T4 V. Farmaki

Hence, since (y,,) converges to z® in the w*-topology, we conclude from
[5] that z(*! € B1/4(X)

References

[1] B.Beauzamy et J. T. Lapreste, Modéles éialés des espaces de Banach, Travaux
en Cours, Hermann, Paris 1984,

[2] C.Bessaga and A, Petczyfiski, On bases and unconditional convergenee of series
in Banach spaces, Studia Math. 17 (1958), 151-164.

[3] A.Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Ho-
nach speces, Trans. Amer. Math. Soc. 204 (1975), 79-90.

[4 V. Farmaki, ep-subspaces und fourth dual types, Proc. Amer. Maih. Soc. (2) 102
(1988), 321-328.

[5] R. Haydomn, E. Odell and H. Rosenthal, On certain closses of Baire-1 func-
tions with applications to Banach space theory, in: Functional Analysis (Austin, Tex.,
1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35.

6] B.Maurey, Types and £1-subspaces, in: Texas Functional Analysis Seminar 1982~
1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.

[7] F.P.Ramsey, On a problem of formal legic, Proc. London Math. Soc. {2) 30 (1929),
264~286.

[8] H. Rosenthal, Some remarks concerning unconditional basic sequences, in: Texas
Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin,
Tex., 1983, 15-47.

[9] —, Double dual types and the Maurey characterization of Banach spaces containing
£, in: Texas Funétional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas
Press, Austin, Tex., 1984, 1-37.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ATHENS
PANEPISTEMIOPOLIS-ILISIA
GR-15784 ATHENS, GREECE

BE-mail: SMAZOG@GRATHUNLBITNET

Received October 1, 1991 (2844)
Revised version August 5, 1992

icm

STUDIA MATHEMATICA 104 (1) (1993)

Isometries of Musielak—Orlicz spaces 11
by

J. B. TAMISON, A. KAMINSKA and
PEI-KEE LIN (Menmphis, Tenn.)

Abstract. A characterization of isometries of complex Musielak—Orlicz spaces Ly is
given. If Ly is not a Hilbert space and U : Lg — Lg is a surjective isometry, then there
exist a regular set isomorphism 7 from (T, X, 1) onto itself and a meagurable function w
such that U{f) = w- (f or) for all f € L. Isometries of real Nakano spaces, a particular
case of Musielak-Qrlicz spaces, are also studied.

1. Introduction. For any o-finite atomless measure space (1), X, u), a
nonnegative function @ : Ry x T — Ry U {cc} is said to be a Young function
if
(1)  @(0,t) =0for all t € T}

(2) for any t € T, $(-,t) is a left continuous nondecreasing convex func-
tion; .

(3)  for any u € Ry, $(u,-) is a Z-measurable function; _

(4)  p({t: Hlu,t) = Oforall u > 0}) =0 = p{{t : P(u,t} = oo for all
u > 0}). _

For any Young function @, the Musielak-Orlicz space L associated with &

i the set of all (complex- or real-valued) measurable functions such that

Is(Af) = [ S(AF®),1) dpt) < o0
T

for some X > 0. The space Lg is equipped with the Luxemburg norm, that
is, the norm of f € Lg is given by || flle = inf{e > 0 Ix{L) € 1} [10, 13).

If & does not depend on t, i.e. #(u,t) = @(u), then we shall call Ly the
Orlicz space Ly [11]. In (5], Fleming and the first two authors studied the
isometries of complex Musielak-Orlicz spaces. They proved that if & satisfies
the following condition.:

for almost all ¢ € T, the function v — is monotone

& (u,t)
U
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then for every isometry U on Lg there exist a regular set isomorphism
from (T, X, p) onto (T, X, i) (for definition see Section 2), and a meagurable
function w such that for every f € Lg,
Ulf)=w-(for).

In this article we continue investigating the surjective isometries of general
(real and complex) Musielak-Orlicz spaces.

