بعاد عاصد المال بالداوية	AT A A AL	エリオ	1.1.1	(Tabo)
DY CANALY TITLE TERRITARY TENNET TON (T) (TARO)				

Characterizations of elements of a double dual Banach space and their canonical reproductions

by

VASSILIKI FARMAKI (Athens)

Abstract. For every element x^{**} in the double dual of a separable Banach space X there exists the sequence $(x^{(2n)})$ of the canonical reproductions of x^{**} in the even-order duals of X. In this paper we prove that every such sequence defines a spreading model for X. Using this result we characterize the elements of $X^{**} \setminus X$ which belong to the class $B_1(X) \setminus B_{1/2}(X)$ (resp. to the class $B_{1/4}(X)$) as the elements with the sequence $(x^{(2n)})$ equivalent to the usual basis of ℓ^1 (resp. as the elements with the sequence $(x^{(4n-2)}-x^{(4n)})$ equivalent to the usual basis of c_0). Also, by analogous conditions but of isometric nature, we characterize the embeddability of ℓ^1 (resp. c_0) in X.

Introduction. In the last few years, the theory of spreading models ([1], [8]) has proved fruitful in the study of Banach spaces. For example, it was used by R. Haydon, E. Odell and H. Rosenthal in [5] to give characterizations of certain elements of the second dual X^{**} of a separable Banach space X.

In this paper we prove (Theorem 3) that for every element $x^{**} \in X^{**} \setminus X$ the sequence $(x^{(2n)})$ of its canonical reproductions defines a spreading model for X.

There are many possible applications of this result. In this paper we are able to determine when an element $x^{**} \in X^{**} \setminus X$ belongs to the class $B_1(X) \setminus B_{1/2}(X)$ (resp. the class $B_{1/4}(X)$) exclusively in terms of the sequence $(x^{(2n)})$ (Theorems 11 and 12). More precisely, $x^{**} \in B_1(X) \setminus B_{1/2}(X)$ if and only if the sequence $(x^{(2n)})$ is equivalent to the usual basis of ℓ^1 , and $x^{**} \in B_{1/4}(X)$ if and only if the sequence $(x^{(4n-2)} - x^{(4n)})$ is equivalent to the usual basis of c_0 . In the proofs of these results we use the characterizations of elements in $B_1(X) \setminus B_{1/2}(X)$ (resp. $B_{1/4}(X)$) given in [5].

We also characterize the embeddability of ℓ^1 (resp. the embeddability of c_0) in X in terms of the properties of the canonical reproductions $(x^{(2n)})$ of some element $x^{**} \in X^{**}$ (Propositions 6 and 8). Unlike the characterizations of Baire-1 elements of X^{**} given above, these characterizations are of an

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B25.

isometric nature. Precisely, ℓ^1 embeds in X (resp. c_0 embeds in X) if and only if there exists $x^{**} \in X^{**} \setminus X$ such that

$$\left\| x + \sum_{i=1}^{n} a_i x^{(2i)} \right\| = \left\| x + \left(\sum_{i=1}^{n} |a_i| \right) x^{**} \right\|$$
(resp. $\left\| x + \sum_{i=1}^{n} a_i (x^{(4i-2)} - x^{(4i)}) \right\| = \left\| x + \max_{1 \le i \le n} |a_i| (x^{**} - x^{(4)}) \right\|$)

for every $x \in X$, $n \in \mathbb{N}$ and scalars a_1, \ldots, a_n . These characterizations are influenced by the deep results of Maurey in [6], where it is proved that the embeddability of ℓ^1 in X is equivalent to the existence of an element x^{**} in $X^{**} \setminus X$ such that $||x + x^{**}|| = ||x - x^{**}||$ for every $x \in X$ (for the case of c_0 an analogous characterization is given). In the proof of these results we use some results and techniques of the theory of types and especially from the papers [9] and [4].

Finally, in Propositions 7 and 10 we prove some new characterizations for the embeddability of c_0 in a Banach space.

Throughout this article we denote by X a real separable infinite-dimensional Banach space. $X^{**}, X^{(3)}, X^{(4)}, \ldots$ are the second, third, fourth,... duals of X respectively. For a subset A of X, conv A, A and \overline{A} denote the convex hull, linear span and $\| \|$ -closure of A respectively. For any subset A of $X^{(2n)}$ (n > 1) we denote by \widetilde{A} the weak*-closure of A in $X^{(2n)}$.

DEFINITION 1. Let X be a Banach space and $x^{(2)} \in X^{**}$. If $I_k: X \to X$ $X^{(2k-2)}$ is the canonical embedding of X in the (2k-2)-dual of X then we define $x^{(2k)} = I_k^{**}(x^{(2)})$ for every k > 1. The elements $x^{(2k)}$ are the canonical reproductions of $x^{(2)}$ in the duals $X^{(2k)}$ of even order for every k > 1.

It is easy to see that, if $x^{(2)} = w^*$ -lim, x_i for some net (x_i) in X, then $x^{(2k)} = w^*$ -lim_i x_i if (x_i) is considered as a net in $X^{(2k)}$.

In the following theorem we will prove that the canonical reproductions can be considered as the fundamental sequence of a spreading model for X. In the proof we will use the following lemma which is a generalization of an analogous result in [9] and [4].

