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Bound quivers of three-separate stratified posets,
their Galois coverings and socle projective representations

by

Stanistaw Kasjan (Torun)

Abstract. A class of stratified posets I; is investigated and their incidence algebras
KI ;‘ are studied in connection with a class of non-shurian vector space categories. Under
some assumptions on I, we associate with I; a bound quiver (@, £2) in such a way that
KI; ~ K(Q,$2). We show that the fundamental group of (Q, £2) is the free group with
two free generators if I is rib-convex. In this case the universal Galois covering of (Q, £2)

is described. If in addition I, is three-partite a fundamental domain I*TX of this covering
is constructed and a functorial connection between modsp(K1;1*) and modsp (K1) is
given.

1. Introduction. Socle projective representations of stratified posets
introduced in [S1, S2] (see Definition 2.1 below) appear in a natural way in
the study of vector space categories (see [S2], [S5, Chap. 17]) and lattices
over orders (see [SH, Ch. 13], [S4]). The aim of this paper is to give some
tools for studying these representations for a certain class of stratified posets.

Our main points of interest are the incidence algebra K1 over a field K
of a three-separate stratified poset I; with a unique maximal element * (see
Definition 3.1) and the representation type of the category modg, (K1) of
socle projective right K I;-modules. Following [S1, S2, S4] we associate with
any such poset I; a bound quiver

(QI3), £2(1,))
in such a way that KI; is isomorphic to the bound quiver algebra
KQ(I;)/2(I7). Under the assumption that I is rib-convex (see Section 4)
we show that the fundamental group I1:(Q({}), {2(I;)) is a free noncom-

mutative group with two free generators and we give an explicit descrip-
tion of the universal covering (Q, £2) of (Q(Iy),2(I;)). If in addition I

is three-partite we define, by means of (@, f)), a simply connected [AS]
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finite-dimensional three-peak algebra K1 Zj” and a functor

fox s modgy (KI; ) — modg, (KI})
preserving the representation type. In the case when the Auslander—Reiten
quiver Iy, (K I;*X) of modsp, (K IZ,‘*X) has a preprojective component we
get a simple criterion for the finite representation type of mods, (K I;*X)

(see Theorems 5.5, 5.6). In particular, we solve a problem stated in [S4,
Remark 4.33].

I would like to thank Professor Daniel Simson for calling my interest to
this subject and useful remarks concerning the paper.

2. Preliminaries and notation. We consider a poset I with partial
order <. We suppose that I = {1,...,n} and if i < j then i <y j for
1,7 € I. Define

AL:={(i,5):i,j€Tandi=j},
AL :={(i,5) :i,5 € T and i < j}.
Given (i,7) € Al we put [i,j] :={se€l:i1<s=<j}and (i,j) ={sel:
i < s < j}. Throughout we identify (,4) with 1.
DEFINITION 2.1 [S2, S4]. A stratification of I is an equivalence relation
o on AI such that if (7,7)o(p,q) then there exists a poset isomorphism

o : [i,j] — [p, q] such that (i,¢)o(p,o(t)) and (Z,j)o(c(t),q) for any ¢ € [i, j].
A stratified poset is a pair
IQ = (Iv Q)

where [ is a poset and o is a stratification of I.

We denote by 7,(i, j) the cardinality of the p-coset of (7, 5), and call (g, j)
a rib if r,(i,7) > 1 and i # j. The number r,(i,j) is then the rib rank of
the rib (i, 7).

The full stratified subposet rsk(1,) of I, consisting of all beginnings and
ends of ribs in I, is called the rib skeleton of I,. We fix a decomposition

I‘Sk(IQ) =R +...+ Ry

into rib-connected components with respect to the rib-equivalence relation
generated by the following relation:

i—j < either (i,7) or (j,7) is a rib.
Fix a field K and a stratified poset I,. We recall from [S4] that the
K-algebra

(2.2) KI,={b= (bpg) € Mpxn(K) :bpy=0if p £ q
and b;; = by if (i,7)o(p,q)}
is called the incidence algebra of I,.
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We denote by I* = I U {x} the enlargement of I by adjoining a unique
maximal element * (called the peak) and we extend trivially the relation o
from Al to AT*.

Thus we get a right peak algebra (see [S4]) of the form

« (KI, M
o9 iy = (e 1)
where
K
M = : n
K

is a left K1,-module with respect to the usual matrix multiplication.

For a more detailed discussion of stratified posets, examples and appli-
cations the reader is referred to [S2] and [S5, Section 17.16].

In Section 3 below we will use the notion of the fundamental group of
a quiver ) with a set of relations {2 ([Gr, MP]). For the convenience of the
reader we briefly recall this concept. We follow [S4].

With a connected quiver @) we associate its fundamental group I, (Q, q)
computed as the group of homotopy classes [w] of walks w in @ starting
and ending at the fixed point q. By a walk we mean a formal composition
aq ..o, where o, is an arrow of @) or its formal inverse and the sink of «,
is the source of ay,y1. Homotopy is the smallest equivalence relation ~ (on
the set of walks) such that:

(1) 1, ~ 1! for each vertex z of Q,

(2) aa™! ~ 1, and ata &~ 1, for each arrow o : & — y,

(3) if w = v then uw ~ uv and wu’ ~ vu’ whenever the walks involved
are composable.