Let X be a complex Banach space. Recall a bounded linear operator
H on X is said to be Hermilian if .'z:*(H x) s real for every pair of vec-
tors & &€ X and g € X™ such that z* is a support functional of =, i.e.
llz]? = ||z*||® = ="(z). It is known that an operator [ is Hermitian if
and only if e’ = 3°%° iFaFHE k! is a surjective sometry on X for all
o € R [3]. The notion of Hermitian operator was introduced by Lumer.
Using the technique of Hermitian operators, he [12] gave a representation of
the surjective isometries of complex reflexive Orlicz spaces which is a gen-
eralization of the classical Banach result for real Lebesgue spaces [1]. Later,
Zaldenberg [16, 17| showed the assumption of reflexivity can be removed.
For more about Hermitian operators, see [2, 4-6, 15-17].

Let

L Pu,t) . . . :
C = {t : (u,?) is a constant function with respect to v > 0} .
U

It is known that Lg(C,u) = {f € La : suppf = {¢: f{#) # 0} € C} is
isometrically isomorphic to a Hilbert space. In Section 2 we study Hermi-
tian operators on complex Musielak—Orlicz spaces. We prove that if H is a
Hermitian operator on Lg, then

(6} ifsupp f C C, then supp H(f) C C;
(6)  there exists a bounded real function k on T\ C such that if supp f C
T\ C,then H(f)=h- .

In Section 3, we use this result to show that if U is a surjective isometry
on Lg, then

(7)  the restriction of U to Ls(C, ) is a surjective isometry from L (€, 1)
outo itself;
(8)  there exist a measurable function w on T\C and a regujar get isomor-
phism 7 on T'\ €' such that if supp f C T'\, then U(f) = w0 - (for)
This gives a complete characterization of the isometries on L.
Let’ p( ) be a messurable function from 7' into [1,00). The Nakano
space LP() [14] associated with p(t) is the Musielak Orlicz space Lg such
() .
that $(u,t) = %. In Section 4, we study the isometries hetween two

real Nakano spaces L**) and L7 guch that p(t),»(t) € (2,a) for some
2 < o < co. In particular, we prove that if I/ is a surjective isometry from
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L¥® onto itsell (p(t) & (2, a) for some o < 00), then there exist a measurable
function w on T' and a regular set isomorphism 7 such that U{f) = w-(f oT)
and p(f) = (por)(t), 7 (¢) = |w(t)|”*) for almost all ¢ € T. This agrees with
the result for the complex case. But we note that there is no method analo-
gous to Hermitian operators in real Banach spaces. Hence, the method used
in Section 4 is different.

The surjective isometries of complex Musielak-Orlicz spaces equipped
with the Orlicz norm (another standard norm usually defined on Lg [11,
13]) are investigated in [9).

2. Hermitian operators. Let ¢ be any Young function. For any u > 0
and t & T, let

DF@(u,t) = Em ZMTED =Wl
g~+0T £
43} .
D&(ut) = lim 20TEY = Put)
e—0~ £

Then for any t € T and w > € > 0,
Plu+e,t) — Plu,t) = e DY {u,t) = eD™(u,£) > S(u, t) — Blu — £, 1).
It is known that if &(u,t) < co for some u > 0, then &(-,t) is continuous on
(0,u). One can easily prove that
(9) i |[flle =1, then Ip(f) = lime_y- Ip(e f) < &
(10} i Lp((1 +&)f) < oo for some € > 0 and |flle = 1, then Is(f)
(=lim, 4+ Ia(e f)) =
Hence, if A is any measurable function with D~ @(|f( )| £) < he(t) <
DFe([f(t)],¢) and Is((L + &) f) < oo, then

oo > Ip((L+e)f) ~ La(f) = [ ehs(8)] £(2)] dult),
T

Iolg) ~ Ia(f) 2 fm Ma )] — | F)]] du(t),

for any measurable function g, For any complex number a, let
if
sgna = {3/l a0
0 otherwise.

The above proof shows that if [flle =1 = |iglls and Ia{(1 +)f) < oo for
some g > (0, then

fﬂéuwnmnw fbéwuuumwu
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Hence,
£l = dr 271 sen 78 dutt)
! T F@ID-2(F)] 1) dil2)
is a support functional of f (see also Proposition 1 in [5)).
The following lemma was proved by Kalton and Wood (Theorems 2.4
and 2.6 of [7]).