LEMMA 2. Let X be a separable Banach space, $k \in \mathbb{N}$, $g \in X^{(2k)}$ and $W_1 \supseteq W_2 \supseteq \dots$ a sequence of bounded, convex subsets of $X^{(2k-2)}$ so that $g \in \bigcap_{n=1}^{\infty} \widetilde{W}_n$. Then there exists a sequence $L_1 \supseteq L_2 \supseteq \ldots$ of convex subsets of $X^{(2k-2)}$ such that:

- (i) $W_n \supset L_n$ for every $n \in \mathbb{N}$.
- (ii) If $(x_n) \subseteq X^{(2k-2)}$ is such that $x_n \in L_n$ for every $n \in \mathbb{N}$, then $||x+g|| = \lim_n ||x+x_n||$ for every $x \in X$.
 - (iii) $g \in \widetilde{L}_n$ for every $n \in \mathbb{N}$.

Proof. The lemma is proved in [9] for the case k = 1 and in [4] for k = 2. For k > 2 the proof is analogous.

Characterizations of elements of a double dual Banach space

THEOREM 3. Let X be a separable Banach space and $x^{(2)} \in X^{**} \setminus X$. If $x^{(2k)}$ are the canonical reproductions of $x^{(2)}$ in the duals $X^{(2k)}$ of even order (k > 1) then there exists a sequence (x_n) in X such that

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 z_{n_1} + \ldots + a_k z_{n_k}||$$

for every convex block subsequence (z_n) of (x_n) , $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

Proof. Let $x^{(2)} \in X^{**} \setminus X$. Using Lemma 2 for $W_n = \{x \in X : ||x|| \le 1\}$ $||x^{(2)}||$ $(n \in \mathbb{N})$, we can find a sequence (L_n^1) of convex subsets of X with the properties (i) (iii) of the lemma. From (iii) we have $x^{(2)} \in \bigcap_{n=1}^{\infty} \widetilde{L}_{n}^1$ hence $x^{(4)} \in \bigcap_{n=1}^{\infty} \widetilde{L}_n^1$ if L_n^1 for $n \geq 1$ are considered as subsets of X^{**} . Using Lemma 2 again for the space $X \oplus [x^{(2)}]$ and $W_n = L_n^1$, $n \in \mathbb{N}$, we can find a sequence (L_n^2) of convex subsets of X^{**} with the properties (i)-(iii). The next step is to use Lemma 2 for $X \oplus [x^{(2)}, x^{(4)}], W_n = L_n^2, n \in \mathbb{N}$, and $x^{(6)} \in X^{(6)}$. We continue in the obvious manner.

We select $x_n \in L_n^n$ for every $n \in \mathbb{N}$. It is easy to see that $x_n \in L_n^k$ for every $n, k \in \mathbb{N}$ with $n \geq k$. Hence for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k we have

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} ||x + a_1 x^{(2)} + \ldots + a_{k-1} x^{(2k-1)} + a_k x_{n_k}||$$

$$= \lim_{n_k} \lim_{n_{k-1}} ||x + a_1 x^{(2)} + \ldots + a_{k-1} x_{n_{k-1}} + a_k x_{n_k}||$$

$$= \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 x_{n_1} + \ldots + a_k x_{n_k}||.$$

If (z_n) is a convex block subsequence of (x_n) then, since the L_n^n are convex and $L_n^n \supseteq L_{n+1}^{n+1}$ for every $n \in \mathbb{N}$, we conclude that (z_n) is a subsequence of some sequence $(y_n) \subseteq X$ such that $y_n \in L_n^n$ for every $n \in \mathbb{N}$.

We will give a corollary of the previous theorem for the case of Baire-1 elements of a double dual space. Recall that $g \in X^{**} \setminus X$ is said to be a Baire-1 element of X^{**} if there exists a sequence (x_n) in X weak*-converging in X^{**} to g (w^* - $\lim_n x_n = g$).

COROLLARY 4. Let X be a separable Banach space and $x^{(2)}$ a Baire-1 element of $X^{**} \setminus X$. If $x^{(2k)} \in X^{(2k)}$ (k > 1) are the canonical reproductions of $x^{(2)}$, then there exists a sequence (x_n) in X such that $x^{(2)} = w^* - \lim_n x_n$

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 z_{n_1} + \ldots + a_k z_{n_k}||$$

for every convex block subsequence (z_n) of (x_n) , $k \in \mathbb{N}$, $x \in X$ and scalars a_1,\ldots,a_k .

64

Proof. Let (y_n) be a sequence in X, weak*-converging in X^{**} to $x^{(2)}$. We set $W_n = \text{conv}\{y_i : i \geq n\}$ for $n \in \mathbb{N}$ and in the same way as in the proof of Theorem 3 we can find a convex block subsequence (x_n) of (y_n) such that

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 z_{n_1} + \ldots + a_k z_{n_k}||$$

for every convex block subsequence (z_n) of (x_n) , $k \in \mathbb{N}$, $x \in X$ and scalars a_1, \ldots, a_k . Moreover, $x^{(2)} = w^* - \lim_n x_n$.

Let us recall the definition of a spreading model for a Banach space X (see [1], [3]).

DEFINITION 5. The Banach space Y is called a spreading model for X if there exist a sequence (e_n) in Y such that $Y = \overline{\text{span}}(X \cup \{e_n : n \in \mathbb{N}\})$ and a sequence (x_n) in X so that (x_n) has no norm-convergent subsequence and

$$||x + a_1e_1 + \ldots + a_ne_n|| = \lim_{m_1} \ldots \lim_{m_n} ||x + a_1x_{m_1} + \ldots + a_nx_{m_n}||$$

for all $x \in X$, $n \in \mathbb{N}$ and scalars a_1, \ldots, a_n . The sequence (e_n) is called the fundamental sequence of the spreading model Y which is generated by the (x_n) .