By the fundamental group of a bound quiver (Q,{2) we mean the group
(24) II(Q, 2) = IL(Q,q)/Ne

where Ny, is the normal subgroup generated by the conjugacy classes C'(u, v)
of homotopy classes [w™tu~tvw] in IT,(Q,q) where u,v are directed paths

with a common sink and a common source, and there is a minimal relation
w:)\lw1+...+)\twt€(9), A € K™,

with ¢ > 2 and w = wy, v = wy. Let us recall from [MP] that a relation w
of the above form is a minimal relation if for every nonempty proper subset
J C{1,...,t} we have

D Aw; & (£2).

jeJ
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The following maximal tree lemma is a very useful method of computing
the fundamental group. Before we formulate it we recall from [S4] that by
an {2-contour we mean a pair (u,v) of oriented paths with a common sink
and a common source such that there is a minimal relation w of the above
form with hug = wy and hvg = wy for some oriented paths h, g such that
the sink of A is the source of u and the source of g is the sink of u. We say
that (u,v) is defined with respect to the set 2 C (£2) if w € 2.

LEMMA 2.5 [S4, Remark 3.6, Lemma 3.7]. Suppose that (Q, 2) is a bound
quiver, let T be a maximal tree in QQ and q € Q.

(a) Ng is generated by the elements C(u,v), where (u,v) runs through
all the 2-contours defined with respect to a fized set of gemerators of the
ideal (£2).

(b) IT1(Q,q) is a free group generated by the elements B = [aBb] where
B € Q1\T, and a,b are walks in T connecting q with the sink and the source
of B, respectively.

(¢) If (u,v) is an £2-contour and

u=ugS1u1Ba ... Us—1BsUs, UV =VgV1V1V2 - Vr—1VrUp,

where B;,7v; € Qi1\T1 and u; and v; are oriented paths in T then
5132 . '-Bs =992 ... (modulo Ng). m

If the fundamental group of (Q, {2) is nontrivial we construct the wuni-
versal Galois covering

(2.6) f(Q,02) = (Q,2)
of (@, 2) in the following way (see [MP, Corollary 1.5], [Gr]).

Fix ¢ € Q. Let W be the topological universal cover of @, i.e. a quiver
W whose vertices are the homotopy classes [w] of walks w in @ starting at
a fixed point p ([Sp]). There is an arrow (a, [w]) from [w] to [v] in W if
[v] = [wa] for an arrow « in Q. Ng, acts on W in an obvious way. We take
for Q the orbit quiver W/Ng, and for 2 the set of liftings of relations in {2
from KQ to K Q. The bound quiver map f is defined by

f(No(a,[w])) =a, f(Ng[w]) = the sink of w,

where Ng[w| (resp. No(«, [w])) denotes the orbit of [w] (resp. (a, [w])).

The group I1;(Q, {2) acts naturally on (Q Q) as a group of automor-
phisms. One can check that f is the universal Galois covering with group
I (Q, 2) (see [Gr, MP]).

3. Three-separate stratified posets and the associated bound

quivers. Let us start with our main definition which extends that given in
[S1, S4].
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DEFINITION 3.1. A three-separate stratified poset is a stratified poset I,
such that I is the disjoint union of subsets I, 1) 1) and the following
conditions hold:

(a) There is no relation i < j, where i € I*)| j € IV and k > I.

(b) 7o(i,4) < 3 for all (i,5) € Al

(c) If (i,7)o(s,t) and (i,7) # (s,t) then there exist k,I < 3 such that
k+#1,i,5€I® and s,t € IV,

(d) If r,(i,5) = 2 then 4,5 ¢ I},

We say that the decomposition I = IV 4 T2 4 1G) is a three-separation
of I,.

We call a rib of rank 3 a 3-rib and a rib of rank 2 a 2-rib. A pair
(2,7) € A is called short if {i,j} = [, j]. In this case we write ;; instead
of (i,7). A pair (4,7) is called 3-p-extremal if it is not short, r,(i,7) < 2
and (i,s),(s,j) are 3-ribs for all s such that i < s < j. A pair (i,7) is
called 2-p-extremal if it is neither short nor 3-g-extremal, r,(i,j) = 1 and
(1,8),(s,7) are ribs for all s such that i < s < j. We say that (i,7) is
o-extremal if it is either 2-g-extremal or 3-g-extremal.

EXAMPLE 3.2. Let I* be the following poset:

3 1
! !
6 4 — 2
L7 !
9 7 5
Ll
10 8
!
11
!

and p be the relation given by
102,
(3,6)0(4,7)0(5,8),
(6,9)0(7,10)0(8,11),
(4,10)0(5,11).

Then I is a three-separate poset with three-separation I = TW 412 4 16)
where

I ={3,6,9}, I® ={1,4,7,10}, I® ={2,5,8,11,%}.
The pairs (3,9), (4,10) and (5,11) are 3-g-extremal.



