200

STUDIA MATHEMATICA 104 (1) (1993)

L-summands in their biduals have Pełczyński's property (V*)

by

HERMANN PFITZNER (Berlin)

Abstract. Banach spaces which are L-summands in their biduals—for example l^1 , the predual of any von Neumann algebra, or the dual of the disc algebra—have Pełczyński's property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of l^1 .

During the last ten years every once in a while attention has been paid to Banach spaces which are L-summands in their biduals; occasionally we call such spaces for short L-embedded. The easiest nontrivial example is l^1 , more generally a predual of a W*-algebra is an L-summand in its bidual [15, III.2.14]; other examples are the dual A' of the disc algebra, the Hardy space H_0^1 and the space L^1/H_0^1 [3]; concerning the latter there are certain conditions on a Banach space X such that $L^1(X)/H_0^1(X)$ is L-embedded (see [8, §3.11]).

For more details on L-summands in their biduals we refer to Chapter IV of [7].

As to our notation we denote the dual of a Banach space X by X' and recall that a series $\sum x_i$ in a Banach space X is called weakly unconditionally Cauchy (or wuC for short) if $\sum |x'(x_i)| < \infty$ for all $x' \in X'$; for a subset $M \subset X$ the annihilator of M in X' is denoted by M^{\perp} and for $Y \subset X'$ we write \overline{Y}^{w^*} for the closure of Y in the $\sigma(X',X)$ -topology of X'. For further notations not explained here we refer to [12], [13] or [1].

Harmand [6] proved that L-embedded Banach spaces contain l^1 -copies. Godefroy ([3], Lemme 4) improved this and showed w-sequential completeness for these spaces. Apart from a construction of uniformly complemented isomorphic copies of $l^1(n)$ in such spaces in [11], Li [10] also proved the following: If both a Banach space X and a subspace $Y \subset X$ are L-embedded, i.e. if $X'' = X \oplus_1 X_s$ and $Y'' = Y \oplus_1 Y_s$ with projections P onto X and π onto Y, respectively, then P and π are parallel, i.e. $P|_{Y^{\perp\perp}} = \pi$, where

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B20, 46B03.

 $Y^{\perp\perp} = \overline{Y}^{w^*} \subset X''$ is identified with Y''. Lemma 2 below provides a perturbation argument.

On the basis of the just mentioned results we prove (see Theorem 3 below) that L-embedded Banach spaces have Pełczyński's property (V*) (for the definition see [14] or Lemma 1 below), which means, roughly speaking, that they contain many complemented l^1 -copies if they are not reflexive.

First we use a classical compactness argument in order to give a criterion for property (V^*) :

LEMMA 1. For a Banach space X the following assertions are equivalent:

- (i) X has property (V*), that is, by definition, for each set $K \subset X$ which is not relatively w-compact there is a wuC-series $\sum x_i'$ in X' such that $\sup_{x \in K} |x_i'(x)| \to 0$ as $i \to \infty$.
- (ii) For any (for some) number δ with $0 < \delta < 1$ the following holds: X is w-sequentially complete and if (y_k) is a (1δ) -copy of l^1 in X, that is, if $(1-\delta)\sum |\alpha_k| \le ||\sum \alpha_k y_k|| \le \sum |\alpha_k|$ for all scalar sequences (α_k) , then there are a subsequence (y_{k_n}) , positive numbers $\varepsilon = \varepsilon(\delta, (y_k))$, $M = M(\delta, (y_k)) < \infty$ and for each $n \in \mathbb{N}$ there is a finite sequence $(y_i^{(n)})_{i=1}^n \subset X'$ such that

$$|y_i'^{(n)}(y_{k_i})| > \varepsilon \quad \forall i \le n,$$

$$\left\| \sum_{i=1}^n \alpha_i y_i'^{(n)} \right\| \le M \max_{i \le n} |\alpha_i| \quad \forall (\alpha_i) \subset \mathbb{K}.$$

Proof. (i) \Rightarrow (ii). Let δ be any number with $0 < \delta < 1$ and (y_k) a $(1 - \delta)$ -copy of l^1 in X. Since $\mathcal{K} = \{y_k \mid k \in \mathbb{N}\}$ is not relatively w-compact, by (i) there are a wuC-series $\sum x_i'$, a subsequence (y_{k_n}) and a number $\varepsilon > 0$ such that $|x_n'(y_{k_n})| > \varepsilon$ for all $n \in \mathbb{N}$. Set $y_i'^{(n)} = x_i'$ for all $i, n \in \mathbb{N}$. That property (V^*) implies w-sequential completeness is well-known (cf. [14] or [7]).