LEMMA 2.1, Let X be a complex Banach space. Let P, Q) be any two Her-
mitian projections on X for which PQ =0 and let H be any other Hermi-
tion operator on X . Then PHP, PHQ+QHP and i(PHQ~QHP) arc Her-
mitian on X. Hence, if z* is a support functional of x, then a* (PHQ(2)) =
z* (QHP(z)).

Remark 2.1. It is known that if A is any measurable subset of T', then
the mapping Ha : f — xaf is a Hermitian projection. Hence, if | flls = 1
and Iz((1-+¢)f) < oo for some £ > 0, then for every Hermitian operator I
on Ly and any two measurable disjoint subsets A, B of T', we have

[ H(xs F)(t)sen f)D™8(| (1), ) dult)
A

fHXAf (t)sgn f () D™D F (1)),

) dp(i).

Let (Ty, 21, 1) and (Ta, Tz, yg) be o-finite measure spaces. Recall a set
mapping 7 : X — X4, defined modulo null sets, is called a reguler set
isomorphism [15] if it satisfies the following conditions:

(11)  7(A%) = 7(A)°, where A° is the complement of 4;

12) (UL
(13)  pa{r(A)) =0if and only if p1(A4) = 0.

For any regular set isomorphism 7 : (Tq, Dy, u1) — (T, Dy, ua), there is
a unique linear transformation from the clags of Jy-measurable functions
to the class of XYy-measurable functions, charaeterlzoct by X4 =+ Xr(4)- We
shall denote this transformation by f o7 for any Xi-measurable flln(‘tlc)u Il
in particular, x4 07 = Xr(4)-

Recall a Banach space (E, || -||) of measurable functions is called an ideal
if for any two measurable functmns Fog, 1f(8)] < |g(t)] aes g € I implies
feB md|f]< gl

‘We need the following lemma which was proved by Zaidenberg (Theorem
2 of [16]).

LeMMA 2.2. Let E (respectively, F) be any ideal (complex or real) Ba-
nach space defined on (T, Xy, 1) (respectively, (19, Xo, po)). Let U 1 B —

i) = sz T(A;) for any pairwise disjoint sets {4;};
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F be a surjective isometry, and let {S,} be a sequence of pairwise dis-
joint sets in Ky such that | )32, Sn = Ty and x5, € E for alln € N. If
T Xy — Xy is o regular set isomorphism and w is a measurable function
on Ty such that U(xa) = wx-(a) for all A € Xy contained in Sy, then
Ulf)=w-(for) forall f€E.

For a o-finite measure space (71, X1, u1) (respectively, (Ta, T, us)), let
®, (respectively, $2) be any Young function on Ty (respectively, Ty). We
will need the [ollowing notations.

$1(u,t) S
Cy=<teT: o isa constant function with respect to uw > 0,
Oy = {t &€ Ty : $1(u,t) = oo for some u > 0},
CB=T1\01\02,
BL (u, t
Bi=<tely: % ig a constant function with respect to 4 > O} ,

By = {t €Ty : $a(u,t) = oo for some u > 0},

By =T\ By \ Bs,
Fn={ACCUCs:Aec X}, aft)=
§2={A§BQU33:AEE2}, 0.2('5)2

It is known that there exist a partition {D;} of Ty and a positive sequence
{N;} such that

(14) D; C C for some 1 <k < 3 and p1{D;) < oo forall j € N;
(15) if D; C Cy U Cs, then I, (Axp,) < oo for all X > 0 (see [8]);
(16)  if D; € Cy, then Ip, (xp,a1) < %, and la1(t)| > N; for all t € D;.

sup{u : &1 (u,t) < oo},
sup{u : $5(u,t) < co}.

Remark 2.2. Let A be a measurable subset of D;. Suppose that
0 < a € N,;/2 and f is a bounded function such that supp f C ((D; U
D)0 (CL U Cs)) \ A for some j° € N, Then there exists £ > 0 such that
Ie, (L+¢e)(axa + ) < co. Hence, if ||axa + flle, = 1, then Iy, (axa + f)
= 1, and

Frle) . B S
S4B (0 )g(8) dpa () + foupp ¢ DB (I (0)]; )sgn F()9() dpa(2)

TraD=&x(c) dia @)+ [oyy; D-B207 O OIFE)] dpa(l)

is a support functional of ey + f.