264 S. Kasjan

We associate with I, the bound quiver

(3.3) (Q,), £2(1,))

as follows. The set (Q(I,))o of vertices of Q(I,) is the set
I/o=1{1,2,...,m}

of the p-cosets G of elements ¢ € I. We have the following arrows in Q(I,).

(i) If (4,4) is short then the p-coset B;; of 3;; is a unique arrow from i
to j.

(ii) If (ix,jx) € AI®) are 3-p-extremal for k = 1,2, 3, i, 0iz0is, j10j2073
and ry(ig, jx) = 1 for k = 1,2, 3 then we have exactly two arrows 3], ;,, 87, ,
21 — 31.

If (ig,jr) € oI® and (i, 5;) € AIW are 3-g-extremal, iy 0i;0ipn,
Jk0J10Gm» (im,Jm) € AIT™ is not 3-g-extremal and (i, ji) and (i1, ji) are
unrelated then we have a unique arrow 3; .t 81— Jq, where x = min(k, ).

If (ig,jx) € AIR) are 3-p-extremal for k = 1,2, 3, i1 pis0is, j10j20j3 and
(i2,j2)o(i3, j3) then we have a unique arrow 3/, i1 — j;.

If (ig,42) € AT and (i3, j3) € AI®) are 2-p-extremal, is0i3 and j3073

then we have a unique arrow (3, g tl2 = o

A directed path w in Q(I,) is called a rib path if w is a composition of
arrows which are the p-cosets of ribs in I,. It is called a 3-rib path if it
is a composition of the p-cosets of 3-ribs in I,. A path w is called a 2-rib
path if it is not a 3-rib path and it is a composition of g-cosets of 3-ribs
and 2-ribs in I,. A path w is called a nonrib path if it is not a rib path.
A nonrib path is called an I®-path if it is a composition of arrows @j
with i, j € I*), where Bij denotes either Bij or 3f;. An arrow Bij is called
1-2-skew (resp. 2-3-skew, 1-3-skew) if i € IV and j € I® (resp. i € (%)
and j € I®: e 1M and j € 1(3)). A directed path w in @ is called 1-2-skew
(resp. 2-3-skew; 1-3-skew) if w contains a 1-2-skew arrow (resp. contains a
2-3-skew arrow; either contains a 1-3-skew arrow, or contains a 1-2-skew
arrow and a 2-3-skew arrow).

We define the set of relations 2 = §2(I,) to consist of the following
elements of the path algebra KQ(I,):

(@) Biyj1Bisjs - - - Bi,j.if there is no sequence ﬁtot&ﬁtltw ooy B¢, such
that (ig, ji)o(tk—1,tx) for k =1,...,r. (Recall that 3;; is either 3;; or Bii-)
(b) ﬁioil /Bili2 s ﬁirir+1 _ﬁjojl ﬁ]&jz s ﬁjsjs+17 where 1o = jOa Z'T-‘rl = js—i-lv

90 <11 < .. <bp <y, Jo=J1=<...=<Js < Jst1

and there exist p, ¢ such that (ip,4,41) and (jg, jg+1) are not ribs.
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(¢) w —u for all 3-rib paths (resp. 2-rib paths) w and u with a common
sink and a common source.

(d) w — wy; — we — w3, where w is a 3-rib path, wy is an I®)_path for
k=1,2,3 and w,wy,ws,ws have a common sink and a common source.

(e) w — u for all I*®)-paths w,u with a common sink and a common
source for kK =1,2,3.

(f) w — ug — ug, where w is a 2-rib path, wuy is an I®)_path for k = 2,3
and w, us, uz have a common sink and a common source.

(g) w—w' —u where w is a 3-rib path, w’ is a 2-rib path, u is an IV)-path
and w,w’, u have a common sink and a common source.

In our example we have:

= = *
B10,5 B4 B39

Q(IZ) = {542514,525542,Bmﬁ;g,525@9,510,5542,65‘9511*,
559510,5, 594@3:9, 310,5@9, 536569510,5 — Ba2B25,
ﬁ§9594 - 536569594} .

Consider the K-algebra homomorphism

(34) g:KQ(I,) — KI,
defined by the formulas (compare with [S4]):
_ €ii if rp(i) =1,
g(Z) =\ €ii T €y if T‘Q(i) =2, ioi, i # i,

eii + ey + ey ifdgi' 0" i F A F0 F£

€ij if Tg(i,j) = 1,
B €ij 1+ €y if T‘Q(Z' j) 2, ( ) (i,,j/)
9(Bij) = and (i, j) # (', )7

eij + ey + ey if (i,7)0(i’, j)o(i", j”) and
(i,5) # (@', 5") # ( 13" # (6, 3),
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and
g(ﬁfj) = €45
where e;; denotes the matrix with 1 in the (4, j)-entry and zeros elsewhere.

A connection between (Q(1,),2(I,)) and I, is given by the following
proposition (compare with [S4, Proposition 2.8]).

