V. Farmaki

Hence, since (y_n) converges to $x^{(2)}$ in the w^* -topology, we conclude from [5] that $x^{(2)} \in B_{1/4}(X)$.

References

- B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984.
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- A. Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90.
- V. Farmaki, co-subspaces and fourth dual types, Proc. Amer. Math. Soc. (2) 102 (1988), 321-328.
- R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Functional Analysis (Austin, Tex., 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35.
- B. Maurey, Types and ℓ_1 -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.
- F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286.
- H. Rosenthal. Some remarks concerning unconditional basic sequences, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 15-47.
- —, Double dual types and the Maurey characterization of Banach spaces containing ℓ^1 , in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1984, 1-37.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ATHENS PANEPISTEMIOPOLIS-ILISIA GR-15784 ATHENS, GREECE E-mail: SMA20@GRATHUN1.BITNET

> Received October 1, 1991 (2846)Revised version August 5, 1992

Isometries of Musielak-Orlicz spaces II

by

J. E. JAMISON, A. KAMIŃSKA and PEI-KEE LIN (Memphis, Tenn.)

Abstract. A characterization of isometries of complex Musielak-Orlicz spaces L_{Φ} is given. If L_{Φ} is not a Hilbert space and $U:L_{\Phi}\to L_{\Phi}$ is a surjective isometry, then there exist a regular set isomorphism τ from (T, Σ, μ) onto itself and a measurable function wsuch that $U(f) = w \cdot (f \circ \tau)$ for all $f \in L_{\Phi}$. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

- 1. Introduction. For any σ -finite atomless measure space (T, Σ, μ) , a nonnegative function $\Phi: \mathbb{R}_+ \times T \to \mathbb{R}_+ \cup \{\infty\}$ is said to be a Young function if
- $\Phi(0,t)=0$ for all $t\in T$;
- for any $t \in T$, $\Phi(\cdot,t)$ is a left continuous nondecreasing convex func-
- for any $u \in \mathbb{R}_+$, $\Phi(u, \cdot)$ is a Σ -measurable function;
- $\mu(\{t: \Phi(u,t) = 0 \text{ for all } u > 0\}) = 0 = \mu(\{t: \Phi(u,t) = \infty \text{ for all } u > 0\})$ u > 0).

For any Young function Φ , the Musielak-Orlicz space L_{Φ} associated with Φ is the set of all (complex- or real-valued) measurable functions such that

$$I_{\Phi}(\lambda f) = \int_{T} \Phi(|\lambda f(t)|, t) d\mu(t) < \infty$$

for some $\lambda > 0$. The space L_{Φ} is equipped with the Luxemburg norm, that is, the norm of $f \in L_{\varPhi}$ is given by $||f||_{\varPhi} = \inf\{\varepsilon > 0 : I_{\varPhi}(\frac{f}{\varepsilon}) \le 1\}$ [10, 13].

If Φ does not depend on t, i.e. $\Phi(u,t) = \varphi(u)$, then we shall call L_{Φ} the Orlicz space L_{φ} [11]. In [5], Fleming and the first two authors studied the isometries of complex Musielak-Orlicz spaces. They proved that if Φ satisfies the following condition:

for almost all $t \in T$, the function $u \to \frac{\Phi'(u,t)}{2t}$ is monotone,

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B04, 46E30; Secondary 47B15.

then for every isometry U on L_{Φ} there exist a regular set isomorphism τ from (T, Σ, μ) onto (T, Σ, μ) (for definition see Section 2), and a measurable function w such that for every $f \in L_{\Phi}$,

$$U(f) = w \cdot (f \circ \tau).$$

In this article we continue investigating the surjective isometries of general (real and complex) Musielak-Orlicz spaces.

Let X be a complex Banach space. Recall a bounded linear operator H on X is said to be Hermitian if $x^*(Hx)$ is real for every pair of vectors $x \in X$ and $x^* \in X^*$ such that x^* is a support functional of x, i.e. $\|x\|^2 = \|x^*\|^2 = x^*(x)$. It is known that an operator H is Hermitian if and only if $e^{i\alpha H} = \sum_{k=0}^{\infty} i^k \alpha^k H^k/k!$ is a surjective isometry on X for all $\alpha \in \mathbb{R}$ [3]. The notion of Hermitian operator was introduced by Lumer. Using the technique of Hermitian operators, he [12] gave a representation of the surjective isometries of complex reflexive Orlicz spaces which is a generalization of the classical Banach result for real Lebesgue spaces [1]. Later, Zaĭdenberg [16, 17] showed the assumption of reflexivity can be removed. For more about Hermitian operators, see [2, 4–6, 15–17].

Let

$$C = \left\{ t : \frac{\Phi'(u,t)}{u} \text{ is a constant function with respect to } u > 0 \right\}.$$

It is known that $L_{\Phi}(C,\mu)=\{f\in L_{\Phi}: \operatorname{supp} f=\{t:f(t)\neq 0\}\subseteq C\}$ is isometrically isomorphic to a Hilbert space. In Section 2, we study Hermitian operators on complex Musielak–Orlicz spaces. We prove that if H is a Hermitian operator on L_{Φ} , then

- (5) if supp $f \subseteq C$, then supp $H(f) \subseteq C$;
- (6) there exists a bounded real function h on $T \setminus C$ such that if supp $f \subseteq T \setminus C$, then $H(f) = h \cdot f$.

In Section 3, we use this result to show that if U is a surjective isometry on L_{\varPhi} , then

- (7) the restriction of U to $L_{\Phi}(C,\mu)$ is a surjective isometry from $L_{\Phi}(C,\mu)$ onto itself;
- (8) there exist a measurable function w on $T \setminus C$ and a regular set isomorphism τ on $T \setminus C$ such that if supp $f \subseteq T \setminus C$, then $U(f) = w \cdot (f \circ \tau)$.

This gives a complete characterization of the isometries on L_{ϕ} .

Let p(t) be a measurable function from T into $[1, \infty)$. The Nakano space $L^{p(t)}$ [14] associated with p(t) is the Musielak Orlicz space L_{\varPhi} such that $\varPhi(u,t) = \frac{u^{p(t)}}{p(t)}$. In Section 4, we study the isometries between two real Nakano spaces $L^{p(t)}$ and $L^{r(t)}$ such that $p(t), r(t) \in (2, \alpha)$ for some $2 < \alpha < \infty$. In particular, we prove that if U is a surjective isometry from

The surjective isometries of complex Musielak–Orlicz spaces equipped with the Orlicz norm (another standard norm usually defined on L_{Φ} [11, 13]) are investigated in [9].