LEMMA 2.3. Let & be any Young function on (T, 21, p1). Let H be any
Hermitian operator on Las, . For any A C Dy for some j € N, supp H(xa) €
AUd. .
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Proof For j' €N, let Hp,up, denote the Hermitian projection
Hp,up, (f)=

It is known that Hp,u Dj,H Hp,up, is a Hermitian operator on Lg, .

Xpsupy -

Case 1. Suppose that Dy C C1UCS. Let Ay and Aa be auy two disjoint
measurable sets such that 4; U Ay € ((D;UD;)N(CLUCy))\ A. Let o, 8
be any two positive numbers such that o < N;/2, and [laxa + fx 4, [la, =
[y Pu(oy tydpy + [, €1(8,1)duy = 1. For any 0<y<f, [laxcatyxa, e, <1.
So there exists § > 0 such that

leexa -+ vxa, + 8xaslle,

= [ (e tydu + [ $1(v,1) dps + [ #(6tydps = 1.
A Ay Ag

Let f = axa + Bxa, and g = axa + x4, + 0xa,. Note that there is an
£ > 0 such that I, (1 +&)f} < o0 and I, ((1 +£)g) < oo. By Remark 2.1,

[ H(Bxa ) D" E1(ct)du = [ Hlooxa) D™ 81(B,1) duns,
A Ay
[ Hvxa)D™81(0nt)ydpy = [ Haxa)D™®1(7,t) dpa -
A Ay

So if 0 <+ < v < B, then

- 7
D) [D"df’l(fy’,t) ~ 19“%(%@] dpy = 0.
Ax 7
Let B be any subset of Ay such that 1 (B) > 0. Then there exists 8’ > 0 such

that |laxa + 8 xalle, = 1. The above proof shows that f 0 < ' < vy < #,
then

- {
f H(x4) [D*@]l(q’,t) — %{—D*fﬁl(fy,t)] duy =0,
B
Note that for any IV > 0, there exists a partition {E,}

of (])J L Jf)jf) M (C“J'j_ L
Gg,) guch that ||01XA + Nxg,

gy S 1 for all nelN. So for any 0=y« < oo,

Hixa) [D_i’l("fﬁ) - %‘Dwfpt (7 1‘-)} = ().

This implies that supp H(x4) N (C1 UC3) C AUC,.

Cas e.2. Suppose that Ay C [(D;UD; )\A]NCs. Let ov, 0 < v < N;/2, be
any positive number such that Ip (aya) < % Then Ip, (oxa + a1xa,) <1
and |lexa + a1xa4, |ls, = 1. Hence, for any measurable subset B of A, with
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p(B) >0,
' 9(t)
Fplg)= | ———=——cdu(t
J S 0
is a support functional of f = ax4 + a1)x4,. By Remark 2.1, we have

- ] xaH fXB)

xsH(fxa) , ¢ H(xa)
By f dpn=a [ dys

p “am(B) p1(B)
So pi(supp H(xa) N (Co \ A)) =

Now, we can give a charactetization of Hermitian operators on Lg.
THEOREM 2.4, Let H be a Hermitian operator on Lg, . Then

(5)  if supp f € Ch, then supp H(f) € Cy;
(6)  there exists a bounded measurable real function h on T1\ Oy such that
ifsupp f C Ty \Ch, then H(f)=h- f.

Proof By Lemma 2.3, for any o« € R and A C Dy, suppe xXA)
C AUC). But Lg, (Ch, ju1) is separable. Hence, e’H maps L, (Cy, 1) into
itself. But (e!*f)~1 = ¢~ieH Go ef*H maps Ly, (O, p1) onto itself.

We claim that if A € D; € CaU (3, then supp e“H{xa) C A.