PROPOSITION 3.5. Let I, be a three-separate stratified poset with a three-
separation I + 1) + 1) 1f (Q(1,), 2(1,)) is the bound quiver of I, (see
(3.3)) then the homomorphism g of (3.4) induces a K-algebra isomorphism

g: K(Q(I,), £2(1,)) — K1,
where K(Q(1,), $2(1,)) = KQ(I,)/(£2(1,)).
For the proof we will need the following technical lemma.
LEMMA 3.6. Suppose (s,t) € AIF) (s'.#') € AIU, k #1, sps’ and tot'.

(a) If (s',t') is not 3-p-extremal and (s,t) is 3-p-extremal then there
exists a sequence sy < S1 < ... < 8., where so = s, s, = t', the pair
(Siy8i41) 18 short for any i = 0,...,r — 1, and there exists i = 0,...,r —1
such that there is no relation (s;, s;41)0(u,v) with (u,v) € AT,

(b) If k,l #1, (s',t') is not 2-p-extremal and (s,t) is 2-o-extremal then
there exists a sequence S < 81 < ... =< 8., where so = s', s, = t', the pair
(Si,Si+1) is short for any i = 0,...,r — 1, and there exists i = 0,...,r — 1
such that 7,(8;, 8i+1) = 1.

Proof. We will prove (a); the proof of (b) is similar. Let
Sop <81 <...=<S5,

be a sequence such that so = s, s, = t/, the pair (s;,s;41) is short for any
i =0,...,7 — 1, and for some ¢ = 1,...,r — 1 we have r,(s,s;) < 3 or
ro(si,t") < 3. The existence of such a sequence is obvious. Assume that for
any i = 0,...,7 — 1 there exist (u,v) € AI®) such that (s;,s;41)0(u,v).
Then it is easy to construct a sequence
sp=sh<...<sl

such that s) = s, s, =t and for any ¢ = 0,...,r we have s,ps;. But it
follows from 3-p-extremality of (s,t) that for any i = 1,...,7 — 1 we have
ro(s,s7) = 3 and r,(s},t) = 3. This implies that for any i =1,...,7r — 1 we
have r,(s’,s;) = 3 and r,(s;,t') = 3, a contradiction. m

Proof of Proposition 3.5. We set (Q,2) = (Q(I,),2({,)) and
R = KI,. Note that the idempotents €; := g(i), i € I*, form a complete
set of primitive orthogonal idempotents of R. Moreover, the matrices e;;,
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1 < j < *, defined as follows:

€ij if ro(i,j) =1,
eij + e if ro(i,5) =2, (i,5)e(i,7')
€ij = and (i, j) 7,

(i,
eij + eirjr + ey if (i, 7)o@, j")o(i", j )and
(i4) # (i'.3') # (" 5") # (i.)
form a K-basis of R. We shall show that €5 € Im(g) for (s,t) € AI. This
is obvious if s = t. Assume that s # t. We proceed by induction on
ms := [(s,t)].
(1) If mg = 0, i.e. (s,t) is short then €, = g(B4¢) € Im(g).

Assume that m > 0 and €5 € Im(g) for (s,t) € AI such that mg < m.
Suppose that mg = m.

(2) If (s,t) is not g-extremal then there exists p € (s,t) such that
ro(s,p) = ro(s,t) or ro(p,t) = ry(s,t). Then ey = €5p€, and since by
the induction hypothesis €5, €, € Im(g) we get €5 € Im(g).

(3) Suppose that 7,(s,t) =2 and (s,t) is 3-p-extremal. Then there exist
s',t" € IW such that s’ps and t/pt. Tt is easy to see that s < t'. If (s/,) is
not 3-g-extremal then it follows from Lemma 3.6 and (1) that ey € Im(g).

Indeed, we take a sequence sg < s1 < ... < s, such that sg = s, 5, = ¢,
the pairs (sj,s;41) are short for j = 0,...,7 — 1 and there is no relation
(54, 8i01)0(u,v) with u,o € I® U I® for some i = 0,...,r — 1. Since
s',t € IV we get r,(si, 5i41) = 1 for some i = 0,...,7 — 1. Then

€5t/ = Cspsy Coysy - Cspys, -

The right side of this equality belongs to Im(g) by (1). Thus €y € Im(g).
If (s',t') is 3-p-extremal then ey = g(0%,) € Im(g) as well. Since
by the induction hypothesis we have €spe,: € Im(g), where p € (s,t), we
conclude that
gst = gspé\pt — /e\s/t/ € Im(g) .

(4) Suppose that 7,(s,t) = 1 and (s,t) is 3-p-extremal. Let sps’ps” and
tot'ot", where s,t € IF) s/ ¢/ € IO 5" t" € I™ and k,I,n are pairwise
different. It is easy to check that s’ < t' and s” < t”. Consider the following
cases.

(a) If both (s',#') and (s”,t") are 3-g-extremal and k # 3 then €5 =
g(B%) € Im(g). If k = 3 then by the same argument (since [,n # 3) we get
es, sy € Im(g). By the induction hypothesis for any p € (s,t) we have

st + €5ty + Esrryrr = Esplpt € Im(g)

and hence we conclude that e € Im(g).
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(b) Suppose that (s',t") is 3-p-extremal but (s”,¢"”) is not. If k <[ then
est = g(8%) € Im(g). If k > [ then by the same reason ey € Im(g).
Moreover, using Lemma 3.6 and arguments similar to those used in (3) we
prove that €y € Im(g). Then as in (a) we conclude that €5 € Im(g).