(ii) \Rightarrow (i). Suppose (ii) holds for a fixed number δ with $0 < \delta < 1$. Let $\mathcal{K} \subset X$ be not relatively w-compact. If \mathcal{K} is not bounded, there are $x_n \in \mathcal{K}$ and $x'_n \in X'$ such that $||x'_n|| = 1$ and $2^{-n}x'_n(x_n) > 1$ for each $n \in \mathbb{N}$, and $\sum 2^{-n}x'_n$ is trivially a wuC-series. Therefore we assume \mathcal{K} to be bounded. Since X is weakly sequentially complete, by Rosenthal's l^1 -theorem \mathcal{K} contains an l^1 -basis (x_n) with basis constant r > 0, i.e. $r \sum |\alpha_n| \leq ||\sum \alpha_n x_n|| \leq \sum |\alpha_n|$. By James' distortion theorem [9] there are pairwise disjoint finite sets $A_k \subset \mathbb{N}$ and a sequence (λ_n) of scalars such that the sequence $y_k = \sum_{A_k} \lambda_n x_n$ satisfies

$$(1) |(1-\delta)\sum |\alpha_k| \le \left\| \sum \alpha_k y_k \right\| \le \sum |\alpha_k|, |\sum_{n \in A_k} |\lambda_n| < \frac{1}{r} \quad \forall k \in \mathbb{N}.$$

The $(y_i^{\prime(n)})_{i=1}^n$ of (ii) give rise to operators

$$T_n: X \to l^1, \quad x \mapsto (y_1'^{(n)}(x), y_2'^{(n)}(x), \dots, y_n'^{(n)}(x), 0, \dots),$$

which are uniformly bounded, since there are scalars α_i of modulus one such that

$$||T_n x|| = \sum_{i=1}^n |y_i'^{(n)}(x)| = \sum_{i=1}^n \alpha_i y_i'^{(n)}(x) = \left(\sum_{i=1}^n \alpha_i y_i'^{(n)}\right)(x)$$

$$\leq M \max_{i \leq n} |\alpha_i| ||x|| = M||x||.$$

Closed balls of $L(X, l^1)$ are compact in the w^* -operator topology. Therefore, denoting the usual bases of c_0 and l^1 by (e_n) and (e'_n) respectively, (T_n) has an accumulation point T in this topology with $||T|| \leq M$ satisfying $|(Ty_{k_i})(e_i)| \geq \varepsilon$ for all $i \in \mathbb{N}$ since $|(T_n y_{k_i})(e_i)| = |y_i'^{(n)}(y_{k_i})| > \varepsilon$ for all $n \geq i$. Put $x_i' = T'e_i$. Then $\sum x_i'$ is a wuC-series such that $|x_i'(y_{k_i})| = |(Ty_{k_i})(e_i)| > \varepsilon$. By (1) there is an x_{n_i} such that $|x_i'(x_{n_i})| > \varepsilon r$ for each $i \in \mathbb{N}$, because otherwise we would have

$$|x_i'(y_{k_i})| \leq \sum_{n \in A_{k_i}} |\lambda_n| |x_i'(x_n)| \stackrel{(1)}{\leq} \frac{1}{r} \varepsilon r = \varepsilon.$$

This proves (i). ■

LEMMA 2. Let the Banach space X be an L-summand in its bidual, i.e. $X'' = X \oplus_1 X_s$ with projection P, and let the subspace $Y \subset X$ be an almost L-summand in its bidual in the sense that there is a number $0 < \varepsilon < 1/4$ such that $Y'' = Y \oplus Y_s$ and $\|y + y_s\| \ge (1 - \varepsilon)(\|y\| + \|y_s\|)$ for all $y \in Y$, $y_s \in Y_s$. Then $\|P|_{Y^{\perp \perp}} - \pi\| \le 3\varepsilon^{1/2}$, where Y'' and $Y^{\perp \perp} = \overline{Y}^{w^*} \subset X''$ are identified and where π means the projection from Y'' onto Y.