Suppose this is not true. Then there exist f1, fo, g1 and go such that
{(17) supp f1 C CoUCs, suppg € Co U T3, supp f2 € C1, suppga & Ch;
(18) llg2[l2, > 0;

(19) e (f) =g +gs and e F(f) =g
Then (we omit the subscript ¢, at the norm below for simplicity)

[fill = [lg1 + g2l 2 gl = 12 = fall 2 f2] -
So llf1] = IIfi+ fall. Let v = sup{g: || fr + efall = || f1l|}. Then v < cc. But
LAl =1ifu+vfall = llgr+ (v + L,
=g - (v + Vgl = i — (v + 2 falf = A+ + 2)fall.

We get a contradiction.
Since lillilm.,*()(limH - I)/a = H, the above proof shows that

{20) H{Lg,(Cr, 1)) € L, (Cry )5
(21) if AC Dy CCyUCs, then supp H(xa) € 4.
Lot h be the function on Cs U C3 such that if £ € D; © Cy U C, then

h(t) = H(xp,)(t). By Lemma 2.2, H(f) = h- f for every f € Lg, with
supp f € s U Ca. But H is Hermitian, so  must be a real function. a

'i.aeH(

3. Isometries between Musielak—Orlicz spaces. For any o-finite

measure space (71, 51, u1) (respectively, (Ta, Ls, pa)), let @y (respectively,
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$5) be any Young function on Ty (respectively, Ts). Recall an isometry U
is said to have the disjoint support property if for any f,g with fg = 0,
Uf-Ug =0 holds for almost all ¢ € T. The following theorem shows that if
U is a surjective isometry from Le, onto Lg,, then the restriction of U to
Lg,(Cy U C3) has the disjeint support property.

TuroREM 3.1. Let U be a surjective isometry from Ly, onto Lg,. Then

(7)  the restriction of U 1o Lg,(C1, 1) is a surjective isometry from
L3, (C1, 1) onto Ly, (By, pz);

(8)  the restriction of U to Lg, (C2UCy) has the disjoint support property;
and so there exist o measurable function w on Ty \ By and a regular
set isomorphism 7 of (T1 \ C1,&1) onto (To \ By, §a) such that if
suppf CT\Cy, thenU(f)=w-(for).

Proof For any measurable subset A of Ty, H4 denotes the Hermitian
operator defined by

Ha(f)=xa"f.

It is known that UHsU™! is a Hermitian operator on Lg, and

UHAU Y (Lg,) is isometric to Ha(Lg,). If A = Cy, then UHAU ' (Lg,) is

isometric to a Hilbert space. By Theorem 2.4, we must have U{Lg, (Cf, 161))

C Lg¢, (B, pz). Similarly, U~ (Lg, (B, u2)) € Lg, (Cr, 1), This implies

U{Lg,(C1, 1)) = Lg, (B, ua). We have proved (7).

Let A be any measurable subset of T3 \ Cq. Then H4(Lg,) is isometric
to UH U (Lg,). But U(Lg,(Cy, p1)) = Lg,(B1, pz). By Theorem 2.4, we
have _

UHAU YLg, (T \ B1)) € Lo, (To \ By).
By Theorem 2.4 again, there is a real function h4 on T% such that supp ha G
Ty \ By and for every f € Lg,,

UHAU Y f)=ha-f.
Since UH,U ' is a projection, h 4 must be a characteristic funetion. Let
T(A) = {?f edy: hA(t) B 1} cTy \B]‘ .
Let f,g € Ly, be any functions such that supp fUsupp g & 71\ Oy and

supp f Nsupp g = 0. Let A = supp f. Then

XeyU(f) = UHAU YU () = Ulxal) = U (),

XrayUl9) = (UHAU (U (g)) = Ulxag) = 0.
So supp U ()N (T \supp U(g))=0. Similarly, supp U (g) " (Th \supp U ()=,
This implies that U has the disjoint support property, By Theoremn 2.4, there

exists a measurable function w on' Ty \ By such that if s supp f © Th\ 1,
then U(f)=w-(for). m
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LeEMMA 3.2. Let U be an isometry from Lg, into Lg, with the disjoint
support property. If | flle, = 1 and Iz, (1 +€)f) < oo for some g > 0, then
Ip, (L +e)U(f)) < oo and I,(f) = 1 = Ig,(U(f)). Hence, if I5,(a1) > 1
and Idf'l(f) < 00, then I¢l(f) = Ig, (U(f))