(c) Suppose that (s',t'), (s”,t"”) are not 3-g-extremal. Then using
Lemma 3.6 one can show that ey + gy € Im(g). Then as above we get

/e\st = /e\sp/e\pt — €grpr — €1y € Im(g)
if p e (s,t).

(5) Suppose that 7,(s,t) = 1 and (s,t) is 2-p-extremal. Let sps’ and
tot', where s,t € 1™ s’ t' € I and {k,1} = {1,2}. Then s’ < t' and
ro(s’,t") = 1. It is easy to check that (s,t') is not 3-g-extremal. If (s',t) is
2-p-extremal and k < [ then ey, = g(8%,) € Im(g). If £ > [ then by the same
reason ey € Im(g). Taking p € (s,t) such that r,(s,p) =2 or r,(p,t) =2
we obtain

@st + @s/t/ = /e\sp/é\pt € Im(g)
by the induction hypothesis and hence € € Im(g).

If (s', ") is not 2-p-extremal then using Lemma 3.6 we prove that ey €
Im(g). Thus again we see that

st = Espepr — Esrp € Im(g).

We have shown that ¢ is an epimorphism. It is easy to check that g({2)
= 0. Thus ¢ induces a K-algebra epimorphism

7: K(Q.2) = KQ/(2) — R.

Now we show that g is injective. It is enough to prove that for all ¢,j € T
we have

dimK E(Z)(KQ/Q)B(j) § dimK /B\MR/B\]] s
where e(i) denotes the idempotent corresponding to the trivial path at i.

As an example consider the case when r,(i) = 2, 7,(j) = 1. Then 7 can be
joined to j by paths of the following kinds:

(1) I®-paths,
(2) 2-3-skew paths,
(3) I®)-paths.

Paths of the same kind are equal modulo 2. Thus e(i)K(Q, £2)e(j) has a
basis B consisting of paths of pairwise different kinds. Moreover, all the
kinds (1)—(3) cannot appear in 98 simultaneously. One can check that g(*B)
is a linearly independent set and the required inequality holds. The proof
in the remaining cases is analogous. m
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4. A covering for (Q(I;),2(I})). Suppose that I, is a three-separate
stratified poset and I} is its one-peak enlargement (see Section 2). Let

I =104 1@ 4 16)

be a three-separation of I*. Note that % € 3.
Let (Q, 2) = (Q(I}),$2(I})) be the bound quiver associated with I (see
(3.3)). Let
ai:BpiQi:pi_)aiv izlv"'>k17
bi:/Brisi:Fiﬁgia Z‘:17"'71€27
dlzgtzuzzz_)ﬂw Z‘:17"'7]€37
be all the 1-2-skew, 2-3-skew and 1-3-skew arrows respectively, where p; €
I(l), q; € 1(2), r; € 1(2)7 55 € 1(3), t; € I(l), u; € I®). Denote by Q~ the
quiver obtained from @ by removing all arrows a;, b;, d;, and by {2~ the set
of relations in {2 which do not involve skew arrows.

Let G = Za * Z3 be the free noncommutative group with two free gen-
erators «, 3. Following [S1, S4] we define a Galois covering

(4.1) £:(Q,92) = (Q,9)
with group G as follows.

Let Q@) = Q~ x {z} for z € G. We put j® = (j,z) and 72-(;7) = (ij, 7)
where j is a vertex of @ and 7;; is an arrow in Q~. We define @ to be the
disjoint union of Q*) over all € G connected by the edges

agr):@(x)—)@(m)7 i=1,... ki,
b =5 =1,
a1 ST, =1k

(see Fig. 4.2). We define f by setting f(j(*)) = j and f(’yl(f)) = ;. We
take for {2 the natural lift of £2 along f. The group G acts on é in the
following way:
yx @ = jwo) -y *fyi(;c) = Z(jym) fory e G.
We note that f induces a bound quiver isomorphism
(Q/G,2/G) ~(Q,9).

In general I, admits many different three-separations. However, it is
easy to see that the isomorphism class of the covering (4.1) does not depend
on the choice of the three-separation.

We are especially interested in the case when the covering (4.1) is the
universal cover of (Q, £2). For this purpose we need the following definition.
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DEFINITION 4.3. We call a three-separate poset I, a rib convex poset if
the following hold.

(1) The rib skeleton rsk(I,) of I, has exactly three rib-connected com-
ponents R, N2, Rs3; we assume that R; C I® for i = 1,2, 3.

(2) If r, () > 1 then i € rsk(Z,).

(3) For any (i,j) € ARy for some k there exists a rib path from i to j.

PROPOSITION 4.4 (compare [S4, Proposition 3.8]). Let I, be a rib con-
vex three-separate poset and (Q,2) = (Q(I),2(I})) be the bound quiver
associated with I; (see (3.3)).

