}}_{s_{j} s_{j+1}} \in N_{\Omega}$ for $i=0, \ldots, l$ and $j=1, \ldots, m$, we get $\widehat{b} \in N_{\Omega}$. (Here we put $t_{l+1}=s_{m+1}$ $=*$ and $t_{0}=t$.)

In particular, we have shown that $\widehat{b} \in N_{\Omega}$ if b is the ϱ-coset of a rib.
(2) Now we are going to prove that for skew arrows b_{p}, b_{q} with $r_{p}, r_{q} \in \Re_{2}$ we have $\widehat{b}_{p} \equiv \widehat{b}_{q}$ (modulo N_{Ω}). By our assumptions on I_{ϱ} there exist points $x_{1}, \ldots, x_{l} \in \Re_{2}$ and rib paths u_{i}, v_{i} for $i=1, \ldots, l$ as in the figure:

where $\bar{r}_{p_{i}}$ is the source of the 2 - 3 -skew arrow $b_{p_{i}}, p_{0}=p$ and $p_{l}=q$. Denote
 $\left(u_{i} b_{i-1} w_{i-1}, v_{i} b_{i} w_{i}\right)$ is an Ω-contour for $i=1, \ldots, l$. By (1) above we get $\widehat{v}_{i}, \widehat{u}_{i}, \widehat{w}_{i} \in N_{\Omega}$, hence $\widehat{b}_{p} \widehat{b}_{q}^{-1} \in N_{\Omega}$.
(3) By induction on k we shall show that if $b=\bar{\beta}_{s t} \in Q^{\prime}$ is not a skew arrow and it begins at $i_{k}=\bar{s}$ then $\widehat{b} \in N_{\Omega}$. For $k=0$ this is obvious. Suppose that for $k<m$ the statement is proved. Let $k=m$. Suppose that $b \notin T$. Let $\bar{\beta}_{s^{\prime} s_{1}}$ be an arrow in $T^{\prime} \subseteq T$ beginning at i_{k} and $s^{\prime}, s_{1} \in I^{(2)} \cup I^{(3)}$.

If $s=s^{\prime} \in I^{(3)}$ then $s_{1}, t \in I^{(3)}$ and we prove the statement as in (1).
Suppose that $s=s^{\prime} \in I^{(2)}$. Then $s_{1}, t \in I^{(2)}$. Let

$$
\beta_{s_{1} s_{2}}, \ldots, \beta_{s_{m} r_{p}} \text { and } \quad \beta_{t t_{1}}, \ldots, \beta_{t_{l} r_{q}}
$$

be sequences of short pairs in $I^{(2)}$ ending at $r_{p}, r_{q} \in \Re_{2}$ whose ϱ-cosets are the sources of the arrows b_{p}, b_{q} respectively. The sinks of these arrows are \bar{s}_{p}, \bar{s}_{q}. Let u_{p} and u_{q} be paths composed of the ϱ-cosets of short pairs in
$I^{(3)}$ connecting \bar{s}_{p} and \bar{s}_{q} with $\bar{*}$ respectively. Then

$$
\left(b \bar{\beta}_{t t_{1}}, \ldots, \bar{\beta}_{t_{l} r_{q}} b_{q} u_{q}, \bar{\beta}_{s^{\prime} s_{1}} \bar{\beta}_{s_{1} s_{2}}, \ldots, \bar{\beta}_{s_{m} r_{p}} b_{p} u_{p}\right)
$$

is an Ω-contour and since $\bar{\beta}_{s^{\prime} s_{1}} \in T, \widehat{b}_{p} \equiv \widehat{b}_{q}$ (modulo N_{Ω}) and by the induction hypothesis we get $\widehat{b} \in N_{\Omega}$.