The spreading model is 1-unconditional over X if

$$||x + \varepsilon_1 a_1 e_1 + \ldots + \varepsilon_n a_n e_n|| = ||x + a_1 e_1 + \ldots + a_n e_n||$$

for every $x \in X$, $n \in \mathbb{N}$, scalars a_1, \ldots, a_n and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$.

As we showed in Theorem 3, the canonical reproductions of an element $x^{(2)}$ in the double dual of a separable Banach space X give an inverse spreading model for X. Precisely, if L is the linear space with basis $(e_i)_{i=1}^{\infty}$ then we define on $X \oplus L$ the norm $\|x + \sum_{i=1}^k a_i e_i\| = \|x + \sum_{i=1}^k a_{k-i+1} x^{(2i)}\|$ for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k . The completion $Y_{x^{(2)}}$ of $X \oplus L$ under this norm is a spreading model for X, according to Theorem 3.

Many known results related to spreading models can be described via the canonical reproductions. It is known (see [1]) that the existence of a spreading model in X with fundamental sequence (e_n) such that

$$\left\| x + \sum_{i=1}^{k} a_i e_i \right\| = \left\| x + \left(\sum_{i=1}^{k} |a_i|^p \right)^{1/p} e_1 \right\| \quad \text{for } 1 \le p < \infty$$

$$(\text{resp. } \left\| x + \sum_{i=1}^{k} a_i e_i \right\| = \left\| x + \left(\max_{1 \le i \le k} |a_i| \right) e_1 \right\|)$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k implies the embeddability of ℓ^p for $1 \leq p < \infty$ (resp. of c_0).

We characterize the embeddability of ℓ^1 and c_0 via the canonical reproductions in Propositions 6 and 8 respectively. These results are consequences

of the deep results of Maurey in [6] on the embeddability of ℓ^1 and c_0 in X, and of Theorem 3. In the proofs we use some results and techniques of the theory of types which can be found in [9] and [4].

Proposition 6. Let X be a separable Banach space. The following conditions are equivalent:

- (i) X contains a subspace isomorphic to ℓ^1 .
- (ii) There exists $x^{(2)} \in X^{**} \setminus X$ such that

$$\left\|x + \sum_{i=1}^{k} a_i x^{(2i)}\right\| = \left\|x + \left(\sum_{i=1}^{k} |a_i|\right) x^{(2)}\right\|$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

(iii) There exists $x^{(2)} \in X^{**} \setminus X$ such that the spreading model $Y_{x^{(2)}}$ is 1-unconditional over X.

Proof. (i) \Rightarrow (ii). From [6], if ℓ^1 is embeddable in X there exists $x^{(2)} \in X^{**} \setminus X$ such that $||x + x^{(2)}|| = ||x - x^{(2)}||$ for every $x \in X$. According to Theorem 3 there exists a sequence (x_n) in X such that

$$\left\|x + \sum_{i=1}^{k} a_i x^{(2i)}\right\| = \lim_{n_k} \dots \lim_{n_1} \left\|x + a_1 z_{n_1} + \dots + a_k z_{n_k}\right\|$$

for every convex block subsequence (z_n) of (x_n) , $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

Thus $\lim_n \lim_m \|x + ax_n + bx_m\| = \lim_n \|x + (a+b)x_n\|$ for every $x \in X$ and $a, b \ge 0$. Indeed, let a, b > 0 with a + b = 1 and $x \in X$ such that $\lim_n \lim_m \|x + ax_n + bx_m\|$ is not equal to $\lim_n \|x + x_n\| = \|x + x^{(2)}\|$. By Ramsey's principle [7] we can choose a sequence $n(1) < n(2) < \dots$ of natural numbers so that

$$\lim_{n} \lim_{m} ||x + ax_{n} + bx_{m}|| = \lim_{j > i \to \infty} ||x + ax_{n(i)} + bx_{n(j)}||.$$

Let $z_i = ax_{n(2i)} + bx_{n(2i+1)}$ for every $i \in \mathbb{N}$. Since (z_i) is a convex block subsequence of (x_n) we have $\lim_i \|x + z_i\| = \|x + x^{(2)}\|$. On the other hand, $\lim_i \|x + z_i\| = \lim_n \lim_m \|x + ax_n + bx_m\|$, a contradiction.

Thus

$$\left\|x + \sum_{i=1}^{k} a_i x^{(2i)}\right\| = \left\|x + \left(\sum_{i=1}^{k} a_i\right) x^{(2)}\right\|$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars $a_1, \ldots, a_k \ge 0$.

Since $||x + x^{(2)}|| = ||x - x^{(2)}||$ we have

$$\lim_{n} \lim_{m} ||x + ax_n + bx_m|| = \lim_{n} ||x + (|a| + |b|)x_n||$$

for every $x \in X$ and scalars a, b. Hence

$$\left\| x + \sum_{i=1}^{k} a_i x^{(2i)} \right\| = \left\| x + \left(\sum_{i=1}^{k} |a_i| \right) x^{(2)} \right\|$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

(ii) \Rightarrow (iii). For every $x \in X$, $k \in \mathbb{N}$, scalars a_1, \ldots, a_k , and signs $\varepsilon_1, \ldots, \varepsilon_k$ we have the equalities

$$\|x + \sum_{i=1}^{k} \varepsilon_{i} a_{i} e_{i} \| = \|x + \sum_{i=1}^{k} \varepsilon_{k-i+1} a_{k-i+1} x^{(2i)} \| = \|x + \left(\sum_{i=1}^{k} |a_{i}|\right) x^{(2)} \|$$

$$= \|x + \sum_{i=1}^{k} a_{k-i+1} x^{(2i)} \| = \|x + \sum_{i=1}^{k} a_{i} e_{i} \|.$$

 $(iii) \Rightarrow (i)$. Obvious from [6].