(a) The fundamental group I1;(Q, 2) of (Q, 2) is a free group with two
free generators. o

(b) The covering f : (Q,2) — (Q,2) defined in (4.1) is the universal
Galois covering of (Q, £2).

Proof. (a) Note that we can assume that the three-separation I(Y) +
I? 4+ 16G) of I; is such that

I(l):{ie[:i<$forsomex€§ﬁl},
I® = {ie T\ IW :i gz for some x € Ry},
I®=1\(IVUI?) and *e1®.

We keep the notation of skew arrows introduced above. Note that the quiver
()~ obtained from ) by removing all the skew arrows has no oriented cycles
and has the following property:

(xg-)  for each vertex 1 € Q~ there exists an oriented path w : 1 — *
m Q.

We denote by @Q” the full subquiver of Q~ consisting of the vertices 7
for i € I®), and by Q' the full subquiver of Q~ consisting of the vertices 7
for i € I U TG, We have quiver embeddings Q” C Q' C Q~ C Q. Note
that Q" and Q" have the property (x¢g/) and (xg~) respectively and they are
closed under taking successors in Q.

First we construct a maximal tree 7" C Q)" with the property (x7/) by
induction on |Qj].

If |QF| = 2 then we take T" = Q"

Suppose that if |Qf| < m then there exists 7" with the required proper-
ties. Let |Q(| = m and @ be a minimal element in Q" (i.e. a source in Q).
Let T? be the maximal tree in the quiver obtained from Q" by removing
the vertex @. Let 34, be an arrow in Q" from @ to some f € TY. Then
T" =T/ U{a} U{Ba:} is a tree with the required property.

Next, just as above, by induction on |Q; \ Qf| we construct a maximal
tree T in Q" with the property (x7/) and such that 7/ N Q" = T”. Finally,
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applying an induction on |Q, \ Q| we extend T” to a maximal tree T in
@~ having the property (7). Note that T" is a maximal tree in Q.
Suppose that (Q~)o consists of the elements i, &k = 0,...,m, where
ip = *. Since Q= has no oriented cycle, without loss of generality we can
suppose that if there exists a directed path from iy to i; in Q= then k > j.

(1) We show by induction on k that if b = 3, € Q" is an arrow beginning
at i = S then be Ng (we keep the notation of Lemma 2.5). For k = 0 this
is obvious. Suppose that for & < m the statement is proved. Let k = m
and s,t € I®). If b € T then b € Ng. Suppose that b & T. Then there
exists an arrow Bssl in T such that s; € I®. Consider two sequences
Bssys Bsysar -3 Bspx a0d Bity, Byt - - - Bty of short pairs in I®). Then

(b/Bttl/Btth e BtlﬁhBSSUBSlSQ? L J/BSm*)

is an {2-contour.

Since (s, € T and by the induction hypothesis Btiti+1 B € Ng, for

Sj8j+1
i=0,...,land j = 1,...,m, we get b € N,. (Here we put t;11 = S;mt1
=sxand tg =t.)

In particular, we have shown that b € N, if b is the p-coset of a rib.

(2) Now we are going to prove that for skew arrows by, b, with r),, 7, € R
we have b, = b, (modulo Ny,). By our assumptions on I, there exist points

r1,...,2; € Ry and rib paths wu;,v; for ¢ = 1,...,[ as in the figure:
T T2 ]
“ NN S\
Tpo Ty ... T

where 7, is the source of the 2-3-skew arrow by,,,pg = p and p; = ¢. Denote
by w; an I®®-path from the sink 3,, of b,, to ¥ for i = 1,...,l. Then
(u;bi—qw;—1,v;bjw;) is an 2-contour for i = 1,...,I. By (1) above we get
v;, Ui, W; € N, hence gpggl € Ng.

(3) By induction on k we shall show that if b = B, € Q' is not a skew
arrow and it begins at iy = S then b e Ng. For k = 0 this is obvious.
Suppose that for k& < m the statement is proved. Let k£ = m. Suppose that
b T. Let By, bean arrow in T/ C T beginning at is, and s’, s, € IGUI®),

If s =8 € I® then s;,t € I® and we prove the statement as in (1).

Suppose that s = s’ € I®. Then s1,t € I?). Let

ﬁslsga-"aﬁsmrp and ﬁttly-"aﬁtqu

be sequences of short pairs in 1® ending at Tp,Tq € N2 whose p-cosets are
the sources of the arrows b,,b, respectively. The sinks of these arrows are
5p,5¢. Let up, and u, be paths composed of the p-cosets of short pairs in
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I®) connecting 5, and 5, with * respectively. Then
(bBttl PR >Btqubquq7 55’51551527 R >Bsmrpbpup)

s, €T, Ep = Eq (modulo Ng,) and by the
induction hypothesis we get beN Q-

Suppose now that s # s’. Then r,(s) > 1, hence s € rsk(I,). If s € R
then, since b € Q', t € I®. We have a path u, composed of the p-cosets
of short pairs from I connecting ¢ with the source 7p of a skew arrow b,
such that r, € Ry. From the rib convexity of R, we get the existence of a
rib path v from 3 to 7. Then

is an {2-contour and since [

(vby, buyby)

is an {2-contour and since v € N, and by the induction hypothesis u, € N,
we get b € Ng,.
If s € R3 then s,¢ € I®) and we prove the statement as in (1).