Suppose now that $s \neq s^{\prime}$. Then $r_{\varrho}(s)>1$, hence $s \in \operatorname{rsk}\left(I_{\varrho}\right)$. If $s \in \Re_{2}$ then, since $b \in Q^{\prime}, t \in I^{(2)}$. We have a path u_{p} composed of the ϱ-cosets of short pairs from $I^{(2)}$ connecting \bar{t} with the source \bar{r}_{p} of a skew arrow b_{p} such that $r_{p} \in \Re_{2}$. From the rib convexity of \Re_{2} we get the existence of a rib path v from \bar{s} to \bar{r}_{p}. Then

$$
\left(v b_{p}, b u_{p} b_{p}\right)
$$

is an Ω-contour and since $\widehat{v} \in N_{\Omega}$ and by the induction hypothesis $\widehat{u}_{p} \in N_{\Omega}$, we get $\widehat{b} \in N_{\Omega}$.

If $s \in \Re_{3}$ then $s, t \in I^{(3)}$ and we prove the statement as in (1).
(4) We show that $\widehat{b}_{p} \equiv \widehat{b}_{q}$ (modulo N_{Ω}) for any p, q. Note that it is enough to show that $\widehat{b}_{p} \equiv \widehat{b}_{q}$ (modulo N_{Ω}) if $r_{p} \notin \Re_{2}, r_{q} \in \Re_{2}$ and $r_{p} \prec r_{q}$. Let v be a path composed of the ϱ-cosets of short pairs in $I^{(2)}$ from \bar{r}_{p} to \bar{r}_{q}, and u_{p}, u_{q} be the paths in $Q^{\prime \prime}$ composed of the ϱ-cosets of short pairs connecting \bar{s}_{p} and \bar{s}_{q} with $\bar{*}$ respectively. Then ($b_{p} u_{p}, v b_{q} u_{q}$) is an Ω-contour and by (1) and (3) we get $\widehat{b}_{p} \widehat{b}_{q}^{-1} \in N_{\Omega}$.
(5) We show as in (2) that $\widehat{d}_{p} \equiv \widehat{d}_{r}$ (modulo N_{Ω}) for all 1-3-skew arrows d_{p}, d_{r} whose sources are the ϱ-cosets of elements of $\Re_{1} ; \widehat{d}_{p} \equiv \widehat{a}_{r} \widehat{b}_{q}$ (modulo N_{Ω}) for any 1-3-skew arrow $d_{p}, 1$-2-skew arrow a_{r} and 2 -3-skew arrow b_{q} such that the sources of d_{p} and a_{r} are the ϱ-cosets of elements of \Re_{1}, and $\widehat{a}_{p} \equiv \widehat{a}_{r}$ (modulo N_{Ω}) for any 1-2-skew paths $\widehat{a}_{p}, \widehat{a}_{r}$ whose sources are the ϱ-cosets of elements of \Re_{1}.
(6) We show as in (3) that if $b=\bar{\beta}_{s t}$ is an arrow in Q^{-}then $\widehat{b} \in N_{\Omega}$.
(7) We show as in (4) that

$$
\widehat{d}_{p} \equiv \widehat{d}_{r}, \quad \widehat{a}_{q} \equiv \widehat{a}_{r}, \quad \widehat{d}_{p} \equiv \widehat{a}_{r} \widehat{b}_{q}\left(\text { modulo } N_{\Omega}\right)
$$

for arbitrary p, q, r. Note that there exists at least one $2-3$-skew arrow and at least one 1 -3-skew arrow or 1-2-skew arrow.
(8) We show that $\widehat{\beta}_{i j}^{*} \in N_{\Omega}$ for any i, j such that the arrow $\beta_{i j}^{*}$ exists. There is a rib path u from \bar{i} to \bar{j} and a nonzero path v from \bar{j} to $\bar{*}$ composed of the ϱ-cosets of short pairs in I^{*}. Then $\left(u v, \beta_{i j}^{*} v\right)$ is an Ω-contour and since $\widehat{u}, \widehat{v} \in N_{\Omega}$ we get $\widehat{\beta}_{i j}^{*} \in N_{\Omega}$ as well.

