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Characterizations of elements of a double dual Banach space
and their canonical reproductions

by

VASSILIKI FARMAKI [Athens)

Abstract. For every element 2™ In the double dual of a separable Banach space X
there exists the sequence (ww"‘)) of the canonical reproductions of 2** in the even-order
duals of X. Tn this paper we prove that every such sequence defines a spreading model for
X Using this result we characterize the elements of X™** \ X which belong to the class
Bi(X)\ Byjg(X) (resp. to the class By 14(X)) as the elements with the sequence (z{*"})
equivalent to the usual bagis of £ (resp. as the elements with the sequence (z(4”_2J~m(4n)}
equivalent to the usual hasis of cy), Also, by analogous conditions but of isometric nature,
we characterize the anbeddability of £ (resp. o) in X.

Introduction. In the lagt few years, the theory of spreading models ([1],
&) has proved fruitful in the study of Banach spaces. For example, it was
used by R. Haydon, E. Odell and H. Rosenthal in [5] to give characterizations
of certain elerents of the second dual X** of a separable Banach space X.

Tn this paper we prove (Theorem 3) that for every element z** € X**\ X
the sequence (:z:tz‘”)) of ity canonical reproductions defines a spreading model
for X.

There are many possible applications of this result. In this paper we
are able to defermine when an element ¢ € X** \ X belongs to the class
Bi(X)\ Bya(X) (resp. the class Byyq(X)) exclusively in terms of the se-
quence (24"} (Theorems 11 and 12). More precisely, ** € By (X )\ By/a(X)
if and only if the sequonce (2*™) is equivalent to the usual basis of £*, and
2" € B 74 (X)) i and only 1 the sequence (20U~ — o) i5 equivalent to
the usual Dasis of ¢q. In the proofs of these results we use the characteriza-
tions of elements in By (X)\ B12(X) (vesp. By 4(X)) given in [5}.

We also characterize the embeddability of £* (vesp. the embeddability of
o) i X in terms of the properties of the canonical reproductions (mm”)) of
soine element 2** ¢ X** (Propositions 6 and 8). Unlike the characterizations
of Bajve-1 elements of X** given above, these characterizations are of an
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isometric nature. Precisely, £! embeds in X (resp. co embeds in X) if and
only if there exists z** € X**\ X such that

o= 3] = Jo + (Llad)
i=1 i=1

. i i ' 4
(resp. o+ D" (w2 - a9) | = o+ max Jasl(e"" ~2)])
i=1

for every z € X, n € N and scalars a1, .. .,a,. These characterizations are
influenced by the deep results of Maurey in [6}, where it is proved that the
embeddability of £* in X is equivalent to the existence of an element «™ in
X**\ X such that ||z + 2**|| = ||z — z**|| for every z € X (for the case of
¢y an. analogous characterization is given). In the proof of these results we
use some results and techniques of the theory of types and especially from
the papers [9] and [4].

Finally, in Propositions 7 and 10 we prove some new characterizations
for the embeddability of ¢p in a Banach space.

Throughout this article we denote by X a real separable infinite-dimen-
sional Banach space. X**, X® X® . are the second, third, fourth,...
duals of X respectively. For a subset A of X, conv A4, [A] and A denote the
convex hull, linear span and || |-closure of A respectively. For any subset 4
of X3 (n > 1) we denote by A the weak®-closure of A in X,

DEFINITION 1. Let X be a Banach space and z(® € X* If [, : X —
X (3%=2) i5 the canonical embedding of X in the {2k ~ 2)-dual of X then we
define z(2%) = I*(2?)) for every k > 1. The elements x(**) are the canonical
reproductions of %) in the duals X (%) of even order for every k > 1.

It is easy to see that, if (3 = w*-lim; 2; for some net (z;) in X, then
23 = w*lim; z; if (z;) is considered as a net in X (25},

In the following theorem we will prove that the canonical reproductions
can be considered as the fundamental sequence of a spreading model for X.
In the proof we will use the following lemma which is a generalization of an
analogous result in [9] and [4].