(4) We show that Ep = Eq (modulo Ng,) for any p,q. Note that it is
enough to show that Bp = Bq (modulo Ng) if rp, & Ra, 7y € Ry and 1, < 7.
Let v be a path composed of the p-cosets of short pairs in I(?) from 7p to
T4, and u,,u, be the paths in Q" composed of the p-cosets of short pairs
connecting 5, and 5, with ¥ respectively. Then (b,u,, vbyu,) is an £2-contour

and by (1) and (3) we get /I;pgq_l € Ng.

(5) We show as in (2) that Ep = d, (modulo Ny,) for all 1-3-skew arrows

d,,d, whose sources are the p-cosets of elements of ¥t;; Ep = Ez\rgq (modulo
Ngq) for any 1-3-skew arrow d,, 1-2-skew arrow a, and 2-3-skew arrow b,
such that the sources of d, and a, are the p-cosets of elements of R, and
a, = a, (modulo Ng) for any 1-2-skew paths a,,a, whose sources are the
o-cosets of elements of .

(6) We show as in (3) that if b = 3,; is an arrow in Q~ then be Ng.
(7) We show as in (4) that

~

dp

~

c/l\,«, g =a,, dy,= ’drgq (modulo Ng,)

for arbitrary p, q,r. Note that there exists at least one 2-3-skew arrow and
at least one 1-3-skew arrow or 1-2-skew arrow.

(8) We show that Afj € Ng, for any 4,j such that the arrow (}; exists.

There is a rib path u from 7 to j and a nonzero path v from j to ¥ composed
of the p-cosets of short pairs in I*. Then (uv, fjv) is an f{2-contour and
since u,v € N we get B;Z € Ng as well.
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We have shown that a; Ng, ZlN « generate the group IT,(Q, §2) if there
exists a 1-2-skew arrow aj, and d;Ng, by N generate I11(Q, §2) if there
exists a 1-3-skew arrow dj.

(9) Now we prove that {alNg,glNQ} (or {JlNQ,/glN_Q}) is a set of free
generators of IT1(Q, 2).

Suppose that a; exists. We have to show that no word of the form

k=L aY

such that s;41 #0#t; fori =1,...,l—1or s; # 0 or t; # 0 belongs to Ng,.

Suppose that w = Ajwy + ... + Apwy, IS a minimal relation in {2 such
that m > 2. Then all the w; have a common sink and a common source.
Moreover, w is a sum of elements of the form aqbas where a1, a2 € KQ and
b is a relation of type (a), (b), (c), (d), (e), (f) or (g) (see (3.3)). Since w
is minimal and m > 2 we have w = a1bas where a1,ao € K@ are paths in

@ and b is a relation of one of the above types. Thus the following types of
{2-contours are possible:

® (71,72),  (mbive,y3bjva),  (v1@iv2,V3a574),
(m1dive,v3djva),  (vidive, ¥3a;574brs)

(induced by relations of type (b)), and

o (’way‘])u

(induced by relations of types (c) to (g)), where the 5 denote paths in @
which do not contain skew arrows.
Hence we get the following types of generators of Ng:

where the 7; are elements of the free group I7; (@) which are words without

~

the letters a;, b;, d;.
Consider the group homomorphism

h: 1 (Q) — ZaxZb

o~ ~

defined by h(%;) = 1, h(a;) = a, h(b;) = b, h(d;) = ab. Note that all the
generators of N, listed above are contained in Ker(h). Hence N, C Ker(h).
If  is as above then h(k) # 1, so k & Ng,.

__If there is no 1-2-skew arrow a; in ) then we prove in a similar way that
{d1Ngq,b1 N} freely generates I;(Q, £2). This finishes the proof of (a).

The statement (b) follows from the above considerations and from the

construction of the universal cover described in (2.6). Since II1(Q, 2) =
Zax 73 it is easy to see that the construction in our case coincides with the
construction (4.1) applied to G = I11(Q, §2). m
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5. Three-partite posets and the associated three-peak bound
quivers. In this section we discuss some special case of three-separate
posets, namely the three-partite posets in the sense of Definition 5.1 below.

If 11,15 C I are subposets then we write I; < I if for all iy € I; and
io € Iy we have i1 < i3. We say that Iy is connected if it is connected with
respect to the equivalence relation generated by the following relation:

1 <> j < either i < j or j < ¢ is a minimal relation in 7.

