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L-summands in their biduals have Petczynski’s property (V*)
by

HERMANN PFITZNER (Berlin)

Abstract. Banach spaces which are L-summands in their biduals—for example i*, the
predual of any von Neumann algebra, or the dual of the disc algebra—have Pelezyhiski's
property (V*), which means that, roughly speaking, the space in question Is either reflexive
or is weakly sequentially complete and contains many complemented copies of it

During the last ten years every once in a while attention has been paid
to Banach spaces which are L-summands in their biduals; occasionally we
call such spaces for short I-embedded: The easiest nontrivial example is {2,
more generally a predual of a Wr-algebra is an L-summand in its bidual
[15, [11.2.14]; other examples are the dual A of the disc algebra, the Hardy
space H} and the space L'/HJ [3]; concerning the latter there are certain
conditions on a Bapach space X such that L'(X)/Hg(X) is L-embedded
(see [8, §3.11]).

For more details on L-summands in their biduals we refer to Chapter IV
of IT].

As to our notation we denote the dual of a Banach space X by X' and
recall that a series 3 «; in a Banach space X is called weakly vnconditionally
Cauchy (or wuC for short) if 3~ |='(@;)] < oo for all = € X'; for a subset
M C X the annihilator of M in X’ is denoted by M+ and for ¥ C X' we

write ¥ for the closure of ¥ in the o (X', X)-topology of X’. For further

. potations not explained here we refer to [12}, [13] or [1].

Harmand [6] proved that L-embedded Banach spaces contain {!-copies.
todefroy ([8], Lemme 4) improved this and showed w-sequential complete-
ness for these spaces. Apart from a construction of uniformly complemented
isomorphic copies of [*(n) in such spaces in [11], Td [10] also proved the fol-
lowing: If both a Banach space X and a subspace Y C X are L-embedded,
o if XM = X @ Xs and ¥ =Y @, Y, with projections P onto X and
r onto Y, respectively, then P and m are parallel, i-e. Plyii = w, where
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VIL 7Y ¢ X is identified with Y. Lemma 2 below provides a pertur-
bation argument.

On the basis of the just mentioned results we prove (sce Theorem 3
below) that L-embedded Banach spaces have Pelczynski’s property (V*) (for
the definition see [14] or Lemma 1 below), which means, roughly speaking,
that they contain many complemented [*-copies if they are not reflexive.

First we use a classical compactnesé argument in order to give a criterion
for property (V*):

LeMMA 1. For a Banach space X the following assertions are equivelent:

(i) X has property (V*), that is, by definition, for each set K < X
which is not relatively w-compact there is a wuC-series 3w} in X' such
that sup i |25(z)] - 0 as i — oco.

(il) For any (for some) number & with 0 < § < 1 the following holds: X

is w-sequentially complete and if (ye) is a (1 — 6)-copy of I' in X, that is, if

(1=-8) ¥ lew] < | X2 anyll < 3 o] for all scalar sequences (), then there
are a subsequence (yx, ), positive numbers € = (6, (yx)), M = M (6, (ys)) <

f'(")( Vi< n,

|y
|2t
he=]

Proof. (i)=-(ii). Let § be any number with 0 < § < 1 and (y) a (1 - 8)-
copy of I' in X. Since K = {y; | k € N} is not relatively w-compact, hy (i)
there are a wuC-series >z, a subsequence (yz, ) and a number £ > 0 such
that |z, (ys,)| > e foralln € N. Set yg(”) = 2} for all4,n € N. That property
(V*) implies w-sequential completeness is well-known (cf. [14] or [7]).

(ii)=(i}). Suppose (ii) holds for a fixed number & with 0 « & < 1.
Let £ C X be not relatively w-compact. If K is not hounded, there are
zn & Kand 2, € X' such that ||a]|| = 1 and 27"/ (2,) > 1 for cach
n € N, and >727"x; is trivially a wouC-series. Therefore wo assume K
to be hounded. Since X is weakly sequentially complete, by Rosenthal's
I*-theorern K contains an I'-basis (w,) with basis constant r > 0, Le.
3 ton] < [ anzn] € 3 |ow] By James' distortion theorem [9] there
are pairwise digjoint finite sets Ay € N and a sequence (M) of scalars sucl
that the sequence y;, = ZAR Aty satisfies

W -8 ol < | o] « ol T el <

negA r

yki)|>€

< Ml}}(ax]ai\ V() C K.