In the following we give criteria for a Banach space to contain c_0 . If $A, B \in \mathbb{R}$ and $\varepsilon > 0$ we write $A \stackrel{\varepsilon}{\sim} B$ whenever $|A - B| < \varepsilon$.

PROPOSITION 7. Let X be a Banach space. Then c_0 embeds in X if and only if there exists a net (x_i) in X such that $\lim_i ||x_i|| > 0$ and, for every $x \in X$, we have $\lim_i \lim_j ||x + x_i + x_j|| = \lim_i ||x + x_i||$.

Proof. Let (x_i) be a bounded net as in the statement of the proposition. For every $\varepsilon > 0$ we can find a sequence (y_n) in X such that $y_n = x_{i_n}$ for $n \in \mathbb{N}$, $i_1 < i_2 < \ldots$ and

$$||y_{n_1} + \ldots + y_{n_k}|| \stackrel{\varepsilon}{\sim} \lim_i ||x_i||$$

for every increasing sequence (n_m) of natural numbers and $k \in \mathbb{N}$.

Indeed, let (ε_n) be a sequence of positive numbers so that $\sum_{n=1}^{\infty} \varepsilon_n < \varepsilon$ and let $A = \sup_i ||x_i||$. Using Ascoli's Theorem, we select inductively a sequence (y_n) with $y_n = x_{i_n}$ for every $n \in \mathbb{N}$ so that $i_{n-1} < i_n$ and

$$\lim_{j} \|x + y_n + x_j\| \stackrel{\varepsilon_n}{\sim} \lim_{i} \|x + x_i\|$$

for every $x \in [y_1, y_2, \dots, y_{n-1}]$ with $||x|| \le nA$.

Hence for every increasing sequence (n_m) of natural numbers and $k \in \mathbb{N}$ we have

$$\left\| \sum_{m=1}^{k} y_{n_m} \right\| \stackrel{\varepsilon_{n_k}}{\sim} \lim_{i} \left\| \sum_{m=1}^{k-1} y_{n_m} + x_i \right\| \stackrel{\varepsilon_{n_k} + \varepsilon_{n_{k-1}}}{\sim} \lim_{i} \left\| \sum_{m=1}^{k-2} y_{n_m} + x_i \right\|$$

and finally

$$\left\| \sum_{m=1}^{k} y_{n_m} \right\| \stackrel{\varepsilon}{\sim} \lim_{i} \|x_i\|.$$

From [2], (y_n) has a basic subsequence equivalent to the usual basis of c_0 , as required.

The converse follows from [6] (Theorem 2, $(i) \Rightarrow (ii)$).

Proposition 8. Let X be a separable Banach space. The following conditions are equivalent:

- (i) X contains a subspace isomorphic to c_0 .
- (ii) There exists a Baire-1 element $x^{(2)}$ of X^{**} such that

$$\left\| x + \sum_{i=1}^{k} a_i (x^{(4i-2)} - x^{(4i)}) \right\| = \|x + \max\{|a_i| : 1 \le i \le k\} (x^{(2)} - x^{(4)})\|$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

(iii) There exists $x^{(2)} \in X^{**} \setminus X$ such that

$$||x + x^{(2)} - x^{(4)} + x^{(6)} - x^{(8)}|| = ||x + x^{(2)} - x^{(4)}||$$

for every $x \in X$.

(iv) There exists $x^{(2)} \in X^{**} \setminus X$ and $k \in \mathbb{N}$ such that

$$\left\|x + \sum_{i=1}^{k+1} (x^{(4i-2)} - x^{(4i)})\right\| = \left\|x + \sum_{i=1}^{k} (x^{(4i-2)} - x^{(4i)})\right\|$$

for every $x \in X$.

Proof. (i) \Rightarrow (ii). If c_0 embeds in X, by [9] there exists a sequence (x_n) in X which c_0 -strongly generates a nontrivial type τ $(\tau(x) = \lim_n ||x + x_n||$ for every $x \in X$). This means that for every $\varepsilon > 0$ and $x \in X$ there exists $m \in \mathbb{N}$ such that

$$\left| \left\| x + \sum_{i=m}^{k} a_i x_i \right\| - \tau(x) \right| < \varepsilon$$

for every $k \in \mathbb{N}$ with $m \le k$ and scalars a_m, \ldots, a_k with $\max\{|a_m|, \ldots, |a_k|\}$ = 1. Thus, for $\varepsilon = \tau(0)/2$ and x = 0, there exists $m_0 \in \mathbb{N}$ such that

$$\frac{\tau(0)}{2} \le \left\| \sum_{i=m_0}^k a_i x_i \right\| \le \frac{3\tau(0)}{2}$$

for every $k \in \mathbb{N}$ with $m_0 \le k$ and $a_{m_0}, \ldots, a_k \in \{0, 1\}$.

Take $y_{nm} = x_{m_0+n} + \ldots + x_m$ for every $n, m \in \mathbb{N}$ with $m_0 + n \leq m$. The sequences $(y_{nm})_{m=1}^{\infty}$ are bounded and weakly Cauchy for every $n \in \mathbb{N}$. Indeed, if for some $k \in \mathbb{N}$ the sequence (y_{km}) is not weakly Cauchy, then there exist $f \in X^*$, $\varepsilon > 0$ and a sequence (z_n) with $z_n = x_{k(n)} + \ldots + x_{m(n)}$, $n \leq k(n) \leq m(n)$ for all $n \in \mathbb{N}$, such that $|f(z_n)| > \varepsilon$ for every $n \in \mathbb{N}$. But the sequence (z_n) c_0 -strongly generates τ , hence must be weakly null according to Proposition 1.7 of [4], a contradiction.