We have shown that $\widehat{a}_{1} N_{\Omega}, \widehat{b}_{1} N_{\Omega}$ generate the group $\Pi_{1}(Q, \Omega)$ if there exists a 1-2-skew arrow a_{1}, and $\widehat{d}_{1} N_{\Omega}, \widehat{b}_{1} N_{\Omega}$ generate $\Pi_{1}(Q, \Omega)$ if there exists a $1-3$-skew arrow d_{1}.
(9) Now we prove that $\left\{\widehat{a}_{1} N_{\Omega}, \widehat{b}_{1} N_{\Omega}\right\}$ (or $\left\{\widehat{d}_{1} N_{\Omega}, \widehat{b}_{1} N_{\Omega}\right\}$) is a set of free generators of $\Pi_{1}(Q, \Omega)$.

Suppose that a_{1} exists. We have to show that no word of the form

$$
\kappa=\widehat{a}_{1}^{s_{1}} \widehat{b}_{1}^{t_{1}} \ldots \widehat{a}_{1}^{s_{l}} \widehat{b}_{1}^{t_{l}}
$$

such that $s_{i+1} \neq 0 \neq t_{i}$ for $i=1, \ldots, l-1$ or $s_{1} \neq 0$ or $t_{l} \neq 0$ belongs to N_{Ω}.
Suppose that $\omega=\lambda_{1} \omega_{1}+\ldots+\lambda_{m} \omega_{m}$ is a minimal relation in Ω such that $m \geq 2$. Then all the ω_{i} have a common sink and a common source. Moreover, ω is a sum of elements of the form $a_{1} b a_{2}$ where $a_{1}, a_{2} \in K Q$ and b is a relation of type (a), (b), (c), (d), (e), (f) or (g) (see (3.3)). Since ω is minimal and $m \geq 2$ we have $\omega=a_{1} b a_{2}$ where $a_{1}, a_{2} \in K Q$ are paths in Q and b is a relation of one of the above types. Thus the following types of Ω-contours are possible:

- $\left(\gamma_{1}, \gamma_{2}\right), \quad\left(\gamma_{1} b_{i} \gamma_{2}, \gamma_{3} b_{j} \gamma_{4}\right), \quad\left(\gamma_{1} a_{i} \gamma_{2}, \gamma_{3} a_{j} \gamma_{4}\right)$, $\left(\gamma_{1} d_{i} \gamma_{2}, \gamma_{3} d_{j} \gamma_{4}\right), \quad\left(\gamma_{1} d_{i} \gamma_{2}, \gamma_{3} a_{j} \gamma_{4} b_{k} \gamma_{5}\right)$
(induced by relations of type (b)), and
- $\left(\gamma_{i}, \gamma_{j}\right)$,
(induced by relations of types (c) to (g)), where the γ_{s} denote paths in Q which do not contain skew arrows.

Hence we get the following types of generators of N_{Ω} :

$$
\widehat{\gamma}, \quad \widehat{\gamma}_{1} \widehat{b}_{i}^{-1} \widehat{\gamma}_{2} \widehat{b}_{j} \widehat{\gamma}_{3}, \quad \widehat{\gamma}_{1} \widehat{a}_{i}^{-1} \widehat{\gamma}_{2} \widehat{a}_{j} \widehat{\gamma}_{3}, \quad \widehat{\gamma}_{1} \widehat{d}_{i}^{-1} \widehat{\gamma}_{2} \widehat{d}_{j} \widehat{\gamma}_{3}, \quad \widehat{\gamma}_{1} \widehat{d}_{i} \widehat{\gamma}_{2} \widehat{b}_{j}^{-1} \widehat{\gamma}_{3} \widehat{a}_{k}^{-1} \widehat{\gamma}_{4}
$$

where the $\widehat{\gamma}_{i}$ are elements of the free group $\Pi_{1}(Q)$ which are words without the letters $\widehat{a}_{i}, \widehat{b}_{i}, \widehat{d}_{i}$.

Consider the group homomorphism

$$
h: \Pi_{1}(Q) \rightarrow \mathbb{Z} a * \mathbb{Z} b
$$

defined by $h\left(\widehat{\gamma}_{i}\right)=1, h\left(\widehat{a}_{i}\right)=a, h\left(\widehat{b}_{i}\right)=b, h\left(\widehat{d}_{i}\right)=a b$. Note that all the generators of N_{Ω} listed above are contained in $\operatorname{Ker}(h)$. Hence $N_{\Omega} \subseteq \operatorname{Ker}(h)$. If κ is as above then $h(\kappa) \neq 1$, so $\kappa \notin N_{\Omega}$.