Proof. By assumption there is a subspace $Z\subset X''$ such that $Y''\cong Y^{\perp\perp}=\overline{Y}^{w^*}=Y\oplus Z$ with $\|y+z\|\geq (1-\varepsilon)(\|y\|+\|z\|)$. Because of

$$||Py^{\perp\perp} - \pi y^{\perp\perp}|| = ||P(y+z) - \pi(y+z)|| = ||Pz||$$

 $(\pi \text{ denotes the projection from } Y^{\perp \perp} \text{ onto } Y) \text{ and because of }$

$$(\varepsilon^{1/2} + 2\varepsilon)\|z\| \le \frac{\varepsilon^{1/2} + 2\varepsilon}{1 - \varepsilon}\|y + z\| \le 3\varepsilon^{1/2}\|y + z\|$$

for any $y \in Y$, $z \in Z$, it is enough to show $||Pz|| \le (\varepsilon^{1/2} + 2\varepsilon)||z||$ for each $z \in Z$. Decompose $z = x + x_s$ in $X'' = X \oplus_1 X_s$. Since we are done if $||x|| = ||Pz|| \le \varepsilon^{1/2}||z||$, we assume $||x|| > \varepsilon^{1/2}||z||$ from now on. We obtain

(2)
$$||y+x|| = ||(y+x)+x_{s}|| - ||x_{s}|| = ||y+z|| - ||x_{s}||$$

$$> (1-\varepsilon)(||y|| + ||z||) - ||x_{s}||$$

 $= (1 - \varepsilon)(||y|| + ||x|| + ||x_s||) - ||x_s||$ $= (1 - \varepsilon)(||y|| + ||x||) - \varepsilon ||x_s||$ $\geq (1 - \varepsilon)(||y|| + ||x||) - \varepsilon ||z||$ $\geq (1 - \varepsilon)(||y|| + ||x||) - \varepsilon^{1/2} ||x||$ $\geq (1 - 2\varepsilon^{1/2})(||y|| + ||x||)$

for all $y \in Y$, which extends to all $y^{\perp \perp} \in Y^{\perp \perp}$:

(3)
$$||y^{\perp \perp} + x|| \ge (1 - 2\varepsilon^{1/2})(||y^{\perp \perp}|| + ||x||).$$

For the time being we take (3) for granted and have in particular for $z \in Y^{\perp \perp}$

$$||x_s|| = ||-z + x|| \ge (1 - 2\varepsilon^{1/2})(||z|| + ||x||)$$

$$\ge (1 - 2\varepsilon^{1/2})(||z|| + \varepsilon^{1/2}||z||)$$

and finally

$$||Pz|| = ||x|| = ||z|| - ||x_s||$$

$$\leq ||z|| - (1 - 2\varepsilon^{1/2})(1 + \varepsilon^{1/2})||z|| = (\varepsilon^{1/2} + 2\varepsilon)||z||$$

Now we prove (3). We note that $x \not\in Y$, because otherwise we would have $0 = ||-x+x|| \ge (1-2\varepsilon^{1/2})(||-x||+||x||)$, hence x=0, which contradicts $||x|| > \varepsilon^{1/2}||z||$. Thus $G=Y \oplus \mathbb{K}x \subset X$ is well-defined and we can define ι to be the identity from $G=Y \oplus \mathbb{K}x \subset X$ onto $\widetilde{G}=Y \oplus_1 \mathbb{K}x$, thus $\widetilde{G}'' \cong Y^{\perp \perp} \oplus_1 \mathbb{K}x$ and $||\iota|| \le 1/(1-2\varepsilon^{1/2})$ by (2). Inequality (3) now follows with $y^{\perp \perp} + x \in G^{\perp \perp}$ from

$$||y^{\perp \perp}|| + ||x|| = ||\iota''(y^{\perp \perp} + x)|| \le \frac{1}{1 - 2\varepsilon^{1/2}} ||y^{\perp \perp} + x||$$

THEOREM 3. If a Banach space X is an L-summand in its bidual then it has Pelczyński's property (V^*) .

Proof. Let $X'' = X \oplus_1 X_s$ and let P be the corresponding L-projection onto X. Denote the usual basis of l^1 by (e'_n) , and denote by ϱ the canonical projection from $(l^1)'' = l^1 \oplus_1 c_0^{\perp}$ onto l^1 . The w^* -closure of the set $\{e'_n \mid n \in \mathbb{N}\} \subset l^1$ in the bidual of l^1 contains an accumulation point $\mu \in \ker \varrho$ of norm $\|\mu\| = 1$.