We set $y_n^{**} = w^*$ - $\lim_m y_{nm}$ for every $n \in \mathbb{N}$. According to [4], the sequence (y_n^{**}) strongly dually generates τ and hence $\tau(x) = ||x+g||$ for every $x \in X$, where $g = w^*$ - $\lim_n y_n^{**} = x^{(2)} - x^{(4)}$ with $x^{(2)} = y_1^{**}$, because $y_n^{**} = y_1^{**} - y_{1n}$ for every $n \in \mathbb{N}$.

From Corollary 4 there exists a convex block subsequence (z_n) of (y_{1n}) such that $x^{(2)} = y_1^{**} = w^*$ - $\lim_n z_n$ and

$$\left\|x + \sum_{i=1}^{k} a_i x^{(2i)}\right\| = \lim_{n_k} \dots \lim_{n_1} \left\|x + a_1 z_{n_1} + \dots + a_k z_{n_k}\right\|$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

Let $x \in X$, $k \in \mathbb{N}$ and let a_1, \ldots, a_k be scalars with $\max\{|a_1|, \ldots, |a_k|\} = 1$. By the Ramsey principle ([7], [8]) there exists a subsequence (w_n) of (x_n) such that

$$\begin{aligned} \left\| x + \sum_{i=1}^{k} a_i (x^{(4i-2)} - x^{(4i)}) \right\| \\ &= \lim_{n_1 > \dots > n_{2k} \to \infty} \left\| x + a_1 w_{n_1} - a_1 w_{n_2} + \dots + a_k w_{n_{2k-1}} - a_k w_{n_{2k}} \right\|. \end{aligned}$$

Since

$$a_1w_{n_1} - a_1w_{n_2} + \ldots + a_kw_{n_{2k-1}} - a_kw_{n_{2k}} \in c_0$$
- conv $\{x_n : n \in \mathbb{N}\}$

for every $n_1 > n_2 > \ldots > n_{2k} \in \mathbb{N}$ (where $x \in c_0$ -conv $\{x_n : n \in \mathbb{N}\}$ if and only if $x = \sum_{i=1}^k c_i x_{n_i}$ with $\max\{|c_1|, \ldots, |c_k|\} = 1$), from (*) we have

$$\left\|x + \sum_{i=1}^{k} a_i (x^{(4i-2)} - x^{(4i)})\right\| = \tau(x) = \|x + x^{(2)} - x^{(4)}\|.$$

Hence for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k we have

$$\left\|x + \sum_{i=1}^{k} a_i (x^{(4i-2)} - x^{(4i)})\right\| = \|x + \max\{|a_1|, \dots, |a_k|\}(x^{(2)} - x^{(4)})\|.$$

(ii)⇒(iii). This is obvious.

(iii) \Rightarrow (iv). Take k = 1.

(iv) \Rightarrow (i). We set $u = \sum_{i=1}^{2k-2} (-1)^{i+1} x^{(2i)}$ if k > 1 and u = 0 if k = 1. Then we have

$$||x+u+x^{(4k-2)}-x^{(4k)}|| = ||x+u+(x^{(4k-2)}-x^{(4k)})+(x^{(4k+2)}-x^{(4k+4)})||$$

for every $x \in X$. From Theorem 3 we can find a sequence $(x_n) \subseteq X$ such that

 $\lim_{i} \lim_{j} ||x + u + x_{j} - x_{i}|| = \lim_{i} \lim_{j} \lim_{n} \lim_{m} ||x + u + x_{m} - x_{n} + x_{j} - x_{i}||$ for every $x \in X$.

$$\lim_{n} \|x + u + z_n\| = \lim_{n} \lim_{m} \|x + u + z_m + z_n\|$$

for every $x \in X$, where $z_n = w_{2n} - w_{2n-1}$ for all $n \ge 1$.

Using methods analogous to Proposition 7 we can find a subsequence (y_n) of (z_n) such that

$$||u+y_{n_1}+\ldots+y_{n_m}|| \stackrel{1}{\sim} ||u+x^{(4k-2)}-x^{(4k)}||$$

for every $m \in \mathbb{N}$, $n_1 < \ldots < n_m \in \mathbb{N}$. Since $\lim_n ||y_n|| = \lim_n ||z_n|| = ||x^{(2)} - x^{(4)}|| > 0$ we conclude from [2] that (y_n) has a subsequence equivalent to the usual basis of c_0 , as required.

Remark 9. (i) Let $x^{(2)} \in X^{**}$. If for some $k \in \mathbb{N}$, we have

(*)
$$\left\| x + \sum_{i=1}^{2k+2} (-1)^{i+1} x^{(2i)} \right\| = \left\| x + \sum_{i=1}^{2k} (-1)^{i+1} x^{(2i)} \right\|,$$

then (*) holds for every $n \in \mathbb{N}$ with $k \leq n$. This is easy to see, because from Theorem 3, there exists a sequence $(x_n) \subseteq X$ such that

$$\left\| x + \sum_{i=1}^{2k+4} (-1)^{i+1} x^{(2i)} \right\| = \lim_{i} \lim_{j} \left\| x + \sum_{i=1}^{2k+2} (-1)^{i+1} x^{(2i)} + x_i - x_j \right\|$$

$$= \lim_{i} \lim_{j} \left\| x + \sum_{i=1}^{2k} (-1)^{i+1} x^{(2i)} + x_j - x_i \right\| = \left\| x + \sum_{i=1}^{2k+2} (-1)^{i+1} x^{(2i)} \right\|$$

for every $x \in X$.