Yk e N.
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The (y,g“"))g‘;%l of (ii) give rise to operators
T X =1z V(@) 5 @), . o™ (e),0,..),

which are uniformly bounded, since there are scalars a; of modulus one such
thadt

k) T n
1Tzl = > )l = 3 i) = (3 ) (@)
f=1

=l fa=l

< M max oy 2] = M|z| .
isn

Closed balls of L{X, ') are compact in the w*-operator topology. Therefore,
denoting the usual bases of ¢p and [* by (e,) and (e],) respectively, (Th)
has ap accumulation point 7 in this topology with ||T]| < M satisfying
(Typ,)(er)] = ¢ for all i € N since |(Toyr,)(es)] = i (yx)| > & for all
n > 4 Put z; = T’e;, Then § ] is a wuC-series such that |oj(ys,)| =
(Tyx,)(e))| > e By (1) there is an @, such that |zj(z,,)| > er for each
i € N, because otherwise we would have

1
i) < Y Dallei(@a)l < zer=c.

nEAg,
This proves (i). m

LEMMA 2. Let the Banach space X be an L-summand in its bidual, i.e.
X" = X ey X, with projection P, and let the subspace Y C X be an almost
L-summand in s bidual in the sense that there is o number 0 < e < 1/4
such that V" =Y @ Y, and |y +ys| = (1 —e)(lyll + llysl) for ally €Y,
ys € Ya. Then |Plyss — 7| < 3622, where Y and Y-+ = Y c X" are
identified and where ™ means the projection from Y onto Y.

Proof. By assumption there is a subspace Z C X" such that ¥ &
Vb =TY =Y @ 7 with |jy+ 2] > (1 = &){(||ly|| + |2||)- Because of
[Py~ my ] = |Ply +2) = m(y + 2)ll = |P=]]
( denotes the projection from ¥+ onte ¥} and because of
12 4.
. g%+ 2
(1% + 2¢)||2]| < T

for any y € ¥, z € Z, it is enough to show || Pz|| < (g% + 2;) | 2| for each
z € Z. Decompose z = % 4+ & in X" = X ¢ X,. Since we are done? if
|| = || P2l < £4/2||2]], we assume [|z]| > &'/?||2]} from now on. We obtain

lly + 2l < 3¢ (ly + £

(2) lly + ) = [[(y + ) + sl ~ lzsll = flv + 2l - =]
> (1= &)(lly!l -+ Il = Nzl
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(1—5)(|Iy\l+llmll+llfﬂ~sll) (A

(1= &)yl + llzll) - elizsll
(1= &)yl + ll=[}) - eli=]

2 (1 = &)(lyll + llz]}) - &'zl

> (1= 262yl + =)

for all y € Y, which extends to all y=+ € Y+1:

(3) Iyt +all = (1 =2 2)(lly™ 1+ =)

For the time being we take (3} for granted and have in particular for
zey+d

25l = |-z + 2l = (1 = 26"2)(fi=]| + ||}
> (1-26"2)(||2)| + £7%)j])
and finally
1Pz]| = =] = flz]| — |lz]|

< llall = (1= 2631 + V%) 2] = (1% - 26)] 2| -

Now we prove (3). We note that = ¢ Y, because otherwise we would have

0={-z+z| = (1-2Y2)(| — 2| + [z|]), hence = 0, which contradicts
lz|| > &*%||z||. Thus G = Y @ Kz € X is well-defined and we can define
t to be the identity from G = ¥ $ Kz C X onto G = Y by K, thus

G" =Yl @, Ko and 1] < 1/(1-2:Y2) by (2). Inequality (3) now follows
with y*+ + 2z € G+ from

1L — A 1.
ly== T+ Nzl = " (gt + 2)|| < m”yu tal|. =

THEOREM 3. If a Banach space X is an L-summand in ifs bidual then i
has Pelezyriski’s property (V*).