Proof Let f € Lg, be such that ||flls, = 1 and I, {(1+&)f) <
for some & > 0. Let {Dy,..., Dy} be measurable subsets of Ty such that
Uler Dy = Ty and g, ((1 +&)xp, f) < 1. This implies

I, (1 +6)f} < prg (1 +e)Ulxp, f))

=1

Hence Ig, (f) =1 = Is, (U())-

Let f be any function in Lg, such that [z, (f) > 1. Since Is,(f) =
limy_1- lg, (Af), we may assume that Is, ((1 +&)f) < oo, and Iz, (f) is a
rational number. For convenience, we assume that Is, (f) =1+ 1/n.

Let {Dy,...,Dny1} be a partition of T such that Is, (xp, f) = % for all
hlgjsnt+1

By the above proof, for allj with 1< j<n+1,

ZIPZ XD.R. I@z( (ZXD& )) =1

k]
So I;pg( (XD-f)) must be % for all § with 1 < j < n+1and I, (U(f)) =
1+ 1

Supposc that Ip, {a1) > 1. We claim that for any f € Ls,, Is,(f) =
I‘Pz (U(f)) )

Let {Di,...,Dr} be a partition of Ty such that for any 1 < j < #k,
there is a g; € Lg, such that supp g; N D; = @ and I, (g;) = 1. The above
proof shows that Is, (fxp, +¢;) = s, (U(fxp; + g;)) and I, (Ulg;)) =
1= Ip,(g;). So Is, {fxp,} = Is,(U(fxp,)). But U{fxp,)’s have dlSJOlIlt
supports. This implies Ig, (f) = Is, (U (f))

Remark 3.1. Let U be a surjective isometry from Lg, onto Lﬂv,%. By
Theorem 3.1, Is, (f) = Is,(U(f)) for every f € Lg,(C1, ). Hence, Lemma
3.2 is still true if I is a surjective isometry.

Z (1 +€)U(xp; llle, =m.

COROLLARY 3.3. Lg, is isometric to Lo if and only if Ip, (1) <1
Proof. If Iy, (a1) <1, then for every f € Lg,,
Iflle, = sup{v: p{t: |F(E)] = vau(t)} > OF.

The mapping U : f — '1 is then an isometry from Lg, onto Leo(Th, f1)-
On the other hand, if I, (a1) > 1, then there exist two disjoint subsets

D; and Dy of Ty such that Is, (xp,a1) = 1 > I, (xp;01) > 0. Then
If@l(XD1UDza'1) > 1= ma'x(I@1 (XD‘1a’1)> I‘Pl(XDzal)) .
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So Lg, is not isometric (0 Loo. =

THEOREM 3.4. Let U be a surjective isomelry from Ly, onto Le,. Letw
and 7 be the function and regular set isomorphism defined in Theorem 3.1.
Then:

(22)  If Ip, (o) <1, then w(t) =
(23)  If Iy, (a;) > 1, then
B (Aw(t)], 1) = 7' (£) [P (A, ) o 7[(E)
for almost all t € By U By, where 7' = dusor™')

iy

ot
aror(t)

Proof. By Corollary 3.3, we only need to prove (23).

‘We note that 7 is a regular set isomorphism from (T \ O, F 1, 1) onto
(Ty\ B1,&a, 2). So 77t is well-defined. By the chain rule, 7/ = ((’1-'1‘1’)7) o7,

Suppose that Ip, (a1) > 1. By Lemma 3.2, for any measurable subset
DC T\ Cy and for any A > 0,

[ o0 t)du = [ E(Mwt)], t) dyss
D (D)

J 82wl Yo () - (71 () dpaa
D
So we must have

[(7) 7 @a(Awl, )] o 771 (t) — B1(A, ) = 0
for almost all £ € T1 \ G, which is equivalent to (23). m

Remark 3.2. Let (T, X, ) be a o-finite measure space and let @{u,t)
be any Young function on 7. Then the above theorem provides a complete
characterization of the surjective isometries of the complex Musielak- Orlics
space Lg. A similar characterization was obtained in [5] under the assump-
tion that the function u &;‘tl is monotone for almost all ¢ & T