2. Hermitian operators. Let Φ be any Young function. For any u>0 and $t\in T,$ let

$$D^{+}\Phi(u,t) = \lim_{\varepsilon \to 0^{+}} \frac{\Phi(u+\varepsilon,t) - \Phi(u,t)}{\varepsilon},$$
$$D^{-}\Phi(u,t) = \lim_{\varepsilon \to 0^{-}} \frac{\Phi(u+\varepsilon,t) - \Phi(u,t)}{\varepsilon}.$$

Then for any $t \in T$ and $u > \varepsilon > 0$,

$$\Phi(u+\varepsilon,t) - \Phi(u,t) \ge \varepsilon D^+(u,t) \ge \varepsilon D^-(u,t) \ge \Phi(u,t) - \Phi(u-\varepsilon,t)$$
.

It is known that if $\Phi(u,t) < \infty$ for some u > 0, then $\Phi(\cdot,t)$ is continuous on (0,u). One can easily prove that

- (9) if $||f||_{\Phi} = 1$, then $I_{\Phi}(f) = \lim_{\varepsilon \to 1^{-}} I_{\Phi}(\varepsilon f) \le 1$;
- (10) if $I_{\Phi}((1+\varepsilon)f) < \infty$ for some $\varepsilon > 0$ and $||f||_{\Phi} = 1$, then $I_{\Phi}(f)$ $(= \lim_{\varepsilon \to 1^+} I_{\Phi}(\varepsilon f)) = 1$.

Hence, if h_f is any measurable function with $D^-\Phi(|f(t)|,t) \leq h_f(t) \leq D^+\Phi(|f(t)|,t)$ and $I_{\Phi}((1+\varepsilon)f) < \infty$, then

$$\infty > I_{\varPhi}((1+arepsilon)f) - I_{\varPhi}(f) \geq \int\limits_{T} \varepsilon h_f(t)|f(t)|\,d\mu(t),$$

$$I_{\Phi}(g) - I_{\Phi}(f) \geq \int\limits_{T} h_{f}(t)[|g(t)| - |f(t)|] \, d\mu(t),$$

for any measurable function g. For any complex number a, let

$$\operatorname{sgn} a = \begin{cases} a/|a| & \text{if } a \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

The above proof shows that if $||f||_{\Phi} = 1 = ||g||_{\Phi}$ and $I_{\Phi}((1+\varepsilon)f) < \infty$ for some $\varepsilon > 0$, then

$$\int\limits_{T} \, D^{-}\varPhi(|f(t)|,t)|g(t)|\,d\mu(t) \leq \,\,\int\limits_{T} \, D^{-}\varPhi(|f(t)|,t)|\dot{f}(t)|\,d\mu(t) \,\,.$$

Hence,

$$F_f(g) = \frac{\int_T D^- \varPhi(|f(t)|, t) \overline{\operatorname{sgn} f(t)} g(t) d\mu(t)}{\int_T |f(t)| D^- \varPhi(|f(t)|, t) d\mu(t)}$$

is a support functional of f (see also Proposition 1 in [5]).

The following lemma was proved by Kalton and Wood (Theorems 2.4 and 2.6 of [7]).

LEMMA 2.1. Let X be a complex Banach space. Let P, Q be any two Hermitian projections on X for which PQ = 0 and let H be any other Hermitian operator on X. Then PHP, PHQ+QHP and i(PHQ-QHP) are Hermitian on X. Hence, if x^* is a support functional of x, then $x^*(PHQ(x)) = x^*(QHP(x))$.

Remark 2.1. It is known that if A is any measurable subset of T, then the mapping $H_A: f \to \chi_A f$ is a Hermitian projection. Hence, if $||f||_{\varPhi} = 1$ and $I_{\varPhi}((1+\varepsilon)f) < \infty$ for some $\varepsilon > 0$, then for every Hermitian operator H on L_{\varPhi} and any two measurable disjoint subsets A, B of T, we have

$$\int_{A} H(\chi_{B}f)(t)\overline{\operatorname{sgn} f(t)}D^{-}\Phi(|f(t)|, t) d\mu(t)$$

$$= \int_{A} \overline{H(\chi_{A}f)(t)}\operatorname{sgn} f(t)D$$

$$= \int_{B} \overline{H(\chi_A f)(t)} \operatorname{sgn} f(t) D^{-} \Phi(|f(t)|, t) d\mu(t).$$

Let (T_1, Σ_1, μ_1) and (T_2, Σ_2, μ_2) be σ -finite measure spaces. Recall a set mapping $\tau : \Sigma_1 \to \Sigma_2$, defined modulo null sets, is called a *regular set isomorphism* [15] if it satisfies the following conditions:

- (11) $\tau(A^{c}) = \tau(A)^{c}$, where A^{c} is the complement of A;
- (12) $\tau(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} \tau(A_j)$ for any pairwise disjoint sets $\{A_j\}$;
- (13) $\mu_2(\tau(A)) = 0$ if and only if $\mu_1(A) = 0$.

For any regular set isomorphism $\tau: (T_1, \Sigma_1, \mu_1) \to (T_2, \Sigma_2, \mu_2)$, there is a unique linear transformation from the class of Σ_1 -measurable functions to the class of Σ_2 -measurable functions, characterized by $\chi_A \to \chi_{\tau(A)}$. We shall denote this transformation by $f \circ \tau$ for any Σ_1 -measurable function f; in particular, $\chi_A \circ \tau = \chi_{\tau(A)}$.

Recall a Banach space $(E, \|\cdot\|)$ of measurable functions is called an *ideal* if for any two measurable functions $f, g, |f(t)| \leq |g(t)|$ a.e., $g \in E$ implies $f \in E$, and $\|f\| \leq \|g\|$.

We need the following lemma which was proved by Zaĭdenberg (Theorem 2 of [16]).