Let ε , δ be numbers such that $0 < \varepsilon < 1/4$, $0 < \delta < \varepsilon^2/9^2$, and choose a sequence (ε_n) of positive numbers such that $\prod_{n\geq 1}(1-\varepsilon_n)\geq 1-\varepsilon$ and $\prod_{n\geq 1}(1+\varepsilon_n)\leq 1+\varepsilon$.

We will show (ii) of Lemma 1 in order to show property (V^*) . As mentioned above, we know by a result of Godefroy that X is w-sequentially complete.

Let (y_k) be an l^1 -copy as in (ii) of Lemma 1. Put $Y = \overline{\lim}\{y_k \mid k \in \mathbb{N}\}$. The canonical isomorphism $S: Y \to l^1$ satisfies $||y''|| \le ||S''y''|| \le \frac{1}{1-\delta}||y''||$

for all $y'' \in Y''$. In particular, $1 - \delta \le ||z_s|| \le 1$ for $z_s = (S'')^{-1}(\mu)$. Consider $z_s \in X''$ via the identification of Y'' and $Y^{\perp \perp} \subset X''$. Denote by π the canonical projection from $Y^{\perp \perp}$ onto Y (i.e. $\pi = (S'')^{-1}\varrho S''$). Then $z_s \in Y_s = \ker \pi$ follows from $\mu \in \ker \varrho$, and z_s is a $\sigma(X'', X')$ -accumulation point of the set $\{y_k \mid k \in \mathbb{N}\}$ in Y_s .

L-summands

For the decomposition $y^{\perp\perp} = y + y_s$ in $Y^{\perp\perp} = Y \oplus Y_s$ of any element $y^{\perp\perp} \in Y^{\perp\perp}$ we have

$$||y^{\perp \perp}|| \ge (1 - \delta)||S''y^{\perp \perp}|| = (1 - \delta)||S''y + S''y_{s}||$$

= $(1 - \delta)(||S''y|| + ||S''y_{s}||) \ge (1 - \delta)(||y|| + ||y_{s}||).$

Put $x_s = (\operatorname{Id}_{X''} - P)(z_s) \in \ker P = X_s$. Lemma 2 gives

$$||x_s - z_s|| = ||Pz_s|| = ||Pz_s - \pi z_s|| \le 3\delta^{1/2} ||z_s||,$$

(5)
$$||x_s|| = ||z_s - Pz_s|| = ||z_s|| - ||Pz_s|| \ge (1 - 3\delta^{1/2})||z_s|| \ge 1 - 4\delta^{1/2}$$
.

Choose $t \in \ker P' \subset X'''$ such that ||t|| = 1 and $t(x_s) = ||x_s||$.

Before starting the construction of sequences $(y_i^{\prime(n)})$ as desired in (ii) of Lemma 1 we finish these preparations with the remark that by (4), x_s is near to an accumulation point of the y_k : For any number $\eta > 0$ and any $x' \in X'$ there is an index $k = k(\eta, x')$ such that

(6)
$$|x_{s}(x') - x'(y_{k})| \leq |x_{s}(x') - z_{s}(x')| + |z_{s}(x') - x'(y_{k})|$$

$$\leq 3\delta^{1/2} ||x'|| + \eta.$$

Construct by induction on n = 1, 2, ... finite sequences $(y_i^{\prime(n)})_{i=1}^n \subset X'$ and a subsequence (y_{k_n}) of (y_k) such that

(7)
$$|y_i'^{(n)}(y_{k_i})| > 1 - 9\delta^{1/2} \quad \forall i \leq n,$$

(8)
$$\left(\prod_{i=1}^{n} (1 - \varepsilon_{i})\right) \max_{i \leq n} |\alpha_{i}| \leq \left\| \sum_{i=1}^{n} \alpha_{i} y_{i}^{\prime(n)} \right\|$$

$$\leq \left(\prod_{i=1}^{n} (1 + \varepsilon_{i})\right) \max_{i \leq n} |\alpha_{i}| \quad \forall (\alpha_{i}) \subset \mathbb{K}.$$

For n=1 we set $k_1=1$ and choose $y_1'^{(1)}$ so as to have $||y_1'^{(1)}||=1$ and $y_1'^{(1)}(y_{k_1})=||y_{k_1}||\geq 1-\delta$; then $y_1'^{(1)}$ also satisfies (8).