LEMMA 2. Let X be o separadle Bonach space, k € N, g € X% and
Wy 2 Wa 2 ... a sequence of bounded, convez subsets of X %3 g0 that
9 €My W,. Then there exisis a sequence Ly 2 Lo 2 ... of conver subsets
of XCk=2) guch that:

(i) Wy, 2 L, for every n € N.
(i) If (mn) C X2 45 such that z, € L, for every n € N, then
Iz + g|| = limy, ||z + z,}| for every z € X.
(iii) g € Ly, for every n € N.
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Proof. The Jemma is proved in [9] for the case k = 1 and in [4] for
k= 2. For k > 2 the proof is analogous. -

THEOREM 3. Let X be u separable Banach space and z'®) g X+ \X.
If 2% are the canonical reproductions of ©® in the duals X(20 of even
order (k > 1) then there emsts a sequence (z,) in X such that

PPN ) N (2R =1 :
&+ a@'™ + .+ apz ||—li?...lg}lumﬁ—alzm+...—|—akzm\|

for every convex block subsequence (zn) of (z,), x € X, k € N and scalors
CQlyrory ke

Proof. Let 2 ¢ X**\ X, Using Lemma 2 for W,, = {zeX:|z|| <
@} (n & N), we can find a sequence (L) of convex subsets of X with
the properties (i) -(iii) of the lemma. From (iii) we have z() e 2 I,
hence ot & M2, L1 if LY for n > 1 are considered as subsets of X**,
Using Lemina 2 again for the space X @ 2(®] and W, = L, n € N, we can
find a sequence (L2) of convex subsets of X** with the properties (1)-(iii).
The next step is to use Lemma 2 for X @ [z®), 2(9)], W, = L2, n € N, and
28 ¢ X©), We continue in the obvious manner. '

We select =, € Ly for every n € N. It is easy to see that z, € L% for
every n, k € N with n > k. Hence for every € X, k € N and scalars
a1y .y 0 We have

&+ age™® 4+ apa®)| = 1?131‘11 lz+arz®P 4. . +ar_ 12D paran, ||
"

= lim lim ||z+a12® +. . +ag_1Zn,_, +artn]
i Ty -1

=lim... Jim ||z +a1Zp, +... + apZn,| -
Nk n),

If (2,,) is & convex block subsequence of (x,) then, since the L? are convex
and L 2 L1 for every n € N, we conclude that (z,) is a subsequence of
some sequence (y,) € X such that y, € L for every n € N. '

We will give a corollary of the previous theorem for the case of Baire-1
elements of a double dual space. Recall that ¢ € X** \ X is said to be a
Baire-1 element of X ** if there exists a sequence (z,,) in X weak”-converging
In X" to g (w*limy, @, = g).

CloroLLary 4. Let X be o separable Banach space and x® o Baire-1
element of X"\ X, If 2% ¢ X (k> 1) are the canonical reproductions
of @@, then there exists o sequence () in X such that 2® = w*-lim, z,,
and

|+ ayz™ ..+ age®) ) = lim.... IH;n %+ a12ny + - F GxZng |
k .

for every conver block subsequence (zn) of (2a), & € N, £ € X and scalars
(€ PRI ¢ ; : i
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Proof. Let (y,) be a sequence in X, weak*-converging in X** to 2,
We set W, = conv{y; : ¢ > n} forn € Nand in the same way as in the proof
of Theorem 3 we can find a convex block subsequence () of () such that

|[$+ (11.’5(2) 4+ akﬂi(zk)H = ]_}LI:]_ e 1}1]31]11 Hx -+ A12n, + ...+ a;cznk”

for every convex block subsequence {zn) of (2.}, k¥ € N, z € X and scalars
o .
ai,---,05. Moreover, ) = w*- lim,, @,

Let us recall the definition of a spreading model for a Banach space X
(see (1], [3])-

DEFINITION 5. The Banach space Y is called a spreading model for X
if there exist a sequence (e,) in ¥ such that ¥ = gpan({X U {e, : n € N})
and a sequence (z,) in X so that (z,) has no norm-convergent subsequence
and

2+ arer + ...+ anenlf = lm. . dim € 4+ 61Zm, + o0+ GnZim, |
Ty Mo

for all 2 € X, n € N and scalars ay,. .., a,. The sequence (e,,) is called the
fundamental sequence of the spreading model Y which is generated by the

(#n)-

The spreading model is 1-unconditional over X if
|z 4 e1a1e1+ ... +Entrenl| = |+ arer -+ ...+ anenl|
for every € X, n € N, scalars a3,...,a, and £1,...,8, € {~1,1}.