LEMMA 2.2. Let E (respectively, F) be any ideal (complex or real) Banach space defined on (T_1, Σ_1, μ_1) (respectively, (T_2, Σ_2, μ_2)). Let $U: E \to \mathbb{R}$

For a σ -finite measure space (T_1, Σ_1, μ_1) (respectively, (T_2, Σ_2, μ_2)), let Φ_1 (respectively, Φ_2) be any Young function on T_1 (respectively, T_2). We will need the following notations.

$$C_1 = \left\{ t \in T_1 : \frac{\varPhi_1'(u,t)}{u} \text{ is a constant function with respect to } u > 0 \right\},$$

$$C_2 = \left\{ t \in T_1 : \varPhi_1(u,t) = \infty \text{ for some } u > 0 \right\},$$

$$C_3 = T_1 \setminus C_1 \setminus C_2,$$

$$B_1 = \left\{ t \in T_2 : \frac{\varPhi_2'(u,t)}{u} \text{ is a constant function with respect to } u > 0 \right\},$$

$$B_2 = \left\{ t \in T_2 : \varPhi_2(u,t) = \infty \text{ for some } u > 0 \right\},$$

$$B_3 = T_2 \setminus B_1 \setminus B_2,$$

$$\mathfrak{F}_1 = \left\{ A \subseteq C_2 \cup C_3 : A \in \Sigma_1 \right\}, \quad a_1(t) = \sup\{u : \varPhi_1(u,t) < \infty\},$$

$$\mathfrak{F}_2 = \left\{ A \subseteq B_2 \cup B_3 : A \in \Sigma_2 \right\}, \quad a_2(t) = \sup\{u : \varPhi_2(u,t) < \infty\}.$$

It is known that there exist a partition $\{D_j\}$ of T_1 and a positive sequence $\{N_j\}$ such that

- (14) $D_j \subseteq C_k$ for some $1 \le k \le 3$ and $\mu_1(D_j) < \infty$ for all $j \in \mathbb{N}$;
- (15) if $D_j \subseteq C_1 \cup C_3$, then $I_{\Phi_1}(\lambda \chi_{D_j}) < \infty$ for all $\lambda > 0$ (see [8]);
- (16) if $D_i \subseteq C_2$, then $I_{\Phi_1}(\chi_{D_i}a_1) < \frac{1}{3}$, and $|a_1(t)| > N_j$ for all $t \in D_j$.

Remark 2.2. Let A be a measurable subset of D_j . Suppose that $0 < \alpha \le N_j/2$ and f is a bounded function such that supp $f \subseteq ((D_j \cup D_{j'}) \cap (C_1 \cup C_3)) \setminus A$ for some $j' \in \mathbb{N}$. Then there exists $\varepsilon > 0$ such that $I_{\varPhi_1}((1+\varepsilon)(\alpha\chi_A+f)) < \infty$. Hence, if $\|\alpha\chi_A+f\|_{\varPhi_1}=1$, then $I_{\varPhi_1}(\alpha\chi_A+f)=1$, and

$$= \frac{\int_{A} D^{-} \Phi_{1}(\alpha, t) g(t) d\mu_{1}(t) + \int_{\text{supp } f} D^{-} \Phi_{1}(|f(t)|, t) \overline{\operatorname{sgn} f(t)} g(t) d\mu_{1}(t)}{\int_{A} \alpha D^{-} \Phi_{1}(\alpha, t) d\mu_{1}(t) + \int_{\text{supp } f} D^{-} \Phi_{1}(|f(t)|, t) |f(t)| d\mu_{1}(t)}$$

is a support functional of $\alpha \chi_A + f$.

LEMMA 2.3. Let Φ_1 be any Young function on (T_1, Σ_1, μ_1) . Let H be any Hermitian operator on L_{Φ_1} . For any $A \subseteq D_j$ for some $j \in \mathbb{N}$, supp $H(\chi_A) \subseteq A \cup C_1$.

Proof. For $j' \in \mathbb{N}$, let $H_{D_j \cup D_{j'}}$ denote the Hermitian projection

$$H_{D_j \cup D_{j'}}(f) = \chi_{D_j \cup D_{j'}} \cdot f.$$

It is known that $H_{D_j \cup D_{i'}} H H_{D_j \cup D_{i'}}$ is a Hermitian operator on L_{Φ_1} .

C as e 1. Suppose that $D_{j'}\subseteq C_1\cup C_3$. Let A_1 and A_2 be any two disjoint measurable sets such that $A_1\cup A_2\subseteq ((D_j\cup D_{j'})\cap (C_1\cup C_3))\setminus A$. Let α,β be any two positive numbers such that $\alpha\leq N_j/2$, and $\|\alpha\chi_A+\beta\chi_{A_1}\|_{\varPhi_1}=\int_A \varPhi_1(\alpha,t)d\mu_1+\int_{A_1} \varPhi_1(\beta,t)\,d\mu_1=1$. For any $0\leq \gamma<\beta, \|\alpha\chi_A+\gamma\chi_{A_1}\|_{\varPhi_1}<1$. So there exists $\delta>0$ such that

$$\|\alpha \chi_A + \gamma \chi_{A_1} + \delta \chi_{A_2}\|_{\varPhi_1}$$

$$= \int_A \varPhi_1(\alpha, t) d\mu_1 + \int_{A_1} \varPhi_1(\gamma, t) d\mu_1 + \int_{A_2} \varPhi_1(\delta, t) d\mu_1 = 1.$$

Let $f = \alpha \chi_A + \beta \chi_{A_1}$ and $g = \alpha \chi_A + \gamma \chi_{A_1} + \delta \chi_{A_2}$. Note that there is an $\varepsilon > 0$ such that $I_{\varPhi_1}((1+\varepsilon)f) < \infty$ and $I_{\varPhi_1}((1+\varepsilon)g) < \infty$. By Remark 2.1,

$$\int_{A} H(\beta \chi_{A_{1}}) D^{-} \Phi_{1}(\alpha, t) d\mu_{1} = \int_{A_{1}} \overline{H(\alpha \chi_{A})} D^{-} \Phi_{1}(\beta, t) d\mu_{1},$$

$$\int_{A} H(\gamma \chi_{A_{1}}) D^{-} \Phi_{1}(\alpha, t) d\mu_{1} = \int_{A_{1}} \overline{H(\alpha \chi_{A})} D^{-} \Phi_{1}(\gamma, t) d\mu_{1}.$$

So if $0 < \gamma' < \gamma \le \beta$, then

$$\int_{A_1} \overline{H(\chi_A)} \left[D^- \Phi_1(\gamma', t) - \frac{\gamma'}{\gamma} D^- \Phi_1(\gamma, t) \right] d\mu_1 = 0.$$

Let B be any subset of A_1 such that $\mu_1(B) > 0$. Then there exists $\beta' > 0$ such that $\|\alpha \chi_A + \beta' \chi_B\|_{\Phi_1} = 1$. The above proof shows that if $0 < \gamma' < \gamma < \beta'$, then

$$\int_{B} \overline{H(\chi_{A})} \left[D^{-} \Phi_{1}(\gamma',t) - \frac{\gamma'}{\gamma} D^{-} \Phi_{1}(\gamma,t) \right] d\mu_{1} = 0.$$

Note that for any N > 0, there exists a partition $\{E_n\}$ of $(D_j \cup D_{j'}) \cap (C_1 \cup C_3)$ such that $\|\alpha \chi_A + N \chi_{E_n}\|_{\Phi_1} \leq 1$ for all $n \in \mathbb{N}$. So for any $0 < \gamma' < \gamma < \infty$,

$$H(\chi_A)\left[D^-\Phi_1(\gamma',t)-\frac{\gamma'}{\gamma}D^-\Phi_1(\gamma,t)\right]=0.$$

This implies that supp $H(\chi_A) \cap (C_1 \cup C_3) \subseteq A \cup C_1$.