Proof Let X" = X @ X, and let P be the corresponding L-projection
onto X. Denote the usual basis of 1! by (e!,), and denote by g the canonical
projection from (I*)" = I* @, ¢y onto I'. The w*-closure of Lhe set {e/, |
n € N} C I* in the bidual of I* contains an accunmlation point i & ker g of
norm || = 1.

Let €,¢ be numbers such that 0 < ¢ < 1/4,0 < § < £2/9%, and choose
a sequence (g,,) of positive numbers such that H,nﬂ(l gy) 2 1 g and
L1 (148s) <1 4e -

We will show (i) of Lemmwa 1 in order to show property (V*). As men-
tioned above, we know by a result of Godefroy that X is w- gequentially
complete.

Let (yx) be an I*-copy as in (i) of Lemma 1. Put ¥V = lm{t;, | ke N}
The canonical isomorphism §: ¥ —~ I* satisfies ||| < [|57y"| < =zl
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for all ¥ € Y". In particular, 1 -6 < ||z < 1 for z = {$")~(u). Consider
€ X' via the identification of Y and ¥+ ¢ X", Denote by 7 the canon-

ical projection from Y+ onto ¥ (i.e. v = (") pS"). Then 2, € Y; = ker «

follow&; from. pE ker g, and 24 is a o(X", X')- a.ccumulatlon point of the set

{vr
For the decomposition y =y 4y in Y = ¥V B Y; of any element
Y=t € Y-+ we have ‘

ly=Hl] = (1 = &S g = (1~ OS"y + 57wl
= (1= 8)(1S"yl + 15 ysll) 2 (1 = E)fwll + llwsll) -
Put 2y = (Idx» —P)(z) € ker P = X, Lemma 2 gives
(4) |26 = zall = | Pasl| == [|Pze — mzel| < 3872l
(8) lwsl] = [l — Pas = | zall - [Pzl 2 (1— 351/2)”23“ >1—4872.
Choose t € ker P/ © X' such that ||| = 1 and #(z;) = ||z

Before starting the construction of sequences (y;(n‘)) as desired in (ii) of
Lemma 1| we finish these preparations with the remark that by (4), z, is
near to an accumulation point of the yx: For any number 7 > 0 and any
t' € X' there is an index &k = k{n, 2’) such that

(6) |z5(2") = & ()| S |ws(2') = 2a(2")] + |26 (') — ' (31)]
< 38422 || + 1.

Construct by induction on n = 1,2,... finite sequences (y;(n))?ﬂl c X’
and a subsequence (y, ) of (yx) such that

(7) W™ (k) > 1962 Vi <n,
(3 n

® (T[]0 -e) mexlodl < Y eun™
dem] - i=1

< (H(l'l‘t?i)) maxles|  ¥(as) CK.

gl

I*m n = 1 weset by = 1 and choose yl( !'so as to have ||y1 | =1and

M (k) = yia | 2 1 = 6; then Y U also satisfies (8).

For the 111(1116L]()11 step n = n -+ 1 we ohserve that P'|x. is an isometric
lsmumphlam from X' onto X, that X' = XJ-(BOO,XJ* and that (P'z')lx =
Iy for all x' € X'. Take

E = ln({Py™ |i <n}u{t}) c X",
F=lin({yy, | i <n}U{z}) c X",
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Local reflexivity gives an operator R: F — X' and y U = RPN

for i <n and y;(ifl) = Rt such that E, a good copy of 1°(n+1) (note that
P’yg(n) € ran P'Lker P’ 3 t) in X", becomes a good copy of I™(n -+ 1) in
X', more precisely the (y,™ M)+ fulfill (8,n + 1) by