Remark 3.3, If &;{u,8) = ¢;(u) and if @;’s are continuous, then the
condition (23) becomes

@a{[w(t)u) = 7'(t)p(u)
for all u > 0 and almost all ¢ € Ty, This implies that L, is fsonetric to LP
for 1 <p < oo, p#2, if and only if p(u) = cuP for sone e > 0,
Remark 3.4. Suppose that &(u,t) = -‘;—%f)i (respectively, @y(u,t) =

vty :
”ﬂﬁ) for. some Ij-measurable (respectively, Lp~measurable) Function p :
Ty — [1,00) (respectively, r : T ~ [1,00)). Then (23) becomes

(+) rt) = (por)(t), 7'(t) = w(t)"®
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for almost all 4 € To. Thus, U : LP® — LM is a surjective isometry if
and only if I/(f} = w . (f o7) for some regular set isomorphism 7 from
(T, L1, 1) onto itself and the condition (%) is satisfied with |w(t)| # 0 a.e.

4. Isometries of real Nakano spaces LP(), Let (T7, 21, 1) and
(Th, Za, o) be any two o-finite atomless measure spaces. For any o, 0o >
o> 2 let p: Ty — (2,) (respectively, r 1 To — (2, a)) be a X1-measurable
(respoctively, Ky-measurable) function. In this section, we study the isome-
trics from the real Nakano space LP(® into the real Nakano space L7,
Recall an isometry [7 is said to have the disjoint support property if for
auny f,g with fg =10, Uf -Ug= 0 holds almost everywhere. The following
proposition shows that every isometry from LP®) into I"(*) possesses the
digjoint support property.

ProOpOSITION 4.1. Let 2 < a < oo and let p {respectively, r) be any mea-
surable function from Ty (respectively, To) into (2,a). Then any isometry
U IPG) L) has the disjoint support property.

Proof Let &; and ®y denote the Young functions

P

(I)l(u,t) = 'p——')—, tedy,
ur®

Palu,t) = —— te .

r(t)’
We will need the following inequalities:

-1
(24) (L4z)P+(1~2)F =2+ E@Q—)mg for all p > 2 and |z| < 1,

(25) (1+2z)"™>21-me

forallz > 0andm > 0.

Since p(t} > 2 for almost all ¢ € T} and the measure space (11, 1, ju1)
is o-finite, we can find a sequence {C,} of meagurable sets and a sequence
{F} of numbers such that

(a) for each n, Cfy © Chy and x¢, € et

{b} U:cj1 Ch = T

() v > p(t) = By > 2forallt € Oy,

Then any f € L#®) can be approximated by simple functions vanishing out-
gide of some ¢,,. Thus, it is enough to prove the disjoint support property for
characteristic functions of sets contained in C',,. Without loss of generality,
we assume that p(t) = 8> 2forallt €11 and x4 € LF® for any A € 3.
Let A and B be any two disjoint measurable subsets of 77, and let ¢ >0
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be such that
ot
llexalls, = f o) dpty =

For any |A\| < 1, we have 1 < Igpl(cx,a, +Mxg) S 1+ 87 AP (B). This
implies

H cx 4+ AXB )
TP
Let f = Ulcxa) and g = U(xg). We have
f+Ag
< 1.
Hl-i-ﬁ”"ll)\ﬂm(ﬁ) P
So
F+ Ag ) ( f—Ag )
26) 2> Iy, ¥ Ip, | ——
@) 22l atim )+ o (s
|f + Ag|™® Hf = Ag|™®)
= ‘
= f (L +B=HAPus(B iz + f (1+ B YA (BY)) Az -

For a contradiction, suppose that Fg > 0 on a set with positive measure.
Then there is a set C' € Tp and 0 < Mg < 1 such that uu(C) > 0 and
0 < lhog{t)| < |f(#)| for all t € C. By (24}, we have

(27) J U720 4 1F = 20l dpa 22 [ 1" dug .
Gc OG

For any [A| < Ag and for £ € C, ]—A?%%” < 1. Thug, by (24), we have

(28) [ (I + 2" [ F - A" ) dpg

o
, () —1) ] o) |?
> [ “>(2+ i——w,\2 EAA R
Cf 2 Fay) )
-~ 1 ﬁ t "“1 F ¢ )
=[O e n [ O oy,
¢ e,
Writing  for the last integral in (28), we get