C as e 2. Suppose that $A_1 \subseteq [(D_j \cup D_{j'}) \setminus A] \cap C_2$. Let $\alpha, 0 < \alpha < N_j/2$, be any positive number such that $I_{\varPhi_1}(\alpha \chi_A) \leq \frac{1}{3}$. Then $I_{\varPhi_1}(\alpha \chi_A + a_1 \chi_{A_1}) \leq 1$ and $\|\alpha \chi_A + a_1 \chi_{A_1}\|_{\varPhi_1} = 1$. Hence, for any measurable subset B of A_1 with

 $\mu_1(B) > 0,$

$$F_B(g) = \int_B \frac{g(t)}{a_1(t)\mu_1(B)} d\mu_1(t)$$

is a support functional of $f = \alpha \chi_A + a_1 \chi_{A_1}$. By Remark 2.1, we have

$$0 = \int_{B} \frac{\chi_A H(f\chi_B)}{a\mu_1(B)} d\mu_1 = \int_{B} \frac{\overline{\chi_B H(f\chi_A)}}{a\mu_1(B)} d\mu_1 = \alpha \int_{B} \frac{\overline{H(\chi_A)}}{a\mu_1(B)} d\mu_1.$$

So $\mu_1(\operatorname{supp} H(\chi_A) \cap (C_2 \setminus A)) = 0$.

Now, we can give a characterization of Hermitian operators on L_{Φ} . Theorem 2.4. Let H be a Hermitian operator on L_{Φ} . Then

- (5) if supp $f \subseteq C_1$, then supp $H(f) \subseteq C_1$;
- (6) there exists a bounded measurable real function h on $T_1 \setminus C_1$ such that if supp $f \subseteq T_1 \setminus C_1$, then $H(f) = h \cdot f$.

Proof. By Lemma 2.3, for any $\alpha \in \mathbb{R}$ and $A \subseteq D_j$, supp $e^{i\alpha H}(\chi_A) \subseteq A \cup C_1$. But $L_{\Phi_1}(C_1, \mu_1)$ is separable. Hence, $e^{i\alpha H}$ maps $L_{\Phi_1}(C_1, \mu_1)$ into itself. But $(e^{i\alpha H})^{-1} = e^{-i\alpha H}$. So $e^{i\alpha H}$ maps $L_{\Phi_1}(C_1, \mu_1)$ onto itself.

We claim that if $A \subseteq D_j \subseteq C_2 \cup C_3$, then supp $e^{i\alpha H}(\chi_A) \subseteq A$. Suppose this is not true. Then there exist f_1 , f_2 , g_1 and g_2 such that

(17) supp $f_1 \subseteq C_2 \cup C_3$, supp $g_1 \subseteq C_2 \cup C_3$, supp $f_2 \subseteq C_1$, supp $g_2 \subseteq C_1$;

$$||g_2||_{\varPhi_1} > 0$$

(19)
$$e^{i\alpha H}(f_1) = g_1 + g_2 \text{ and } e^{i\alpha H}(f_2) = g_2.$$

Then (we omit the subscript Φ_1 at the norm below for simplicity)

$$||f_1|| = ||g_1 + g_2|| \ge ||g_1|| = ||f_1 - f_2|| \ge ||f_1||.$$

So $||f_1|| = ||f_1 + f_2||$. Let $\nu = \sup\{\varrho : ||f_1 + \varrho f_2|| = ||f_1||\}$. Then $\nu < \infty$. But $||f_1|| = ||f_1 + \nu f_2|| = ||g_1 + (\nu + 1)g_2||$ = $||g_1 - (\nu + 1)g_2|| = ||f_1 - (\nu + 2)f_2|| = ||f_1 + (\nu + 2)f_2||$.

We get a contradiction.

Since $\lim_{\alpha\to 0} (e^{i\alpha H} - I)/\alpha = H$, the above proof shows that

(20)
$$H(L_{\Phi_1}(C_1, \mu_1)) \subseteq L_{\Phi_1}(C_1, \mu_1);$$

(21) if
$$A \subseteq D_j \subseteq C_2 \cup C_3$$
, then supp $H(\chi_A) \subseteq A$.

Let h be the function on $C_2 \cup C_3$ such that if $t \in D_j \subseteq C_2 \cup C_3$, then $h(t) = H(\chi_{D_j})(t)$. By Lemma 2.2, $H(f) = h \cdot f$ for every $f \in L_{\varPhi_1}$ with supp $f \subseteq C_2 \cup C_3$. But H is Hermitian, so h must be a real function.

3. Isometries between Musielak-Orlicz spaces. For any σ -finite measure space (T_1, Σ_1, μ_1) (respectively, (T_2, Σ_2, μ_2)), let Φ_1 (respectively,

 Φ_2) be any Young function on T_1 (respectively, T_2). Recall an isometry U is said to have the disjoint support property if for any f,g with fg=0, $Uf \cdot Ug=0$ holds for almost all $t \in T$. The following theorem shows that if U is a surjective isometry from L_{Φ_1} onto L_{Φ_2} , then the restriction of U to $L_{\Phi_1}(C_2 \cup C_3)$ has the disjoint support property.

Theorem 3.1. Let U be a surjective isometry from L_{Φ_1} onto L_{Φ_2} . Then

- (7) the restriction of U to $L_{\Phi_1}(C_1, \mu_1)$ is a surjective isometry from $L_{\Phi_1}(C_1, \mu_1)$ onto $L_{\Phi_2}(B_1, \mu_2)$;
- (8) the restriction of U to $L_{\Phi_1}(C_2 \cup C_3)$ has the disjoint support property; and so there exist a measurable function w on $T_2 \setminus B_1$ and a regular set isomorphism τ of $(T_1 \setminus C_1, \mathfrak{F}_1)$ onto $(T_2 \setminus B_2, \mathfrak{F}_2)$ such that if $\sup f \subseteq T_1 \setminus C_1$, then $U(f) = w \cdot (f \circ \tau)$.