1

(L0 ==0) o o

=<}

k1
< (1 ~ gy4q) max ((H(l ~ s,)) max | v

il

) |f\’w.+lj>

(7:n)

n
< (1~ ept1) max (HZ AR H, llevn 'lﬂl)
=1

i1
= (1 = sapaymax |30 aPyl™ | o))
i=1

k]
= (1 —eny1) ” (Z aiP,’yE(n)) + Ofnfl—'l_t“
i=1

loc. refl.
<

n-1 ]
Bt
i=1
loc. refl. n
< (1 + 81‘r,+1)” (Z C\fin’y;(n)) “+- C‘t1i,+1'ti|'
i=1

k1
= (1+ &,31) max (HZ_mP’yg(n) ”, |!cvn+1t|!)
i=1

T
= (1 enga)ma ([} o™ ot
fe=l
(7m) T
S (e max ((H(l + 5??)) max |ov, [ee 41 |)
P o ¥ b
n+1
= ( I+e ) @ :
E( t 1,) 72&!}“{1'(\’,',

Before we show (7,n + 1) let us use (6) with n < 36Y%,,,, in order to
find y,., so as to have

loe., refl.

/(nt+1) "{n1) o/
E 3631 o 2e00)

Unir ) = Yot Whga)| < 382y ey
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Thus (7,7 + 1) holds true for i =n-+1 by

e 1 1
AT W) 2 s ()] = 38720+ o)

kméeﬂ.lt(ms)l _ 361/2(1 + 2€n+1)

5)
(_>_(1 — 46177y — 5642 =1 - 9V/2,

For 1 < m, (7,n+ 1) follows from [y (gs)| = (PY™)we) = 6™ (o)
and (7,7m). This ends the induction.

By (7) and (8) condition (ii) of Lemma 1 holds for n =1~ ¢ and M =
L+ &, This ends the proof. a

Finally, we mention a question concerning the so-called property (X)
defined in [5] or [2] which entails property (V*), but does not follow from it,
a3 shows a counterexample of Talagrand [16]. (See also [4, Ch. V].) A space
with property (X) is the unique predual of its dual [4, V.3]. Until now no
L-embedded Banach space which is not the unique predual of its dual seems
to be known. Do L-embedded Banach spaces have property (X)?
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Trace inequalities for spaces in spectral duality
by

0. B TIKHONOV (Kazan)

Abstract, Lot (A e) and (V, K} be an order-unit space and 3 base-norm space in
apectral duality, a8 in noncommutative spectral theory of Alfsen and Shultzs. Let ¢ be a
norm lower semicontinuous trace on A, and let o be a nonnegative convex function on R.
Tt is shown that the mapping o - t(p(a)) is convex on A. Moreover, the mapping is
shown to be nondecreasing if so is ¢. Some other similar statements concerning traces and
real-valued functions are alsoe obtained.

1. Introduction. Inequalities involving operator functions and traces
are useful tools in the study of operator algebras. A mumber of papers were
dedicated to obtain such inequalities or contained the proofs of trace in-
equalities as their essential parts (see, e.g., [5-10]). Roughly speaking, it was
discovered that under a trace, operators often behave “like numbers” [6].

~The main purpose of the paper is to extend some trace inequalities to
the class of partially ordered normed vector spaces for which Alfsen and
Shultz [3] developed a noncommutative spectral theory and a functional
calcilus. The class in question contains the space of all self-adjoint elements
of a von Neumann algebra. Nevertheless, this special case does not exhaust
all possibilities.

Section 2 comtains basic notions and results of noncommutative spec-
tral theory (3]. Here, an order-unit space A and a base-norm space V are
supposed to be in spectral duality (see the exact definitions below). If i is
a bounded Borel function of a real variable then the element w(a) of A is
well-defined and the functional calewlus defined by the mapping ¢ — w(a)
has the properties similar to those of the usual functional calculus for self-
adjoint operators in a Hilbert space. At the end of the section we introduce
the concept of a trace. It agrees with the one used in operator theory.

The main results are obtained in Section 3. For a trace t on A and a
decomposition & = a1 — 03 of o € A into a difference of positive elements,
we prove that t(at) < t(e1) and t(a”) < t(ag) where o and a” denote
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