As we showed in Theorem 3, the canonical reproductions of an element
23 in the double dual of a separable Banach space X give an inverse spread-
ing model for X. Precisely, if L is the linear space with basis (e;)72, then
we define on X @ L the norm ||z + % | avei] = [lo+ %, apose 12| for
every £ € X, k € N and scalars a;3,..., 8. The completion Y, of X @ L
under this norm is a spreading model for X, according to Theorem 3.

Many known results related to spreading models can be described via
the canonical reproductions. It is known (see [1]) that the existence of a
spreading model in X with fundamental sequence (e?t) such that

il . b 1/p
o= S <[ (5 ) s
i=1 )

i
(resp. Hm + z e
g==]

for every z € X, k € N and scalars ay, .. ., a5 implies the embeddability of
£P for 1 < p < oo (resp. of cp).

We characterize the embeddability of £ and ¢y via the canonical repro-
ductions in Propositions 6 and 8 respectively. These results are consequences

forl<p= o0

== [l + (‘ngfgck fa)e )
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of the deep results of Maurey in [6] on the embeddability of #* and ¢g in X ,
and of Theorem 3. In the proofs we use some results and technigues of the
theory of types which can be found in [9] and [4].

PROPOSITION 6. Let X be a separable Banach space. The following con-
dittons are cquitvalent: :

(i) X contains a subspace isomorphic to £
(ii) There exists 29 & X**\ X such that

k .
Hm Y a0 = H.r + (Z |a,-,\)m(2)H
fu] f==1

for every & ¢ X, k€ N and scalars ag,. .., a.
(iil) There exists 23 € X**\ X such that the spreading model Y, is
1-uncondilional over X,

Proof. (i)=:(ii). From [8], if /! is embeddable in X there exists z(* &
X™\ X such that [|@ -+ «®|| = {|a ~ 2@ for every z € X. According to
Theorem 3 there exists a sequence (z,) in X such that

k
TR SN 31 ST T
”.L + 72:{ i )y = lﬁ:x. = lmx &+ a12n, + ... + Gp2n, |
for every convex block subsequence (z,,) of (z,), z € X, k € N and scalars
[+ AT (T .

Thus Loy, limy, |2 -+ a2, -+ bt || = limy, |l + (@ + b)z,|| for every z € X
and a,b > 0. Indeed, let a,b > 0 with ¢ +5 = 1 and o € X such that
ity ling, ||@ -+ am, + biy,|| is not equal to limy, | + @] = |z + =¥
By Ramsey’s principle [7] we can choose a sequence n(1) < n(2) < ... of
natural nunhers so that

lim litm || -+ azy +d@y| =  lim |2+ azne + 02apl
oMy J et
Let 2 = ayuy + bayggiyy for every © @ No Since (#) is a convex block

subsequence of (ir,) wo have limg |z + 2| = ]z + 2. On the other hand,
Yy ||a = 24| = liny, Wy, ||@ - @y -+ bt ||, & contradiction.

Tt
R
o (0]

3=

I3
o+ 30 < |
fme]

for every x € X, k ¢ W and scalars a1,...,ap = 0.
Since |ja + & = ||l& -~ 2| we have

lim lim || 4 @y + b2 || = lim lz + (Ja| + [b)zn ||
N Tt
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for every € X and scalars a, b. Hence

k &
Hm—l— Zaisc(%) ‘ = H:c + (Z|ail)x(2)H
i=1 i=1

for every z € X, k € N and scalars ag, ..., a-
(ii)=-(iii). For every & € X, k € N, scalars a1, ..
we have the equalities

k k ke
oo e = o+ S ncmsncss®] = o+ (3 )
Ge=l el b=

b ok
= ”:c + Z ak«-i—hlﬂ?(‘h)“ = “m + Zflwi
T=1 gr=l

(iii)=(1). Obvious from [6].

In the following we give criteria for a Banach space to contain co. If
A, B cR and &> 0 we write A <~ B whenever |4 — B| <.

., G, and signs ey, ..., &g

PROPOSITION 7. Let X be a Banach space. Then co embeds in X if and
only if there exists a net (z;) in X such that limy ||z;]] > 0 and, for cvery
z € X, we have lim; lim; ||z + 2; + 25| = lm; ||z + ;.