If there is no 1 -2-skew arrow a_{i} in Q then we prove in a similar way that $\left\{\widehat{d}_{1} N_{\Omega}, \widehat{b}_{1} N_{\Omega}\right\}$ freely generates $\Pi_{1}(Q, \Omega)$. This finishes the proof of (a).

The statement (b) follows from the above considerations and from the construction of the universal cover described in (2.6). Since $\Pi_{1}(Q, \Omega)=$ $\mathbb{Z} \alpha * \mathbb{Z} \beta$ it is easy to see that the construction in our case coincides with the construction (4.1) applied to $G=\Pi_{1}(Q, \Omega)$.
5. Three-partite posets and the associated three-peak bound quivers. In this section we discuss some special case of three-separate posets, namely the three-partite posets in the sense of Definition 5.1 below.

If $I_{1}, I_{2} \subseteq I$ are subposets then we write $I_{1}<I_{2}$ if for all $i_{1} \in I_{1}$ and $i_{2} \in I_{2}$ we have $i_{1} \prec i_{2}$. We say that I_{1} is connected if it is connected with respect to the equivalence relation generated by the following relation:

$$
i \prec \succ j \Leftrightarrow \text { either } i \prec j \text { or } j \prec i \text { is a minimal relation in } I \text {. }
$$

Definition 5.1 (compare with [S4, Def. 4.1]). A three-separate poset I_{ϱ}^{*} with a three-separation $I^{(1)}+I^{(2)}+I^{(3)}$ and a unique maximal element * is called three-partite if
(a) $I^{(k)}$ is the disjoint union of subposets $C^{(k)}$ and $J^{(k)}$ such that $C^{(k)}$ is either empty or it is a chain

$$
C^{(k)}: c_{1}^{(k)} \rightarrow c_{2}^{(k)} \rightarrow \ldots \rightarrow c_{m_{k}}^{(k)}
$$

for $k=2,3, I^{(1)}<J^{(2)}<J^{(3)}$ and $C^{(2)}<C^{(3)}$.
(b) The stratified poset I_{ϱ} is rib-convex.
(c) There exist connected subposets $I_{0}^{(1)} \subseteq I^{(1)}, I_{0}^{(2)} \subseteq J_{0}^{(2)} \subseteq J^{(2)}$, $I_{0}^{(3)} \subseteq J_{0}^{(3)} \subseteq J^{(3)}$ and poset isomorphisms $\sigma_{1}: I_{0}^{(1)} \rightarrow I_{0}^{(2)}, \sigma_{2}: I_{0}^{(2)} \rightarrow I_{0}^{(3)}$ and $\sigma_{3}: J_{0}^{(2)} \rightarrow J_{0}^{(3)}$ satisfying the following conditions:
(i) σ_{2} is the restriction of σ_{3} to $I_{0}^{(2)}$,
(ii) $r_{\varrho}(i)=3$ if and only if i belongs to $I_{0}^{(k)}$ for some $k=1,2,3$, and $r_{\varrho}(i)=2$ if and only if i belongs to $J_{0}^{(k)} \backslash I_{0}^{(k)}$ for some $k=2,3$,
(iii) $(i, j) \varrho\left(\sigma_{1}(i), \sigma_{1}(j)\right) \varrho\left(\sigma_{2} \sigma_{1}(i), \sigma_{2} \sigma_{1}(j)\right)$ provided $i \preccurlyeq j, i, j \in I_{0}^{(1)},[i, j]$ $=\{i, j\}$, and $(i, j) \varrho\left(\sigma_{3}(i), \sigma_{3}(j)\right)$ provided $i \preccurlyeq j, i, j \in J_{0}^{(2)},[i, j]=\{i, j\}$.