DEFINITION 5.1 (compare with [S4, Def. 4.1]). A three-separate poset
I; with a three-separation I W 4+ 713 4+ 163 and a unique maximal element
x is called three-partite if

(a) I™®) is the disjoint union of subposets C*) and J*) such that C'*)
is either empty or it is a chain

c® . cgk) — cgk) — ... cffji
for k=2,3, IV < J? < B and 0 < 0O,
(b) The stratified poset I, is rib-convex.
(c) There exist connected subposets Iél) - I(l),I(EQ) - JéQ) c J@,
Ié?’) c Jé?’) C J® and poset isomorphisms oy : Iél) — 152), o9 : 162) — Ié?’)

and o3 : Jé2) — JéS) satisfying the following conditions:

(i) o9 is the restriction of o3 to Iéz),
(ii) ro(i) = 3 if and only if i belongs to Iék) for some k = 1,2,3, and
ro(7) = 2 if and only if ¢ belongs to Jék) \Iék) for some k = 2,3,
(i) (i, 7)0(o1 (3), 71 (1))(0201 (1), 7301 (7)) provided i< j, i,j €15, [, ]
= {i.j}, and (i, ))o(03(i), 03(j)) provided i < j i € J5*, [isj] = {i, 5} -
We visualize this notion in Fig. 5.2.

Following an idea in [S4] we associate with any three-partite stratified
poset I} a three-peak bound quiver

(5.3) L= (@1, 2%

defined as follows:
For the quiver QT we take the disjoint union of @~ (see (4.1)) and two
chains:
AT AN QLN LN
c* :052)X —>...—>cq(72lgX —>c§3)X —>...—>c7(5’lx — X,

connected by the following arrows (we use the notation from Section 4):

(i) Br,+ 17 — + if r; and 07(32,, are unrelated,
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o (2 (3
To o1 ) ! )
2 3
N o) N,
N N
\O
chn)

i < J

*
Iprr 05(12) 05(13)
N (122) N 5(23) (2)x
o 0(11
N N |
s Y @)%
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N _(2) N _(3) l
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(32 o) /
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(ii) Bp;x : P; — x if p; and cgg are unrelated and

Bi;x : t; — x if t; and cgg are unrelated,

(ift) aX : p, — g if ¢ € C?,

(iv) bF 7 -5 it s; € O,

v) d* T —a) if u; € CO
(see Fig. 5.2).

For 27 we take the set 2~ with the following additional relations:
(1) why,+ and wb;r if w is neither a 3-rib path nor a 2-rib path nor an
I _path,
(1)(2) WPt x, Whpx, wa and wd if w is neither a 3-rib path nor an
I -path,
(3) wu — vu', where w : p — T; is a 3-rib path, a 2-rib path or an
I®)_path, and where v : p — 7; and u and v’ have a common sink in C™.
(4) wu—vu', where w : p — P, is a 3-rib path or an I(M-path, and where
v:Pp—Dj,u and u’ have a common sink in C'*.

Analogously to the bipartite case [S4] there is an algebra isomorphism
KI;T* ~ €RE,
where R = K(Q, £2) and

=D et Y, ewart O, (ewp) +e€tom) + €xp) + € o0)
teQ(® tec® tec®

and we consider the diagram
modg, (€ RE) L, modp (v Rv) Lv, modsp (R)

(5.4) [ |2

modg, (K I;7%) modsp, (R)

f+><

where ¢ is the natural equivalence, fg, is the covering functor (see [Gal,
[S4, 4.20]), v = ), e; where ¢ runs over the set of vertices of the union of
all quivers Q(()w) for w of the form w = a1 3% ... a*m 3t where s;,t; > 0
for i = 1,...,m, L¢ and T, are the lower and upper induction functors
respectively (see [S4, S5]), f1x is the composed functor fs, o T}, o L¢ o ¢.

By the Splitting Theorem of [S3], Proposition 4.3 above, Theorem 4.19
and Remark 4.21 of [S4] we get the following.

THEOREM 5.5. If I} is a three-partite stratified poset then:

(a) The functor fix : mods,(KI;*) — mods,(R) is evact, faithful,
dense and preserves indecomposability.
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(b) The category mods, (K 1;%%) is of finite representation type if and
only if so is the category mods,(R).

(¢) If K is an algebraically closed field then mody, (K1) is of tame
(resp. wild) representation type if and only if mods,(R) is of tame (resp.
wild) representation type. m

Applying arguments similar to those used in [S4, Proposition 4.9] and
Proposition 4.3 above one can prove the following.

THEOREM 5.6. Let I; be a three-partite poset and let IZ+X be the asso-
ciated three-peak bound quiver (5.3).

(a) The fundamental group IT\(I;T*) is trivial. If in addition every
vertezr of IZ,‘*X is separating then the Auslander—Reiten quiver Fsp(KI;er)
of modsp(KI;JrX) has a preprojective component.

(b) If the Auslander—Reiten quiver I's,(K134*) of mods, (KI;T) has a
preprojective component then modg, (K1) is of finite representation type if
and only if I3 contains no Weichert’s critical forms (see [W]). m

Let us finish with a simple corollary from the above considerations.

COROLLARY 5.7. If I}; is a three-partite stratified poset and mods, (K T})
is of finite representation type then I, does not contain any rib.

Proof. It is easy to check that if I, contains a rib then I;™* contains

a subquiver of type D4 which is of infinite representation type. Thus the
statement follows from Theorem 5.6 above. m
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