Proof. For any measurable subset A of T_1 , H_A denotes the Hermitian operator defined by

$$H_A(f) = \chi_A \cdot f .$$

It is known that UH_AU^{-1} is a Hermitian operator on L_{Φ_2} and $UH_AU^{-1}(L_{\Phi_2})$ is isometric to $H_A(L_{\Phi_1})$. If $A=C_1$, then $UH_AU^{-1}(L_{\Phi_2})$ is isometric to a Hilbert space. By Theorem 2.4, we must have $U(L_{\Phi_1}(C_1,\mu_1)) \subseteq L_{\Phi_2}(B_1,\mu_2)$. Similarly, $U^{-1}(L_{\Phi_2}(B_1,\mu_2)) \subseteq L_{\Phi_1}(C_1,\mu_1)$. This implies $U(L_{\Phi_1}(C_1,\mu_1)) = L_{\Phi_2}(B_1,\mu_2)$. We have proved (7).

Let A be any measurable subset of $T_1 \setminus C_1$. Then $H_A(L_{\Phi_1})$ is isometric to $UH_AU^{-1}(L_{\Phi_2})$. But $U(L_{\Phi_1}(C_1,\mu_1)) = L_{\Phi_2}(B_1,\mu_2)$. By Theorem 2.4, we have

$$UH_AU^{-1}(L_{\Phi_2}(T_2\setminus B_1))\subseteq L_{\Phi_2}(T_2\setminus B_1).$$

By Theorem 2.4 again, there is a real function h_A on T_2 such that supp $h_A \subseteq T_2 \setminus B_1$ and for every $f \in L_{\Phi_2}$,

$$UH_AU^{-1}(f)=h_A\cdot f.$$

Since UH_AU^{-1} is a projection, h_A must be a characteristic function. Let

$$\tau(A) = \{t \in T_2 : h_A(t) = 1\} \subseteq T_2 \setminus B_1.$$

Let $f, g \in L_{\Phi_1}$ be any functions such that supp $f \cup \text{supp } g \subseteq T_1 \setminus C_1$ and supp $f \cap \text{supp } g = \emptyset$. Let A = supp f. Then

$$\chi_{\tau(A)}U(f) = (UH_AU^{-1})(U(f)) = U(\chi_A f) = U(f),$$

$$\chi_{\tau(A)}U(g) = (UH_AU^{-1})(U(g)) = U(\chi_A g) = 0.$$

So supp $U(f) \cap (T_2 \setminus U(g)) = \emptyset$. Similarly, supp $U(g) \cap (T_2 \setminus U(f)) = \emptyset$. This implies that U has the disjoint support property. By Theorem 2.4, there exists a measurable function w on $T_2 \setminus B_1$ such that if supp $f \subseteq T_1 \setminus C_1$, then $U(f) = w \cdot (f \circ \tau)$.

LEMMA 3.2. Let U be an isometry from L_{Φ_1} into L_{Φ_2} with the disjoint support property. If $||f||_{\Phi_1} = 1$ and $I_{\Phi_1}((1+\varepsilon)f) < \infty$ for some $\varepsilon > 0$, then $I_{\Phi_2}((1+\varepsilon)U(f)) < \infty$ and $I_{\Phi_1}(f) = 1 = I_{\Phi_2}(U(f))$. Hence, if $I_{\Phi_1}(a_1) > 1$ and $I_{\Phi_1}(f) < \infty$, then $I_{\Phi_1}(f) = I_{\Phi_2}(U(f))$.

Proof. Let $f \in L_{\varPhi_1}$ be such that $||f||_{\varPhi_1} = 1$ and $I_{\varPhi_1}((1+\varepsilon)f) < \infty$ for some $\varepsilon > 0$. Let $\{D_1, \ldots, D_n\}$ be measurable subsets of T_1 such that $\bigcup_{j=1}^n D_j = T_1$ and $I_{\varPhi_1}((1+\varepsilon)\chi_{D_j}f) \le 1$. This implies

$$I_{\Phi_2}((1+\varepsilon)f) \leq \sum_{j=1}^n I_{\Phi_2}((1+\varepsilon)U(\chi_{D_j}f)) \leq \sum_{j=1}^n \|(1+\varepsilon)U(\chi_{D_j}f)\|_{\Phi_2} = n.$$

Hence $I_{\Phi_1}(f) = 1 = I_{\Phi_2}(U(f))$.

Let f be any function in L_{Φ_1} such that $I_{\Phi_1}(f) > 1$. Since $I_{\Phi_1}(f) = \lim_{\lambda \to 1^-} I_{\Phi_1}(\lambda f)$, we may assume that $I_{\Phi_1}((1+\varepsilon)f) < \infty$, and $I_{\Phi_1}(f)$ is a rational number. For convenience, we assume that $I_{\Phi_1}(f) = 1 + 1/n$.

Let $\{D_1, \ldots, D_{n+1}\}$ be a partition of T_1 such that $I_{\mathfrak{T}_1}(\chi_{D_j}f) = \frac{1}{n}$ for all $j, 1 \leq j \leq n+1$.

By the above proof, for all j with $1 \le j \le n+1$,

$$\sum_{k \neq j} I_{\Phi_2}(U(\chi_{D_k} f)) = I_{\Phi_2} \left(U\left(\sum_{k \neq j} \chi_{D_k} f\right) \right) = 1.$$

So $I_{\Phi_2}(U(\chi_{D_j}f))$ must be $\frac{1}{n}$ for all j with $1 \leq j \leq n+1$ and $I_{\Phi_2}(U(f)) = 1 + \frac{1}{n}$.

Suppose that $I_{\Phi_1}(a_1) > 1$. We claim that for any $f \in L_{\Phi_1}$, $I_{\Phi_1}(f) = I_{\Phi_2}(U(f))$.

Let $\{D_1,\ldots,D_k\}$ be a partition of T_1 such that for any $1\leq j\leq k$, there is a $g_j\in L_{\varPhi_1}$ such that $\operatorname{supp} g_j\cap D_j=\emptyset$ and $I_{\varPhi_1}(g_j)=1$. The above proof shows that $I_{\varPhi_1}(f\chi_{D_j}+g_j)=I_{\varPhi_2}(U(f\chi_{D_j}+g_j))$ and $I_{\varPhi_2}(U(g_j))=1=I_{\varPhi_1}(g_j)$. So $I_{\varPhi_1}(f\chi_{D_j})=I_{\varPhi_2}(U(f\chi_{D_j}))$. But $U(f\chi_{D_j})$'s have disjoint supports. This implies $I_{\varPhi_1}(f)=I_{\varPhi_2}(U(f))$.