Proof. Let (z;) be a bounded net as in the statement of the proposition.
For every € > 0 we can find a sequence (y,) in X such that y, = x;, for
nelN, i <ip <...and

(%) [y 4 -+ + Y |~ limm

for every increasing sequence () of natural numbers and k € N,

Indeed, let (¢,,) be a sequence of positive mumbers so that E:’f_ LEn <E
and let A = sup, ||z;||. Using Ascoli’s Theorem, we select inductively a
sequence (y,) with y, = @;, for every n € N so that i,,.; < i, and

a2 + g+ 5] Jin 2 + 24

for every z € [41,¥y2, -+« Un~1] With [|&]| < nAd.
Hence for every increasing sequence (n,,) of natural nwunbers and & € N
we have

k
H Z Yrion
m==]

and finally

k—1 G2
Eny I EnpFngy o
~ lim Yn T4 ~ 0 i 2 Yoy, T b4
§
m=1 = |

e

me=1

~ lirn | y]
&
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From [2], (yn) has a basic subsequence equivalent to the usnal basis of cg,
as required.
The converse follows from [6] (Theorem 2, (1)=>(ii)).

PrROPOSITION 8. Let X be o separable Banach space. The following con-
ditions are equinalent:

(i) X contains o subspace isomorphic to .
(it) There exists o Baire-1 element @ of X** such that

i 37 autat® ) o) = o4 maxfas] 1 <5 < R} — 2]
i |
Jor every x € X, k€ N and scolars ay, ..., a5,
(i) There exists @™ € X**\ X such that
[l + w2 ) g l6) m(ﬁ)” =z + 23 L4 |

Jor every x & X
(iv) There eaists 3 € X\ X and k € N such that

ki1 b
e et ] = e+ e )
dasl =1

Jor every x € X,

Prool (1)=(ii). If ¢p embeds in X, by [9] there exists a sequence (&)
in X which ¢y-strongly generates a nontrivial type 7 (t(z} = limy, ||z + x|
for every @ € X). This means that for every € > 0 and 2 € X there exists
m € N guch that

k
(*) . HLJI + Z ;i
P )

for every k ¢ N with m < k and scalars au, . . ., a with max{|am ..., e/}
= 1. Thus, for € == r(0)/2 and x = 0, there exists my € N such that

wT(m)\ <e

. k
0 ] 1 i < 202
i thg

for every k ¢ M with my < k and anyg, -0 0 € {0,1}

Take Yum == gt & -« A 2 for every n,m € N with mg -Fm < m.
The sequences (Yo )2, are bounded and weakly Canchy for every n € N.
Indeed, if for some k € N the sequence (yem) is not weakly Cauchy, then
there exist | € X*, & > 0 and asequence (2,) with 2, = Zym) +- - -+ Zm(n),
n < k(n) < mn) for all n € N, such that [f(z.)] > & for every n € N,
But the sequence (z,) co-strongly generates 7, hence must be weakly null
according to Proposition 1.7 of [4], a contradiction. :
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We set yi* = w”-liMy, Ynm for every n € N. According to [4}3 the se-
quence (y*) strongly dually generates 7 and hence 7(x) :: |z -+ g| for every
z € X, where g = w*-lim, y;" = 2® — 2@ with 28 = yi*, because
Yt = yi* — yn for every n € N.

From Corollary 4 there exists a convex block subsequence (zn) of (yin)
such that 2% = y* = w*- lim,, 2, and

] T -+ i am(Zi)\]
i=1

for every z € X, k € N and scalars a1, ..., Gk- |

Let z€ X, k€N and let ay, . . ., ax be scalars with max{|a],...,|an} =1
By the Ramsey principle ([7], [8]) there exists a subsequence (w,,) of (&n)
such that

k
C——
i=1

H:I: + a1Wy; - G1Wn, ot O W ™ G Wnay “ .

=lim...lim |z + a120, + .-+ Gk2uy I
Tk i

= lim
Tl > 2 Tap — 00

Since
A1Wn, =~ 01 Wny + .o+ CkWaygy g = GkWng, € Co- COI‘N{;!’J?,, ine N}

for every my > ng > ... > ngg € N (where z € co-conv{z, 1 n € N} if and
only if z = Yo, cit, with max{les|, ..., [ex]} = 1), from (*) we have

k
o+ 3 ettt o) | = w(a) = o + 5 ~ 2
i=1
Hence for every z € X, k € N and scalars ag,...,ap we have

k
Hm X Zai($(4i—2) _ il
=1

(ii)=-(ii). This is obvious.

(iii)=>(iv). Take k = 1.