We visualize this notion in Fig. 5.2.
Following an idea in [S4] we associate with any three-partite stratified poset I_{ϱ}^{*} a three-peak bound quiver

$$
\begin{equation*}
I_{\varrho}^{*+\times}=\left(Q^{+\times}, \Omega^{+\times}\right) \tag{5.3}
\end{equation*}
$$

defined as follows:
For the quiver $Q^{+\times}$we take the disjoint union of Q^{-}(see (4.1)) and two chains:

$$
\begin{aligned}
& C^{+}: c_{1}^{(3)+} \rightarrow c_{2}^{(3)+} \rightarrow \ldots \rightarrow c_{m_{3}}^{(3)+} \rightarrow+ \\
& C^{\times}: c_{1}^{(2) \times} \rightarrow \ldots \rightarrow c_{m_{2}}^{(2) \times} \rightarrow c_{1}^{(3) \times} \rightarrow \ldots \rightarrow c_{m_{3}}^{(3) \times} \rightarrow \times
\end{aligned}
$$

connected by the following arrows (we use the notation from Section 4):
(i) $\beta_{r_{i}+}: \bar{r}_{i} \rightarrow+$ if r_{i} and $c_{m_{3}}^{(3)}$ are unrelated,
$I_{\varrho}^{*}:$

Fig. 5.2
(ii) $\beta_{p_{i} \times}: \bar{p}_{i} \rightarrow \times$ if p_{i} and $c_{m_{3}}^{(3)}$ are unrelated and $\beta_{t_{i} \times}: \bar{t}_{i} \rightarrow \times$ if t_{i} and $c_{m_{3}}^{(3)}$ are unrelated,
(iii) $a_{i}^{\times}: \bar{p}_{i} \rightarrow \bar{q}_{i}^{(\times)}$if $q_{i} \in C^{(2)}$,
(iv) $b_{i}^{+}: \bar{r}_{i} \rightarrow \bar{s}_{i}^{(+)}$if $s_{i} \in C^{(3)}$,
(v) $d_{i}^{\times}: \bar{t}_{i} \rightarrow \bar{u}_{i}^{(\times)}$if $u_{i} \in C^{(3)}$
(see Fig. 5.2).
For $\Omega^{+\times}$we take the set Ω^{-}with the following additional relations:
(1) $w \beta_{r_{i}+}$ and $w b_{j}^{+}$if w is neither a 3-rib path nor a 2-rib path nor an $I^{(2)}$-path,
(2) $w \beta_{t_{i} \times}, w \beta_{p_{i} \times}, w a_{i}^{\times}$and $w d_{i}^{\times}$if w is neither a 3-rib path nor an $I^{(1)}$-path,
(3) $w u-v u^{\prime}$, where $w: \bar{p} \rightarrow \bar{r}_{i}$ is a 3-rib path, a 2-rib path or an $I^{(2)}$-path, and where $v: \bar{p} \rightarrow \bar{r}_{j}$ and u and u^{\prime} have a common sink in C^{+}.
(4) $w u-v u^{\prime}$, where $w: \bar{p} \rightarrow \bar{p}_{i}$ is a 3-rib path or an $I^{(1)}$-path, and where $v: \bar{p} \rightarrow \bar{p}_{j}, u$ and u^{\prime} have a common sink in C^{\times}.

Analogously to the bipartite case $[\mathrm{S} 4]$ there is an algebra isomorphism

$$
K I_{\varrho}^{*+\times} \simeq \xi \widetilde{R} \xi
$$

where $\widetilde{R}=K(\widetilde{Q}, \widetilde{\Omega})$ and

$$
\xi=\sum_{t \in Q_{0}^{(e)}} e_{t}+\sum_{t \in C^{(2)}} e_{(t, \alpha)}+\sum_{t \in C^{(3)}}\left(e_{(t, \beta)}+e_{(t, \beta \alpha)}\right)+e_{(*, \beta)}+e_{(*, \beta \alpha)}
$$

and we consider the diagram

where ι is the natural equivalence, f_{sp} is the covering functor (see [Ga], [S4, 4.20]), $\nu=\sum_{t} e_{t}$ where t runs over the set of vertices of the union of all quivers $Q_{0}^{(\omega)}$ for ω of the form $\omega=\alpha^{s_{1}} \beta^{t_{1}} \ldots \alpha^{s_{m}} \beta^{t_{m}}$, where $s_{i}, t_{i} \geq 0$ for $i=1, \ldots, m, L_{\xi}$ and T_{ν} are the lower and upper induction functors respectively (see $[\mathrm{S} 4, \mathrm{~S} 5]$), $f_{+\times}$is the composed functor $f_{\mathrm{sp}} \circ T_{\nu} \circ L_{\xi} \circ \iota$.