Remark 3.1. Let U be a surjective isometry from L_{\varPhi_1} onto L_{\varPhi_2} . By Theorem 3.1, $I_{\varPhi_1}(f) = I_{\varPhi_2}(U(f))$ for every $f \in L_{\varPhi_1}(C_1, \mu_1)$. Hence, Lemma 3.2 is still true if U is a surjective isometry.

COROLLARY 3.3. L_{Φ_1} is isometric to L_{∞} if and only if $I_{\Phi_1}(a_1) \leq 1$.

Proof. If $I_{\Phi_1}(a_1) \leq 1$, then for every $f \in L_{\Phi_1}$,

$$||f||_{\Phi_1} = \sup\{\nu : \mu\{t : |f(t)| \ge \nu a_1(t)\} > 0\}.$$

The mapping $U: f \to \frac{f}{a_1}$ is then an isometry from L_{φ_1} onto $L_{\infty}(T_1, \mu_1)$. On the other hand, if $I_{\varphi_1}(a_1) > 1$, then there exist two disjoint subsets D_1 and D_2 of T_1 such that $I_{\varphi_1}(\chi_{D_1}a_1) = 1 \ge I_{\varphi_1}(\chi_{D_2}a_1) > 0$. Then

$$I_{\Phi_1}(\chi_{D_1 \cup D_2} a_1) > 1 = \max(I_{\Phi_1}(\chi_{D_1} a_1), I_{\Phi_1}(\chi_{D_2} a_1)).$$

So L_{Φ_1} is not isometric to L_{∞} .

THEOREM 3.4. Let U be a surjective isometry from L_{Φ_1} onto L_{Φ_2} . Let w and τ be the function and regular set isomorphism defined in Theorem 3.1. Then:

(22) If
$$I_{\Phi_1}(a_1) \le 1$$
, then $w(t) = \frac{a_2(t)}{a_1 \circ \tau(t)}$.

(23) If $I_{\Phi_1}(a_1) > 1$, then

$$\Phi_2(\lambda |w(t)|, t) = \tau'(t) [\Phi_1(\lambda, \cdot) \circ \tau](t)$$

for almost all $t \in B_2 \cup B_3$, where $\tau' = \frac{d(\mu_1 \circ \tau^{-1})}{d\mu_2}$.

Proof. By Corollary 3.3, we only need to prove (23).

We note that τ is a regular set isomorphism from $(T_1 \setminus C_1, \mathfrak{F}_1, \mu_1)$ onto $(T_2 \setminus B_1, \mathfrak{F}_2, \mu_2)$. So τ^{-1} is well-defined. By the chain rule, $\tau' = \left(\frac{1}{(\tau^{-1})'}\right) \circ \tau$.

Suppose that $I_{\Phi_1}(a_1) > 1$. By Lemma 3.2, for any measurable subset $D \subseteq T_1 \setminus C_1$ and for any $\lambda > 0$,

$$\int_{D} \Phi_{1}(\lambda, t) d\mu_{1} = \int_{\tau(D)} \Phi_{2}(\lambda |w(t)|, t) d\mu_{2}$$

$$= \int_{D} \left[\Phi_{2}(\lambda |w|, \cdot) \right] \circ \tau^{-1}(t) \cdot (\tau^{-1})'(t) d\mu_{1}.$$

So we must have

$$[(\tau')^{-1}\Phi_2(\lambda|w|,\cdot)] \circ \tau^{-1}(t) - \Phi_1(\lambda,t) = 0$$

for almost all $t \in T_1 \setminus C_1$, which is equivalent to (23).

Remark 3.2. Let (T, Σ, μ) be a σ -finite measure space and let $\Phi(u, t)$ be any Young function on T. Then the above theorem provides a complete characterization of the surjective isometries of the complex Musielak-Orlicz space L_{Φ} . A similar characterization was obtained in [5] under the assumption that the function $u \mapsto \frac{\Phi'(u,t)}{u}$ is monotone for almost all $t \in T$.

Remark 3.3. If $\Phi_i(u,t) \equiv \varphi_i(u)$ and if φ_i 's are continuous, then the condition (23) becomes

$$\varphi_2(|w(t)|u) = \tau'(t)\varphi_1(u)$$

for all $u \geq 0$ and almost all $t \in T_2$. This implies that L_{φ} is isometric to L^p for $1 \leq p < \infty$, $p \neq 2$, if and only if $\varphi(u) = cu^p$ for some c > 0.

Remark 3.4. Suppose that $\Phi_1(u,t) = \frac{u^{p(t)}}{p(t)}$ (respectively, $\Phi_2(u,t) = \frac{u^{r(t)}}{r(t)}$) for some Σ_1 -measurable (respectively, Σ_2 -measurable) function $p: T_1 \to [1,\infty)$ (respectively, $r: T_2 \to [1,\infty)$). Then (23) becomes

$$r(t) = (p \circ \tau)(t), \qquad \tau'(t) = |w(t)|^{r(t)}$$

for almost all $t \in T_2$. Thus, $U: L^{p(t)} \to L^{r(t)}$ is a surjective isometry if and only if $U(f) = w \cdot (f \circ \tau)$ for some regular set isomorphism τ from (T_1, Σ_1, μ_1) onto itself and the condition (*) is satisfied with $|w(t)| \neq 0$ a.e.

4. Isometries of real Nakano spaces $L^{p(t)}$. Let (T_1, Σ_1, μ_1) and (T_2, Σ_2, μ_2) be any two σ -finite atomless measure spaces. For any $\alpha, \infty > \alpha > 2$, let $p: T_1 \to (2, \alpha)$ (respectively, $r: T_2 \to (2, \alpha)$) be a Σ_1 -measurable (respectively, Σ_2 -measurable) function. In this section, we study the isometries from the real Nakano space $L^{p(t)}$ into the real Nakano space $L^{r(t)}$. Recall an isometry U is said to have the disjoint support property if for any f, g with fg = 0, $Uf \cdot Ug = 0$ holds almost everywhere. The following proposition shows that every isometry from $L^{p(t)}$ into $L^{r(t)}$ possesses the disjoint support property.

PROPOSITION 4.1. Let $2 < \alpha < \infty$ and let p (respectively, r) be any measurable function from T_1 (respectively, T_2) into $(2,\alpha)$. Then any isometry $U: L^{p(t)} \to L^{r(t)}$ has the disjoint support property.