(ii) If $x^{(2)} \in X^{**} \setminus X$ where X is a separable Banach space then from Theorem 3 and the Ramsey principle we can find a sequence (z_n) such that

$$||x + a_1(x^{(2)} - x^{(4)}) + \ldots + a_k(x^{(2k)} - x^{(2k+2)})||$$

$$= \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 z_{n_1} + \ldots + a_k z_{n_k}||$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

Hence, the sequence $(x^{(4n-2)} - x^{(4n)})$ is the fundamental sequence of an inverse spreading model for X.

The inversion of this spreading model is always 1-unconditional over X ([1]).

In the next proposition we give a characteristic property of spreading models for X which is equivalent to the embeddability of c_0 in the separable Banach space X.

PROPOSITION 10. Let X be a separable Banach space. Then c_0 embeds in X if and only if there exists a spreading model $Y = \overline{X} \oplus [e_i : i \in \overline{\mathbb{N}}]$ for

70

X such that for some $k \in \mathbb{N}$ the equality

$$\left\| x + \sum_{i=1}^{k+1} e_i \right\| = \left\| x + \sum_{i=1}^{k} e_i \right\|$$

holds for every $x \in X$.

Proof. If c_0 embeds in X, then from Proposition 8 there exist $x^{(2)} \in X^{**} \setminus X$ and $k \in \mathbb{N}$ such that

$$\left\|x + \sum_{i=1}^{k+1} (x^{(4i-2)} - x^{(4i)})\right\| = \left\|x + \sum_{i=1}^{k} (x^{(4i-2)} - x^{(4i)})\right\|$$

for every $x \in X$. According to Remark 9(ii) there exists a spreading model $Y = \overline{X \oplus [e_i : i \in \mathbb{N}]}$ for X such that

$$\left\| x + \sum_{i=1}^{k} e_i \right\| = \left\| x + \sum_{i=1}^{k} (x^{(4i-2)} - x^{(4i)}) \right\|$$

for every $x \in X$ and $k \in \mathbb{N}$.

Conversely, if (x_n) generates a spreading model $Y = X \oplus [e_i : i \in \mathbb{N}]$ for X such that, for some $k \in \mathbb{N}$, $||x + \sum_{i=1}^{k+1} e_i|| = ||x + \sum_{i=1}^k e_i||$ holds for every $x \in X$, then

$$\lim_{m} \lim_{n} \left\| x + \sum_{i=1}^{k-1} e_i + x_m + x_n \right\| = \lim_{n} \left\| x + \sum_{i=1}^{k-1} e_i + x_n \right\|$$

for every $x \in X$. Using methods similar to the proof of Proposition 7 we can find a subsequence (y_n) of (x_n) such that

$$\left\| \sum_{i=1}^{k-1} e_i + y_{n_1} + \ldots + y_{n_k} \right\| \stackrel{1}{\sim} \left\| \sum_{i=1}^k e_i \right\|$$

for every $k \in \mathbb{N}$ and $n_1 < \ldots < n_k \in \mathbb{N}$. Hence (y_n) has a subsequence equivalent to the usual basis of c_0 ([2]).

The Baire-1 functions $B_1(K)$ on a compact metric space K were classified by Haydon, Odell and Rosenthal ([5]) by defining the subclasses $B_{1/2}(K)$ and $B_{1/4}(K)$. Let us recall the definitions.

The class $B_1(K)$ of Baire-1 functions contains the pointwise limits of uniformly bounded sequences of continuous functions on K. By $\mathrm{DBSC}(K)$ we denote the class of differences of bounded semicontinuous functions on K and it is easy to see that

$$\mathrm{DBSC}(K) = \left\{ F \in B_1(K) : \text{there exists } (f_n) \subseteq C(K) \text{ converging} \right.$$
 pointwise to F with $f_0 = 0$ and $\sum_{n=0}^{\infty} |f_{n+1}(k) - f_n(k)| < \infty \right\}.$

The vector space $\mathrm{DBSC}(K)$ is a Banach space with the norm

 $|F|_{\mathbb{D}} = \inf \left\{ C > 0 : \text{there exists } (f_n) \subseteq C(K) \text{ converging pointwise to } F \right.$ with $f_0 = 0$ and $\sum_{k=0}^{\infty} |f_{k+1}(k) - f_k(k)| \le C$ for all $k \in K \right\}$.

It is easy to see that $||F||_{\infty} \leq |F|_{D}$ for every $F \in DBSC(K)$, but the two norms are not equivalent in general. Hence we have the definitions:

 $B_{1/2}(K) = \{ F \in B_1(K) : \text{there exists a sequence } (F_n) \subseteq \mathrm{DBSC}(K) \}$

converging uniformly to F},

 $B_{1/4}(K) = \{ F \in B_1(K) : \text{there exists a sequence } (F_n) \subseteq \mathrm{DBSC}(K)$ converging uniformly to F and $\sup |F_n|_{\mathbb{D}} < \infty \}$.

Let X be a separable Banach space and K the unit ball of the dual space X^* with the w^* -topology. We define $B_{1/2}(X) = B_1(X) \cap B_{1/2}(K)$ and $B_{1/4}(X) = B_1(X) \cap B_{1/4}(K)$. In [5], some examples are presented from which it follows that in general

$$X \subsetneq B_{1/4}(X) \subsetneq B_{1/2}(X) \subsetneq B_1(X)$$
.