(iv)=>(i). We set u = 3 ooy (=11 aB) it b > L and u = 0 if b = L
Then weé have
“I+ U4 pl4h=2) _ gj(‘ﬂn)H = ||£L‘ +u (w(4k~2) . .'L‘W")) e (m(qm\g) - ‘I’MMNM))H

for every z € X. From Theorem § we can find a sequence () & X such
that

= o+ mexllar) . asl} (o = 2O)].

limlim ||z + 4 + z; — 2;]| = lim m 1i}n 111%11 &+ u+ & = 2 + 25 — 2y
i g L )

for every z € X.
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By the Ramsey principle ([7]) there exists a subsequence (w,,) of (zr)
such that
11};11 [l 4+ + 2| = 1iTan liﬂr};n |l + 1+ 20 + 2]
for every z € X, where 2, = wg, — wyy,.. for all n > 1.

Using methods analogous to Proposition 7 we can find a subsequence
(yn) of () such that :

“'u + Yy oo Yo H ’L ”’Uf + CCMk_g) e CL'MMH

._ , oo < np € N Since limy, [|y,l] = lim, ||z,)) =
4¢3 2| > 0 we conclude from [2] that (y,,) has a subsequence equivalent
to the usual basls of ¢p, as required.

Remark 9. (i) Let 2% & X** If for some k € N, we have
-2 %

(%) ku‘_’ Z (~1)i+1520 || = Hv,c_,rz(__l)wlm(zi)
s i=1

then ()} holds for every n € N with & < n. This is easy to see, because from
Theorem 3, there exists a sequence {%,,) C X such that

k-4 2k--2
xr + ~1)iHl (20 =limlimHm —1) g2 gy ”
| z;( ) mli +2£( Y s 4 g~z
2k 2h42
o T b e o 1y (20) ol = H Vi, (24)
11£ﬂk1ﬁ1“$ | E( Lfet oy — z+ Z( 1)z

el i=1

for every & € X.
(i) If 02 € X** \ X where X is a separable Banach space then from
Theorem 3 and the Ramsey principle we can find a sequence (z,) such that

I an(a® ~ ) g (52 = o310

=lim.. lim |2 + a12n, +- ..+ ap2n, |
R g

for every w & X, b ¢ N and scalars ay,..., ok

Hence, the sequence (24 — (%)) is the fundamental sequence of an
inverse spreacding model for X. '

The inversion of this spreading model is always l-unconditional over X
([1]). -

In the next proposition we give a characteristic property of spreading
models for X which is equivalent to the embeddability of cp in the separable
Banach space X. '

Proposrrion 10. Let X be a separable Banach space. Then co embeds
in X if and only if there exists a spreading model ¥ = X ® [e; : ¢ € N] for
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X such that for some k € N the equality

k1 k
feSie] - fe- e
ezl i=1
holds for every z € X.

Proof. If co embeds in X, then from Proposition 8 there exist 2 ¢
X**\ X and k € N such that

H k1 ety _ || o +Z (4i-2) M)H
e+ S s

for every z € X. According to Remark 9(ii) there exists a spreading model
Y = X@[e 1 €N for X such that

k k
oo e e Feen -
o] =1

forevery z € X and k€ M.
Conversely, if (#,) generates a spreading model ¥V = X @ X @ e i€ N for

X such that, for some k € N, [lz+ 500 ]| = |2+ EP €;|| holds for every

z € X, then
k-1
= Hﬁn H:r -+ ; € -+ I

for every & € X. Using methods similar to the proof of Proposition 7 we
can find a subsequence {y.) of (z,) such that

ks

k-1
T+ E &; + Zop -+ 2T
i=1

] ke
5
i==1

for every k € Nand ny < ... < ny € N. Hence (y,) has a subsequence
equivalent to the usual basis of ¢y ([2]).

kel
Hzei_l—ynl +---+yn,|u
i=1

The Baire-1 functions By (K) on a compact metric space J{ were classified
by Haydon, QOdell and Rosenthal ([5]) by defining the subclasses B, a(K)
and Byz4(K). Let us recall the definitions.