For the induction step $n\mapsto n+1$ we observe that $P'|_{X'}$ is an isometric isomorphism from X' onto X_s^{\perp} , that $X'''=X^{\perp}\oplus_{\infty}X_s^{\perp}$ and that $(P'x')|_X=x'|_X$ for all $x'\in X'$. Take

$$E = \operatorname{lin}(\{P'y_i'^{(n)} \mid i \leq n\} \cup \{t\}) \subset X''', \ F = \operatorname{lin}(\{y_{k_i} \mid i \leq n\} \cup \{x_s\}) \subset X''.$$

Local reflexivity gives an operator $R: E \to X'$ and $y_i^{\prime(n+1)} = R(P'y_i^{\prime(n)})$ for $i \le n$ and $y_{n+1}^{\prime(n+1)} = Rt$ such that E, a good copy of $l^{\infty}(n+1)$ (note that $P'y_i^{\prime(n)} \in \operatorname{ran} P' \bot \ker P' \ni t$) in X''', becomes a good copy of $l^{\infty}(n+1)$ in X', more precisely the $(y_i^{\prime(n+1)})_{i=1}^{n+1}$ fulfill (8, n+1) by

$$\begin{split} \left(\prod_{i=1}^{n+1}(1-\varepsilon_{i})\right) \max_{i \leq n+1} |\alpha_{i}| \\ &\leq \left(1-\varepsilon_{n+1}\right) \max\left(\left(\prod_{i=1}^{n}(1-\varepsilon_{i})\right) \max_{i \leq n} |\alpha_{i}|, |\alpha_{n+1}|\right) \\ &\stackrel{(7,n)}{\leq} \left(1-\varepsilon_{n+1}\right) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} y_{i}^{\prime(n)}\right\|, \|\alpha_{n+1} t\|\right) \\ &= \left(1-\varepsilon_{n+1}\right) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} P' y_{i}^{\prime(n)}\right\|, \|\alpha_{n+1} t\|\right) \\ &= \left(1-\varepsilon_{n+1}\right) \left\|\left(\sum_{i=1}^{n} \alpha_{i} P' y_{i}^{\prime(n)}\right) + \alpha_{n+1} t\right\| \\ &\stackrel{\text{loc. refl.}}{\leq} \left\|\sum_{i=1}^{n+1} \alpha_{i} y_{i}^{\prime(n+1)}\right\| \\ &\stackrel{\text{loc. refl.}}{\leq} \left(1+\varepsilon_{n+1}\right) \left\|\left(\sum_{i=1}^{n} \alpha_{i} P' y_{i}^{\prime(n)}\right) + \alpha_{n+1} t\right\| \\ &= \left(1+\varepsilon_{n+1}\right) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} P' y_{i}^{\prime(n)}\right\|, \|\alpha_{n+1} t\|\right) \\ &= \left(1+\varepsilon_{n+1}\right) \max\left(\left\|\sum_{i=1}^{n} \alpha_{i} y_{i}^{\prime(n)}\right\|, \|\alpha_{n+1} t\|\right) \\ &\leq \left(\prod_{i=1}^{n+1} (1+\varepsilon_{i})\right) \max_{i \leq n+1} \left(\left(\prod_{i=1}^{n} (1+\varepsilon_{i})\right) \max_{i \leq n} |\alpha_{i}|, |\alpha_{n+1}|\right) \\ &\leq \left(\prod_{i=1}^{n+1} (1+\varepsilon_{i})\right) \max_{i \leq n+1} |\alpha_{i}|. \end{split}$$

Before we show (7, n+1) let us use (6) with $\eta \leq 3\delta^{1/2}\varepsilon_{n+1}$ in order to find $y_{k_{n+1}}$ so as to have

$$|x_{s}(y_{n+1}^{\prime(n+1)}) - y_{n+1}^{\prime(n+1)}(y_{k_{n+1}})| \le 3\delta^{1/2} \|y_{n+1}^{\prime(n+1)}\| + \eta \overset{\text{loc. refl.}}{\le} 3\delta^{1/2} (1 + 2\varepsilon_{n+1}).$$

Thus (7, n + 1) holds true for i = n + 1 by

iem

$$|y_{n+1}^{\prime(n+1)}(y_{k_{n+1}})| \ge |x_{s}(y_{n+1}^{\prime(n+1)})| - 3\delta^{1/2}(1 + 2\varepsilon_{n+1})$$

$$\stackrel{\text{loc. refl.}}{=} |t(x_{s})| - 3\delta^{1/2}(1 + 2\varepsilon_{n+1})$$

$$\stackrel{(5)}{>} (1 - 4\delta^{1/2}) - 5\delta^{1/2} = 1 - 9\delta^{1/2}.$$

For $i \leq n$, (7, n + 1) follows from $|y_i'^{(n+1)}(y_{k_i})| = (P'y_i'^{(n)})(y_{k_i}) = y_i'^{(n)}(y_{k_i})$ and (7, n). This ends the induction.