Proof. Let Φ_1 and Φ_2 denote the Young functions

$$\Phi_1(u,t) = \frac{u^{p(t)}}{p(t)}, \quad t \in T_1,$$

$$\Phi_2(u,t) = \frac{u^{r(t)}}{r(t)}, \quad t \in T_2.$$

We will need the following inequalities:

(24)
$$(1+x)^p + (1-x)^p \ge 2 + \frac{p(p-1)}{2}x^2$$
 for all $p \ge 2$ and $|x| \le 1$,

(25)
$$(1+x)^{-m} > 1 - mx$$
 for all $x \ge 0$ and $m > 0$.

Since p(t) > 2 for almost all $t \in T_1$ and the measure space (T_1, Σ_1, μ_1) is σ -finite, we can find a sequence $\{C_n\}$ of measurable sets and a sequence $\{\beta_n\}$ of numbers such that

- (a) for each $n, C_n \subseteq C_{n+1}$ and $\chi_{C_n} \in L^{p(t)}$;
- (b) $\bigcup_{n=1}^{\infty} C_n = T_1;$
- (c) $\alpha \geq p(t) \geq \beta_n > 2$ for all $t \in C_n$.

Then any $f \in L^{p(t)}$ can be approximated by simple functions vanishing outside of some C_n . Thus, it is enough to prove the disjoint support property for characteristic functions of sets contained in C_n . Without loss of generality, we assume that $p(t) \geq \beta > 2$ for all $t \in T_1$ and $\chi_A \in L^{p(t)}$ for any $A \in \Sigma_1$.

Let A and B be any two disjoint measurable subsets of T_1 , and let c > 0

be such that

$$\|c\chi_A\|_{\Phi_1} = \int\limits_A \frac{c^{p(t)}}{p(t)} d\mu_1 = 1.$$

For any $|\lambda| \leq 1$, we have $1 \leq I_{\Phi_1}(c\chi_A + \lambda \chi_B) \leq 1 + \beta^{-1}|\lambda|^{\beta}\mu_1(B)$. This implies

$$\left\| \frac{c\chi_A + \lambda\chi_B}{1 + \beta^{-1}|\lambda|^{\beta}\mu_1(B)} \right\|_{\Phi_1} \le 1.$$

Let $f = U(c\chi_A)$ and $g = U(\chi_B)$. We have

$$\left\| \frac{f + \lambda g}{1 + \beta^{-1} |\lambda|^{\beta} \mu_1(B)} \right\|_{\Phi_0} \le 1.$$

So

$$(26) \quad 2 \geq I_{\varPhi_{2}} \left(\frac{f + \lambda g}{1 + \beta^{-1} |\lambda|^{\beta} \mu_{1}(B)} \right) + I_{\varPhi_{2}} \left(\frac{f - \lambda g}{1 + \beta^{-1} |\lambda|^{\beta} \mu_{1}(B)} \right)$$

$$\geq \int \frac{|f + \lambda g|^{r(t)}}{(1 + \beta^{-1} |\lambda|^{\beta} \mu_{1}(B))^{\alpha}} d\mu_{2} + \int \frac{|f - \lambda g|^{r(t)}}{(1 + \beta^{-1} |\lambda|^{\beta} \mu_{1}(B))^{\alpha}} d\mu_{2}.$$

For a contradiction, suppose that fg>0 on a set with positive measure. Then there is a set $C\subseteq T_2$ and $0<\lambda_0<1$ such that $\mu_2(C)>0$ and $0<|\lambda_0g(t)|<|f(t)|$ for all $t\in C$. By (24), we have

(27)
$$\int_{C^c} (|f + \lambda g|^{r(t)} + |f - \lambda g|^{r(t)}) d\mu_2 \ge 2 \int_{C^c} |f|^{r(t)} d\mu_2.$$

For any $|\lambda| < \lambda_0$ and for $t \in C$, $\left|\frac{\lambda g(t)}{f(t)}\right| < 1$. Thus, by (24), we have

(28)
$$\int_{C} (|f + \lambda g|^{r(t)} + |f - \lambda g|^{r(t)}) d\mu_{2}$$

$$\geq \int_{C} |f|^{r(t)} \left(2 + \frac{r(t)(r(t) - 1)}{2} \lambda^{2} \left| \frac{g(t)}{f(t)} \right|^{2} \right) d\mu_{2}$$

$$= \int_{C} 2|f|^{r(t)} d\mu_{2} + \lambda^{2} \int_{C} \frac{r(t)(r(t) - 1)}{2} |f|^{r(t) - 2} |g|^{2} d\mu_{2}.$$

Writing γ for the last integral in (28), we get

$$2 \ge \frac{2 + \lambda^2 \gamma}{(1 + \beta^{-1} |\lambda|^{\beta} \mu_1(B))^{\alpha}} \ge (2 + \lambda^2 \gamma) (1 - \alpha \beta^{-1} |\lambda|^{\beta} \mu_1(B)),$$

for all $|\lambda| < \lambda_0$. However, $(2 + \lambda^2 \gamma)(1 - \alpha \beta^{-1} \lambda^\beta \mu_1(B)) > 2$ for sufficiently small λ and this contradiction finishes the proof.

Let $\{A_k : k \in \mathbb{N}\}$ be any partition of T_1 such that $\mu_1(A_k) < \infty$ for all $k \in \mathbb{N}$. For an isometry U from $L^{p(t)}$ into $L^{r(t)}$, let Σ_3 be the σ -ring

generated by

$$\{\operatorname{supp} U(\chi_A): A \in \Sigma_1 \text{ and } \mu_1(A) < \infty\},$$

let

$$T_3 = \bigcup_{k=1}^{\infty} \operatorname{supp} U(\chi_{A_k}),$$

and let w be the function from T_3 into \mathbb{R} defined by

$$w(t) = U(\chi_{A_k})(t)$$
 if $t \in \text{supp } U(\chi_{A_k})$.

Then Σ_3 is a σ -algebra of subsets of T_3 and w is nonzero almost everywhere on T_3 . Let τ be the mapping from Σ_1 into Σ_3 defined by

$$\tau(A) = \bigcup_{k=1}^{\infty} \operatorname{supp} U(\chi_{A \cap A_k}).$$

By Proposition 4.1, τ is a regular set isomorphism from Σ_1 onto Σ_3 . So τ^{-1} is well-defined.