By the Splitting Theorem of [S3], Proposition 4.3 above, Theorem 4.19 and Remark 4.21 of [S4] we get the following.

Theorem 5.5. If I_{ϱ}^{*} is a three-partite stratified poset then:
(a) The functor $f_{+\times}: \bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right) \rightarrow \bmod _{\mathrm{sp}}(R)$ is exact, faithful, dense and preserves indecomposability.
(b) The category $\bmod _{\mathrm{sp}}\left(K I_{Q}^{*+\times}\right)$ is of finite representation type if and only if so is the category $\bmod _{\mathrm{sp}}(R)$.
(c) If K is an algebraically closed field then $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ is of tame (resp. wild) representation type if and only if $\bmod _{\mathrm{sp}}(R)$ is of tame (resp. wild) representation type.

Applying arguments similar to those used in [S4, Proposition 4.9] and Proposition 4.3 above one can prove the following.

Theorem 5.6. Let I_{ϱ}^{*} be a three-partite poset and let $I_{\varrho}^{*+\times}$ be the associated three-peak bound quiver (5.3).
(a) The fundamental group $\Pi_{1}\left(I_{\varrho}^{*+\times}\right)$ is trivial. If in addition every vertex of $I_{\varrho}^{*+\times}$ is separating then the Auslander-Reiten quiver $\Gamma_{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ of $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ has a preprojective component.
(b) If the Auslander-Reiten quiver $\Gamma_{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ of $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*+\times}\right)$ has a preprojective component then $\bmod _{\mathrm{sp}}\left(K I_{\rho}^{*}\right)$ is of finite representation type if and only if $I_{e}^{*+\times}$ contains no Weichert's critical forms (see [W]).

Let us finish with a simple corollary from the above considerations.
Corollary 5.7. If I_{ϱ}^{*} is a three-partite stratified poset and $\bmod _{\mathrm{sp}}\left(K I_{\varrho}^{*}\right)$ is of finite representation type then I_{ϱ} does not contain any rib.

Proof. It is easy to check that if I_{ϱ} contains a rib then $I_{\varrho}^{*+\times}$ contains a subquiver of type $\widetilde{\mathbb{D}}_{4}$ which is of infinite representation type. Thus the statement follows from Theorem 5.6 above.

References

[AS] I. Assem and A. Skowroński, On some class of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
[Ga] P. Gabriel, The universal cover of a representation finite algebra, in: Lecture Notes in Math. 903, Springer, 1981, 68-105.
[Gr] E. L. Green, Group graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, 1981, 106-115.
[MP] R. Martínez-Villa and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292.
[S1] D. Simson, On the representation type of stratified posets, C. R. Acad. Sci. Paris 311 (1990), 5-10.
[S2] -, Representations of bounded stratified posets, coverings and socle projective modules, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 499-533.
[S3] - A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 113-137.
[S4] -, Right peak algebras of two-separate stratified posets, their Galois covering and socle projective modules, Comm. Algebra 20 (1992), 3541-3591.
[S5] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic Appl. 4, Gordon \& Breach, 1992.
[Sp] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[W] Th. Weichert, Darstellungstheorie von Algebren mit projektivem Sockel, Doctoral Thesis, Universität Stuttgart, 1989.

INSTITUTE OF MATHEMATICS
NICHOLAS COPERNICUS UNIVERSITY
CHOPINA $12 / 18$
87-100 TORUŃ, POLAND

Received 16 November 1992;
in revised form 29 March 1993

[^0]: 1991 Mathematics Subject Classification: Primary 16A64.
 Supported by Polish Scientific Grant KBN 1221/2/91.