The class Bi{K) of Baire-1 functions contains the pointwise limits of

uniformly bounded sequences of continuous functions on K. By DBSC{A)
we denote the class of differences of bounded semicontinnous functions on
K and it is easy to see that

DBSC(K {F € By(K) : there exists (frn) C (*(Ix) converging

pointwise to F with fy = 0 and Z | frga (k) = fu (k)] < oo}.

n=()

icm

Characterizations of elements of o double dual Banach space 71

The vector space DBSC(K) is a Banach space with the norm

|F|p = inf {(ff = () : there exists ( fn) C C(K) converging pointwise to F
with fo = 0 and Z [Frsa () = fulk)| < O for all ke K}

It is eagy to see that [[Fl., < |F'|D for every F € DBSC(K), but the two
norms are nat equivalent in general, Hence we have the definitions:

Bija(K) = {F € B1(K) : there exists a sequence (F,) € DBSC(K)
converging uniformly to F},
there exists a sequence (F,) C DBSC(K)
converging uniformly to F and sup |Fylp < o0} .
7

Bl/’l([& {I* & BJ [’x)

Let X be a separable Banach space and K the unit ball of the dual
space X" with the w"-topology. We define By ,5(X) = By(X) N Byja(K)
and By (X)) = B1(X)N Bya(K). In [5], some examples are presented from
which it follows that in general

X & Bya(X) G Bija(X) € Bi(X).

Tn the next theorem we characterize the elements in By (X)\ B, ;2(X) via
their canonical reproductions. The proof of this theorem is a consequence of
the characterization of the functions in B, {(K)\ By /2(K) given by R. Haydon,

E. Ocell and H. Rosenthal in [5], and of Theorem 3. According to [5], F
h@lcmg.,s to By(K)\ 13 (K if and only if there exists a uniformly bounded
sequence (f, ,,) of continuous functions converging pointwise to F' such that
every convex block subsequence has a subsequence generating a spreading
model with the fundamental sequence equivalent to the usual basis of £1. -

THEOREM 11. Let X be o separable Banach spuce and z'*) o Baire-1
element of X"\ X. Then ¥ € B (X )\Blf«)( sf and only if the sequence
(@)= of the canonical reproductions of '?) is equivalent to the usual
basis of ¢,

Proof Lel 2® ¢ B (X)\ X. From Corollary 4 there exists a bounded
gequence () in X converging to ¥ in the w*-topology and such that its
convex block ‘Hll)'-%(‘(;[\l(‘.ll("ﬂﬁ (1} stisly
| )

for vvmy ae X, k¢ N and scalars ay, ..., . _

It ! ¢ B, s2(X) then from [5] there exists a subsequence (yn) of (zq)
which generates a spreading model with the fundamental sequence (en)
equivalent to the nsual basis of £ Smce

a4 e b A aga -t ain |

= lim, . lm |2 4 a1 yn, + .
T T,

ilrcl_;r.:(")’) oA e || = |lages =+ . .- + G1ex]]



72 V. Farmaki

for every k & N and scalars as,...,ax, we see that the sequence (231 i
equivalent to the usual basis of £,

On the other hand, let (2(**)) be equivalent to the usual basis of ot
(en) is the fundamental sequence of the spreading model which is generated
by (2n), then (eg) is equivalent to the usual basis of £ L. Of course every
convex block subsequence of (2,) generates the same spreading model for
X . Hence from [5] we conclude that 2 ¢ By n(X).

In the following theorem we characterize the elements in Bi(X) via
their canonical reproductions. In the proof we will use a characterization of
the functions in By 4 (K) given in [5] and also the fact that every sequence
of continuous functions converging pointwise to such a function has a con-
vex block subsequence generating a spreading model with the fundamental
sequence equivalent to the summing basis of cg.

THEOREM 12, Let X be o separable Banach space and z'*) o Baire-1
element of X** \ X. Then 22 ¢ Bya( X} if and only if the sequence

(m(4n—2) _ m(én))z‘o:l

is equivalent to the usual basis of cg.
Proof. Let 2(2) be a Baire-1 element of X**\ X. From Corollary 4 there
exists a bounded sequence (z,) in X converging to z() in the w*-topology

and such that its convex block subsequences (y,,) satisly

Iz +012® + ..+ ape®| = lqiq}n e 11{Lm |z + a1yn, + ..+ @nyn, |
ke 1

for every z € X, k € N and scalars ay,...,a;.

If 28 € By y(K), then from [5] there exists a convex block subsequence
(yn) of (z) generating a spreading model with the fundamental sequence
(en) equivalent to the summing basis of ¢g. Since

(%) lager + ...+ arew]| = |larz® + .. + a0
we have

laa(2® — 2) ..+ au(al — g4

= ||ak(e;3 — 61) + ok ﬂ.l(ﬁgk, (‘3%4_‘1)”

for every k € N and scalars ay,.. ., g,

Hence the sequence (247~ — 1)) i5 a L-unconditional basic sequence
equivalent to the usual basis of eq.