In the next theorem we characterize the elements in $B_1(X) \setminus B_{1/2}(X)$ via their canonical reproductions. The proof of this theorem is a consequence of the characterization of the functions in $B_1(K) \setminus B_{1/2}(K)$ given by R. Haydon, E. Odell and H. Rosenthal in [5], and of Theorem 3. According to [5], F belongs to $B_1(K) \setminus B_{1/2}(K)$ if and only if there exists a uniformly bounded sequence (f_n) of continuous functions converging pointwise to F such that every convex block subsequence has a subsequence generating a spreading model with the fundamental sequence equivalent to the usual basis of ℓ^1 .

THEOREM 11. Let X be a separable Banach space and $x^{(2)}$ a Baire-1 element of $X^{**} \setminus X$. Then $x^{(2)} \in B_1(X) \setminus B_{1/2}(X)$ if and only if the sequence $(x^{(2n)})_{n=1}^{\infty}$ of the canonical reproductions of $x^{(2)}$ is equivalent to the usual basis of ℓ^1 .

Proof. Let $x^{(2)} \in B_1(X) \setminus X$. From Corollary 4 there exists a bounded sequence (x_n) in X converging to $x^{(2)}$ in the w^* -topology and such that its convex block subsequences (y_n) satisfy

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 y_{n_1} + \ldots + a_k y_{n_k}||$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

If $x^{(2)} \notin B_{1/2}(X)$ then from [5] there exists a subsequence (y_n) of (x_n) which generates a spreading model with the fundamental sequence (e_n) equivalent to the usual basis of ℓ^1 . Since

$$||a_1x^{(2)} + \ldots + a_kx^{(2k)}|| = ||a_ke_1 + \ldots + a_1e_k||$$

for every $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k , we see that the sequence $(x^{(2n)})$ is equivalent to the usual basis of ℓ^1 .

On the other hand, let $(x^{(2n)})$ be equivalent to the usual basis of ℓ^1 . If (e_n) is the fundamental sequence of the spreading model which is generated by (x_n) , then (e_n) is equivalent to the usual basis of ℓ^1 . Of course every convex block subsequence of (x_n) generates the same spreading model for X. Hence from [5] we conclude that $x^{(2)} \notin B_{1/2}(X)$.

In the following theorem we characterize the elements in $B_{1/4}(X)$ via their canonical reproductions. In the proof we will use a characterization of the functions in $B_{1/4}(K)$ given in [5] and also the fact that every sequence of continuous functions converging pointwise to such a function has a convex block subsequence generating a spreading model with the fundamental sequence equivalent to the summing basis of c_0 .

THEOREM 12. Let X be a separable Banach space and $x^{(2)}$ a Baire-1 element of $X^{**} \setminus X$. Then $x^{(2)} \in B_{1/4}(X)$ if and only if the sequence $(x^{(4n-2)} - x^{(4n)})_{n=1}^{\infty}$ is equivalent to the usual basis of c_0 .

Proof. Let $x^{(2)}$ be a Baire-1 element of $X^{**} \setminus X$. From Corollary 4 there exists a bounded sequence (x_n) in X converging to $x^{(2)}$ in the w^* -topology and such that its convex block subsequences (y_n) satisfy

$$||x + a_1 x^{(2)} + \ldots + a_k x^{(2k)}|| = \lim_{n_k} \ldots \lim_{n_1} ||x + a_1 y_{n_1} + \ldots + a_k y_{n_k}||$$

for every $x \in X$, $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

If $x^{(2)} \in B_{1/4}(K)$, then from [5] there exists a convex block subsequence (y_n) of (x_n) generating a spreading model with the fundamental sequence (e_n) equivalent to the summing basis of c_0 . Since

(*)
$$||a_k e_1 + \ldots + a_1 e_k|| = ||a_1 x^{(2)} + \ldots + a_k x^{(2k)}||$$

we have

$$||a_1(x^{(2)} - x^{(4)}) + \ldots + a_k(x^{(4k-2)} - x^{(4k)})||$$

= $||a_k(e_2 - e_1) + \ldots + a_1(e_{2k} - e_{2k-1})||$

for every $k \in \mathbb{N}$ and scalars a_1, \ldots, a_k .

Hence the sequence $(x^{(4n-2)}-x^{(4n)})$ is a 1-unconditional basic sequence equivalent to the usual basis of c_0 .

On the other hand, let the sequence $(x^{(4n-2)} - x^{(4n)})$ be equivalent to the usual basis of c_0 . If (e_n) is the fundamental sequence of the spreading model which is given by the sequence (x_n) then by Ramsey's principle ([7]) there exists a subsequence (y_n) of (x_n) such that

(**)
$$\left\| \sum_{i=1}^{k} a_{i} e_{i} \right\| = \lim_{n_{k} > \dots > n_{1} \to \infty} \left\| \sum_{i=1}^{k} a_{i} y_{n_{i}} \right\|.$$

According to [5], $x^{(2)}$ is in $B_{1/4}(X)$ if there exist $0 < M < \infty$ and $(y_n) \subseteq X$ with $y_0 = 0$, converging to $x^{(2)}$ in the w^* -topology, with the property that for all $\varepsilon > 0$ there exists $m \in \mathbb{N}$ such that if (y_{n_i}) is a subsequence of $(y_n)_{n=m}^{\infty}$ then

$$\sum_{i \in B((n_i), s:^*)} |x^*(y_{n_{i+1}} - y_{n_i})| \le M$$

for every $x^* \in X^*$ with $||x^*|| \le 1$, where

$$B((n_i), x^*) = \{i \in \mathbb{N} : |x^*(y_{n_{i+1}} - y_{n_i})| \ge \varepsilon\}.$$