Let f be an integrable Σ_2 -measurable function. A Σ_3 -measurable function $g = \mathcal{E}(f \mid \Sigma_3)$ is said to be the *conditional expectation* of f relative to Σ_3 if for every $A \in \Sigma_3$,

$$\int\limits_A f \, d\mu_2 = \int\limits_A g \, d\mu_2 \, .$$

It is known that if h is a Σ_3 -measurable function and if fh is integrable, then $\mathcal{E}(fh \mid \Sigma_3) = h\mathcal{E}(f \mid \Sigma_3)$. We claim that $r|_{T_3} = p \circ \tau$.

Suppose the claim is proved. Then r is a Σ_3 -measurable function. By Theorem 3.1 and Lemma 3.2, for any Σ_3 -measurable subset D of A_j and any $\lambda > 0$,

$$\int_{D} \frac{\lambda^{p(t)}}{p(t)} d\mu_{1}(t) = \int_{\tau(D)} \frac{(\lambda|w(t)|)^{r(t)}}{r(t)} d\mu_{2}(t)$$

$$= \int_{\tau(D)} \mathcal{E}\left(\frac{(\lambda|w|)^{r}}{r} \middle| \Sigma_{3}\right)(t) d\mu_{2}(t)$$

$$= \int_{D} \left[\mathcal{E}\left(\frac{(\lambda|w|)^{r}}{r} \middle| \Sigma_{3}\right) \right] \circ \tau^{-1}(t) \cdot (\tau^{-1})'(t) d\mu_{1}(t)$$

$$= \int_{D} \left[\mathcal{E}(|w|^{r} | \Sigma_{3}) \right] \circ \tau^{-1}(t) \cdot \left(\frac{\lambda^{r}}{r\tau'}\right) \circ \tau^{-1}(t) d\mu_{1}(t).$$

So we have

$$[\mathcal{E}(|w|^r\mid \varSigma_3)]\circ au^{-1}(t)\cdot \left(rac{\lambda^r}{r au'}
ight)\circ au^{-1}(t)=rac{\lambda^{p(t)}}{p(t)}\,.$$

(2887)

But $r(t) = p \circ \tau(t)$. This implies

$$\tau' = \mathcal{E}(|w|^r \mid \Sigma_3).$$

Suppose the claim is not true. Without loss of generality, we assume that there exist $\lambda_1 < \lambda_2, \, \varepsilon > 0, \, N \in \mathbb{N}$, and a Σ_3 -measurable subset C of T_3 such that

- (d) $\tau^{-1}(C) \subset p^{-1}([\lambda_1, \lambda_2]);$
- (e) $\mu_2(r^{-1}([\lambda_2 + \varepsilon, \infty)) \cap \{t : |w(t)| \ge 1/N\} \cap C) > 0;$
- (f) $\mu_1(\tau^{-1}(C)) < \infty$.

Let $D = r^{-1}([\lambda_2 + \varepsilon, \infty)) \cap w^{-1}([1/N, \infty)) \cap C$. By Theorem 3.2, if u > $\max\{N,1\}$, then

$$(u/N)^{\lambda_2 + \varepsilon} \mu_2(D) \leq \int_D \Phi_2(u|w(t)|, t) \, d\mu_2(t) \leq \int_C \Phi_2(u|w(t)|, t) \, d\mu_2(t)$$

$$= \int_C \tau'(t) [\Phi_1(u, \cdot) \circ \tau](t) \, d\mu_2(t)$$

$$= \int_{\tau^{-1}(C)} \Phi_1(u, t) d\mu_1 \leq u^{\lambda_2} \mu_1(\tau^{-1}(C)).$$

But this is impossible for u large enough. So our claim is proved.

Now we can formulate a criterion for U to be an isometry between two real Nakano spaces.

THEOREM 4.2. Let $L^{p(t)}$ (respectively, $L^{r(t)}$) be a real Nakano space with $2 < p(t) \le \alpha$ (respectively, $2 < r(t) \le \alpha$) for almost all $t \in T_1$ (respectively, $t \in T_2$) and some $\alpha > 2$. Let U be an isometry from $L^{p(t)}$ into $L^{r(t)}$. Then there exist a Σ_3 -measurable set $T_3 \subseteq T_2$, a Σ_2 -measurable function w on T_3 , and a regular set isomorphism $\tau: (T_1, \Sigma_1) \to (T_3, \Sigma_3)$ such that for all $f \in L^{p(t)}$,

$$(29) Uf = w \cdot (f \circ \tau),$$

(30)
$$r = p \circ \tau, \quad \tau' = \mathcal{E}(|w|^r \mid \Sigma_3).$$

Conversely, if the equalities (30) are satisfied, then the operator U given by (29) is an isometry from $L^{p(t)}$ into $L^{r(t)}$.

Proof. We only need to prove (29). Since every $f \in L^{p(t)}$ can be approximated by step functions and $U(\chi_A) = w \cdot \chi_{\tau(A)}$ for every A with $\mu_1(A) < \infty$, U is of the form

$$U(f) = w \cdot (f \circ \tau).$$

Suppose U is a mapping which satisfies (29) and (30). By a change of variable, $||f||_{\Phi_1} = ||U(f)||_{\Phi_2}$ for every $f \in L^{p(t)}$. So U is an isometry.

References

- S. Banach, Theory of Linear Operations, North-Holland, 1987.
- E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 331-344.
- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971.
- R. Fleming and J. E. Jamison, Isometries on certain Banach spaces, J. London Math. Soc. (2) 9 (1974), 363-371.
- R. Fleming, J. E. Jamison and A. Kamińska, Isometries of Musielak-Orlicz spaces, in: Proceedings of the Conference on Function Spaces, Edwardsville 1990, Marcel Dekker, 1992, 139-154.
- J. E. Jamison and I. Loomis, Isometries of Orlicz spaces of vector valued functions, Math. Z. 193 (1986), 363-371.
- N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510.
- A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 63-73.
- -, Isometries of Orlicz spaces equipped with the Orlicz norm, Rocky Mountain J. Math., to appear.
- W. Kozlowski, Modular Function Spaces, Marcel Dekker, New York 1988.
- M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
- G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1) (1963), 99-109.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- H. Nakano, Topology and Linear Spaces, Nihonbashi, Tokyo 1951.
- A. R. Sourour, The isometries of $L^p(\Omega,X)$, J. Funct. Anal. 30 (1978), 276-285.
- M. G. Zaidenberg, Groups of isometries of Orlicz spaces, Soviet Math. Dokl. 17 (1976), 432-436.
- --, On isometric classification of symmetric spaces, ibid. 18 (1977), 636-640.

DEPARTMENT OF MATHEMATICS MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE 38152 U.S.A.

> Received January 13, 1992 Revised version September 22, 1992