On the other hand, let the sequence ("% . 2(47)) he equivalent to
the usual basis of co. If (e,,) is the fundamental sequence of the spreading

model which is given by the sequence (2,) then by Ramsey’s principle ([7])
there exists a subsequence (y,) of (z,) such that

k
(or) H Z @i
i=1

k

= lim. H E i

Ty o Ty, =00 e 1J”‘1
NN
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According to [3], 2® is in Bi4(X) if there exist 0 « M < oo and
(yn) € X with ¢y = 0, converging to z® in the w*-t opology, with the
property that for all ¢ > 0 there exists m & N such that if (Yn;) is a
subsequence of (y,)n%.,, then

= "
Z ‘:B (’ynj,H - y'ﬂi)| g M
LG B((1),a)
for every «* € X* with ||z*|| < 1, where
B{(ni), ") = {ieN: lm*(yﬂw-x = ¥ni)| 2 e},

The .l‘msia sequence {eg, -~ es,..1) i8 equivalent to the usual basis of ¢g
by (#}. Hence according to (++) there exists 0 < ' < oo such that for every
k & N there exists m(k) € N with & < m(k) such that if m(k) <ny < ... <
ngi then

< Omax{las],- ., las}.

k
(*#*) H Z a‘i(yng{. - y‘nw—l)
fax ]

This nmediately yields
i
(eeton) Z
L
for every o* € X* with |2 € land m(k) <ny < ... < ng € N.
Let & > 0 and & > 2C/e. It (yn,) is & subsequence of (ya )2,y and
o* € X* with [|2*] < 1, then the set B({(n;),z*) contains fewer than k
elements. Indeed, if i1 < ... < i) are in B({n;),z*) then

wm(ynm o y”riiwl)‘ <C

ja*

ht* (’Hmj“,‘.l - ymj )i 2 ke.

#

On the other hand, from (s#x+) we have
b
2

|'*”*(‘.UTI.1J e ?/m_‘ )‘

e i: ‘:T:*(?i-n,u,.| 17 Yy, )l + Z ‘mm(yn.:j..;.1 - ymj” <20,

1€k lejsh '
i okl j evan

Sinee k= 20! /& we have a contradiction.
Thus H((n;),«*) contains fewer than k elements and then

Z |m*(?fﬂi+1 - Uny)| < 20

2 l?((‘ﬁr{),m*)
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Hence, since (y,,) converges to z® in the w*-topology, we conclude from
[5] that z(*! € B1/4(X)
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Isometries of Musielak—Orlicz spaces 11
by

J. B. TAMISON, A. KAMINSKA and
PEI-KEE LIN (Menmphis, Tenn.)

Abstract. A characterization of isometries of complex Musielak—Orlicz spaces Ly is
given. If Ly is not a Hilbert space and U : Lg — Lg is a surjective isometry, then there
exist a regular set isomorphism 7 from (T, X, 1) onto itself and a meagurable function w
such that U{f) = w- (f or) for all f € L. Isometries of real Nakano spaces, a particular
case of Musielak-Qrlicz spaces, are also studied.

1. Introduction. For any o-finite atomless measure space (1), X, u), a
nonnegative function @ : Ry x T — Ry U {cc} is said to be a Young function
if
(1)  @(0,t) =0for all t € T}

(2) for any t € T, $(-,t) is a left continuous nondecreasing convex func-
tion; .

(3)  for any u € Ry, $(u,-) is a Z-measurable function; _

(4)  p({t: Hlu,t) = Oforall u > 0}) =0 = p{{t : P(u,t} = oo for all
u > 0}). _

For any Young function @, the Musielak-Orlicz space L associated with &

i the set of all (complex- or real-valued) measurable functions such that

Is(Af) = [ S(AF®),1) dpt) < o0
T

for some X > 0. The space Lg is equipped with the Luxemburg norm, that
is, the norm of f € Lg is given by || flle = inf{e > 0 Ix{L) € 1} [10, 13).

If & does not depend on t, i.e. #(u,t) = @(u), then we shall call Ly the
Orlicz space Ly [11]. In (5], Fleming and the first two authors studied the
isometries of complex Musielak-Orlicz spaces. They proved that if & satisfies
the following condition.:

for almost all ¢ € T, the function v — is monotone

& (u,t)
U
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