By (7) and (8) condition (ii) of Lemma 1 holds for $\eta=1-\varepsilon$ and $M=1+\varepsilon$. This ends the proof.

Finally, we mention a question concerning the so-called property (X) defined in [5] or [2] which entails property (V*), but does not follow from it, as shows a counterexample of Talagrand [16]. (See also [4, Ch. V].) A space with property (X) is the unique predual of its dual [4, V.3]. Until now no L-embedded Banach space which is not the unique predual of its dual seems to be known. Do L-embedded Banach spaces have property (X)?

References

- [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
- [2] G. A. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983),
- [3] G. Godefroy, Sous-espaces bien disposés de L¹—applications, Trans. Amer. Math. Soc. 286 (1984), 227-249.
- [4] —, Existence and uniqueness of isometric preduals: a survey, in: Bor-Luh Lin (ed.), Banach Space Theory, Proc. of the Iowa Workshop on Banach Space Theory 1987, Contemp. Math. 85, Amer. Math. Soc., 1989, 131–193.
- [5] G. Godefroy et M. Talagrand, Nouvelles classes d'espaces de Banach à prédual unique, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, 1980-81.
- [6] P. Harmand, M-Ideale und die Einbettung eines Banachraumes in seinen Bidualraum, Dissertation, FU Berlin, 1983.
- [7] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, monograph in preparation.
- [8] W. Hensgen, Contributions to the geometry of vector-valued H^{∞} and L^1/H_0^1 spaces, Habilitationsschrift, Universität Regensburg, 1992.
- [9] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [10] D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243.
- [11] —, Lifting properties for some quotients of L¹-spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329.
- [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977.

H. Pfitzner

13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979.

[14] A. Pełczyński, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696.

[15] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin 1979.

[16] M. Talagrand, A new type of affine Borel functions, Math. Scand. 54 (1984), 183-188.

FB MATHEMATIK, I. INSTITUT
ARNIMALLEE 3
D-1000 BERLIN 33, GERMANY
E-mail: PFITZNER@MATH.FU-BERLIN.DE

98

Received April 23, 1992

(2933)

STUDIA MATHEMATICA 104 (1) (1993)

Trace inequalities for spaces in spectral duality

by

O. E. TIKHONOV (Kazan)

Abstract. Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on \mathbb{R} . It is shown that the mapping $a \mapsto t(\varphi(a))$ is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ . Some other similar statements concerning traces and real-valued functions are also obtained.

1. Introduction. Inequalities involving operator functions and traces are useful tools in the study of operator algebras. A number of papers were dedicated to obtain such inequalities or contained the proofs of trace inequalities as their essential parts (see, e.g., [5–10]). Roughly speaking, it was discovered that under a trace, operators often behave "like numbers" [6].

The main purpose of the paper is to extend some trace inequalities to the class of partially ordered normed vector spaces for which Alfsen and Shultz [3] developed a noncommutative spectral theory and a functional calculus. The class in question contains the space of all self-adjoint elements of a von Neumann algebra. Nevertheless, this special case does not exhaust all possibilities.

Section 2 contains basic notions and results of noncommutative spectral theory [3]. Here, an order-unit space A and a base-norm space V are supposed to be in spectral duality (see the exact definitions below). If φ is a bounded Borel function of a real variable then the element $\varphi(a)$ of A is well-defined and the functional calculus defined by the mapping $\varphi \mapsto \varphi(a)$ has the properties similar to those of the usual functional calculus for self-adjoint operators in a Hilbert space. At the end of the section we introduce the concept of a trace. It agrees with the one used in operator theory.

The main results are obtained in Section 3. For a trace t on A and a decomposition $a=a_1-a_2$ of $a\in A$ into a difference of positive elements, we prove that $t(a^+)\leq t(a_1)$ and $t(a^-)\leq t(a_2)$ where a^+ and a^- denote

¹⁹⁹¹ Mathematics Subject Classification: 47B60, 46L10.