2 4 A2y
~ (14 B7HA P (B))
for all [A] < Ag. However, (2-+ A2y)(1 ~ a8~ My, (B)) > 2 for sufficiently
small A and this contradiction finishes the proof. m

Let {A; : & € N} be any partition of Ty such that pr(Ag) < oo for
all k € N. For an isometry U from LP® into Lr(®) , let Ty be the c-riny

2 (24 X)L~ af~ YA\ (B)),
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generated by
{suppU(xa): A € 1 and py(4) < oo},
let

Qo
Ts = | supp Ulxa,),
k=1
and let w be the function from Ty into R defined by

w(t) = Uxa,)(t) iftesuppU(xa,).

Then X5 is a o-algebra of subsets of Ty and w is nonzero almost everywhere
on Ty, Let = be the mapping from Xy into X3 defined by

o0
= supp U (xana,) -

k=1
By Proposition 4.1, 7 is a regular set isomorphism frem X; onto 3. So 71
is well-defined.

Let f be an integrable Z3-meagurable function. A Xj-measurable func-

tion g = E(f | T3) is said to be the conditional expectation of f relative to
Ls if for every A € X,

[ fdus= [ gdus.
A A

Tt is known that if h is a Xs-measurable function and if fh is integrable,
then E(fh | Zy) = h&(f | T3). We claim that r{z, =por.

Suppose the claim is proved. Then-r is a X3-measurable function. By
Theorem 3.1 and Lemma 3.2, for any Lz-measurable subset D of A4; and
any A > 0,

f’\p dnt) = I<A!w(t)|)’"(“
(t)

ot dua(t)

~

(D)
_ (Alw))
WT(}E)E( ’
= f [E (—(-/—\jl:—)ﬂr } 23'3)] o7 ) (v (8} dpa (8)

e (£)-r

= [ [E(|w["| T3]
AP()

D
[E(hw|™ | Zs)l o 7™t (2) - (m—') o7 (1) = o

23) (t) dsa(t)

H#) da (1)

So we have
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But r(t) = p o 7(t). This implies

7= E(w|" | Zy).

Suppose the claim is not true. Without loss of generality, we assuine that
there exist A; < Ag, € > 0, N € N, and a Zs-measurable subset ¢ of Ty
such that
(d) 7 (C) C p~H{[A, Ae)s
(&) pa(r~t([ra +e,00)) N{E:
(f) o ( ~HE)) < o0
Let D = r~{[As 4 &,00)) Nw™H{[1/N,c0)) N . By Theorem 3.2, if u >
max{N, 1}, then

) = 1/NINC) = 0;

(u/NY*H,(D) < f@ ulw(t)], t) dualt) fo;b ()], 1) dlpa(t)

[ @1, ) o i) duat

C

= [ &1(ut)du < (rH(0O)
o

But this is impossible for » large enough. So our claim {8 proved.
Now we can formulate a criterion for U to be an isometry between two
real Nakano spaces.

THEOREM 4.2. Let LF(®) (respectively, L™ ™) be o real Nokano space with
2 < plt) < o (respectively, 2 < r(t) < «) for almost all t € Ty (respectively,
t €Ty and some a > 2. Let U be an isometry from LPW dnto LN Then
there exist a Xy-measurable set T3 C Ty, o Yo-measuroble funciion w on
T3, and o regular set isomorphism 71 (T4, 2y} — (T3, X)) such that for all

ferr®)
(29) Uf=w-(for),
(30) r=por, 7 =E(w| ).

Conversely, if the equalities (30) are satisfied, then the operator U7 given
by (29) is an isometry from IP® ingo L7,
. Proof We only need to prove (29). Since every f € LP1) can be approx-
imated by step functions and U{xa) = w-xre4) for every A with u;(A4) < o0,
U is of the form

Ulf)=w-(for).

'Suppose U is a mapping which satisfies (29) and (30). By a change of

variable, [|f||a, = [U{f)l|e, for every f & LPM. So U/ is an isometry. =
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