The basic sequence $(e_{2n} - e_{2n-1})$ is equivalent to the usual basis of c_0 by (*). Hence according to (**) there exists $0 < C < \infty$ such that for every $k \in \mathbb{N}$ there exists $m(k) \in \mathbb{N}$ with $k \leq m(k)$ such that if $m(k) \leq n_1 < \ldots < n_{2k}$ then

$$\left\| \sum_{i=1}^{k} a_i (y_{n_{2i}} - y_{n_{2i-1}}) \right\| \le C \max\{|a_1|, \dots, |a_k|\}.$$

This immediately yields

$$(****) \sum_{i=1}^{k} |x^*(y_{n_{2i}} - y_{n_{2i-1}})| \le C$$

for every $x^* \in X^*$ with $||x^*|| \le 1$ and $m(k) \le n_1 < \ldots < n_{2k} \in \mathbb{N}$.

Let $\varepsilon > 0$ and $k > 2C/\varepsilon$. If (y_{n_i}) is a subsequence of $(y_n)_{n=m(k)}^{\infty}$ and $x^* \in X^*$ with $||x^*|| \leq 1$, then the set $B((n_i), x^*)$ contains fewer than k elements. Indeed, if $i_1 < \ldots < i_k$ are in $B((n_i), x^*)$ then

$$\sum_{j=1}^k |x^*(y_{n_{i_j+1}}-y_{n_{i_j}})| \ge k\varepsilon.$$

On the other hand, from (****) we have

$$\begin{split} \sum_{j=1}^{k} |x^*(y_{n_{i_j+1}} - y_{n_{i_j}})| \\ &= \sum_{\substack{1 \le j \le k \\ j \text{ odd}}} |x^*(y_{n_{i_j+1}} - y_{n_{i_j}})| + \sum_{\substack{1 \le j \le k \\ j \text{ even}}} |x^*(y_{n_{i_j+1}} - y_{n_{i_j}})| \le 2C. \end{split}$$

Since $k > 2C/\varepsilon$ we have a contradiction.

Thus $B((n_i), x^*)$ contains fewer than k elements and then

$$\sum_{i \in B((n_i), x^*)} |x^*(y_{n_{i+1}} - y_{n_i})| \le 2C.$$

Hence, since (y_n) converges to $x^{(2)}$ in the w^* -topology, we conclude from [5] that $x^{(2)} \in B_{1/4}(X)$.

References

- B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984.
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- A. Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90.
- V. Farmaki, co-subspaces and fourth dual types, Proc. Amer. Math. Soc. (2) 102 (1988), 321-328.
- R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Functional Analysis (Austin, Tex., 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35.
- B. Maurey, Types and ℓ_1 -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.
- F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286.
- H. Rosenthal. Some remarks concerning unconditional basic sequences, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 15-47.
- —, Double dual types and the Maurey characterization of Banach spaces containing ℓ^1 , in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1984, 1-37.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ATHENS PANEPISTEMIOPOLIS-ILISIA GR-15784 ATHENS, GREECE E-mail: SMA20@GRATHUN1.BITNET

> Received October 1, 1991 (2846)Revised version August 5, 1992

Isometries of Musielak-Orlicz spaces II

by

J. E. JAMISON, A. KAMIŃSKA and PEI-KEE LIN (Memphis, Tenn.)

Abstract. A characterization of isometries of complex Musielak-Orlicz spaces L_{Φ} is given. If L_{Φ} is not a Hilbert space and $U:L_{\Phi}\to L_{\Phi}$ is a surjective isometry, then there exist a regular set isomorphism τ from (T, Σ, μ) onto itself and a measurable function wsuch that $U(f) = w \cdot (f \circ \tau)$ for all $f \in L_{\Phi}$. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

- 1. Introduction. For any σ -finite atomless measure space (T, Σ, μ) , a nonnegative function $\Phi: \mathbb{R}_+ \times T \to \mathbb{R}_+ \cup \{\infty\}$ is said to be a Young function if
- $\Phi(0,t)=0$ for all $t\in T$;
- for any $t \in T$, $\Phi(\cdot,t)$ is a left continuous nondecreasing convex func-
- for any $u \in \mathbb{R}_+$, $\Phi(u, \cdot)$ is a Σ -measurable function;
- $\mu(\{t: \Phi(u,t) = 0 \text{ for all } u > 0\}) = 0 = \mu(\{t: \Phi(u,t) = \infty \text{ for all } u > 0\})$ u > 0).

For any Young function Φ , the Musielak-Orlicz space L_{Φ} associated with Φ is the set of all (complex- or real-valued) measurable functions such that

$$I_{\Phi}(\lambda f) = \int_{T} \Phi(|\lambda f(t)|, t) d\mu(t) < \infty$$

for some $\lambda > 0$. The space L_{Φ} is equipped with the Luxemburg norm, that is, the norm of $f \in L_{\varPhi}$ is given by $||f||_{\varPhi} = \inf\{\varepsilon > 0 : I_{\varPhi}(\frac{f}{\varepsilon}) \le 1\}$ [10, 13].

If Φ does not depend on t, i.e. $\Phi(u,t) = \varphi(u)$, then we shall call L_{Φ} the Orlicz space L_{φ} [11]. In [5], Fleming and the first two authors studied the isometries of complex Musielak-Orlicz spaces. They proved that if Φ satisfies the following condition:

for almost all $t \in T$, the function $u \to \frac{\Phi'(u,t)}{2t}$ is monotone,

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B04, 46E30; Secondary 47B15.