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Trace inequalities for spaces in spectral duality
by

0. B TIKHONOV (Kazan)

Abstract, Lot (A e) and (V, K} be an order-unit space and 3 base-norm space in
apectral duality, a8 in noncommutative spectral theory of Alfsen and Shultzs. Let ¢ be a
norm lower semicontinuous trace on A, and let o be a nonnegative convex function on R.
Tt is shown that the mapping o - t(p(a)) is convex on A. Moreover, the mapping is
shown to be nondecreasing if so is ¢. Some other similar statements concerning traces and
real-valued functions are alsoe obtained.

1. Introduction. Inequalities involving operator functions and traces
are useful tools in the study of operator algebras. A mumber of papers were
dedicated to obtain such inequalities or contained the proofs of trace in-
equalities as their essential parts (see, e.g., [5-10]). Roughly speaking, it was
discovered that under a trace, operators often behave “like numbers” [6].

~The main purpose of the paper is to extend some trace inequalities to
the class of partially ordered normed vector spaces for which Alfsen and
Shultz [3] developed a noncommutative spectral theory and a functional
calcilus. The class in question contains the space of all self-adjoint elements
of a von Neumann algebra. Nevertheless, this special case does not exhaust
all possibilities.

Section 2 comtains basic notions and results of noncommutative spec-
tral theory (3]. Here, an order-unit space A and a base-norm space V are
supposed to be in spectral duality (see the exact definitions below). If i is
a bounded Borel function of a real variable then the element w(a) of A is
well-defined and the functional calewlus defined by the mapping ¢ — w(a)
has the properties similar to those of the usual functional calculus for self-
adjoint operators in a Hilbert space. At the end of the section we introduce
the concept of a trace. It agrees with the one used in operator theory.

The main results are obtained in Section 3. For a trace t on A and a
decomposition & = a1 — 03 of o € A into a difference of positive elements,
we prove that t(at) < t(e1) and t(a”) < t(ag) where o and a” denote
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100 0. E. Tikhonov

the positive and the negative parts of a (Proposition 3.1). It follows that
the mapping a — t{a™) is monotone on 4 (Corollary 3.2). Next, we make
use of the properties of the functional calculus in A to prove the mapping
a + t{p(a)} to be monotone for some classes of monotone real-valued func-
tions ¢ (Theorem 3.5 and Remark after it). The main result of the rest of
fshe section is Theorem 3.9, which can be viewed as a version of Jensen’s
inequality for positive contractions on order-unit spaces. Using it we prove
that the mapping a — t{p(a)) is convex on A provided ¢ i% & nonnegative
convex function and the trace ¢ is lower semicontinuous witlh respect t0 the
norm on A. In case t is finite, we can omit the requirement of nonnegalivity
of ¢. At the end of the paper we introduce the Ly-norms associated with a
trace.

. We should note that we do not know whether the machinery of gener-
alized s-numbers (see, e.g., [6], [7], [9]) can be extended to the context of
noncommutative spectral theory. The technique we use was developed for
von Neumann algebras [11, 12] and applied to spaces in spectral cuality for
finite traces [13] (see also [14]). ‘

2. Spaces in' spectral duality and traces. We recall (cf., e.g., 20
that an or{ier-unﬂu‘t space is an Archimedian partially ordered normed vector
space 4 with a distinguished order unit e and with the norm given hy

lall = inf{A > 0] — e < a < Ae}.
A base—now space i.s a Positively generated partially ordered normed vector
space V Wlth a distinguished base K of the positive cone V* such that the
closed unit ball coincides with conv(K U ~K).

In ﬁa}z )follows we consider an order-unit space (4, e) and a base-norm
space (V, in separating order and norm duality. Then. in particuls
have {e, ) =1 for all p € K. ’ i partietan we

The_ central concept in Alfsen and Shultz’s noncommutative spectral the-
ory [3] is the notion of a P-projection which may be introduced as lollows.

i IDEP;[NITION 21 A positive o(4, V)-continuons projection P on A with
orm’at rmost 1 1s'called a P-projection if there existy a positive o(A4, V-
continuous projection P’ on A with norm at most 1 satisfying ’
kert P = im* P/ im* P = kert P!
: ¥
kert P* = im* P gt p* - ker™ pI*
" h 1
where P* and P are the dual projecti
| E projections on V, kert™ P = AT 1 ker P
o B g B iy ker™ P o= AT ker P,
Note that for every P-projection P on A the unique projection P with

the properties stated in the ab ition i
ove definition is aiso a P-projecti i
called the guasicomplement of P. o » fproloction. T i
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A P-projection P on A and an element a of A are said to be compatible
if Pa4 P'a = o Two P-projections P and @ are said to be compatible if
PQ = QF. A P-projection P is said to be bicompatible with an element o
of A if it is compatible with ¢ and with all P-projections compatible with o
[3; §5].

Throughout the following we in addition assume that A and V are in
spectral duality [3; §7], that is, A is pointwise monotone o-complete, and for
every a € A and A € R there exists a P-projection P bicompatible with a
and such that '

{la,0) €\ forpe (imP")MK,
(a,0) > X for g€ (imP™)N K.

The set of all P-projections on A is denoted by P. This set is endowed

with a partial ordering by :
Px@Q if imPCim@.

Two P-projections P and ¢} are said to he orthogonal if P < Q'. For a given
P-projection P the element Pe of A is called a projective unit corresponding
to P. The set of all projective units is denoted by &/ and is endowed with
a natural partial ordering inherited from A. The sets P and U are each
endowed with a natural operation of complementation: P v P! and Pe —
¢~ Pe. It has been proved in [3] that under the above assumptions these two
ordered sets with complementation are o-complete orthomodular lattices.
Moreover, they are isomorphic by means of the bijection P Pe.

Recall also that for every a € AT there exists a projective unit rp(a)
determined by the following equivalence valid for ¢ € K:

(rp(a), o) =0 = {(a,0) =0.

One of the main results of [3] is the following.

TusoREM [3]. If A and V are in spectral duality then for every o € A
there exists o unique family {e3}rer of projective units satisfying

(i) e < eff when A < p,

(1i) C‘!i = /\,u,})x 6;2‘,

() Apened =0 Vierer =&
and such that

o= [ Ade§

where the right hand side s a norm convergent Riemann-Stieltjes integral.

Note that rp(a) = e — e§ for a € A

It has also been proved in [3] that if ¢ is a bounded Borel function of a
real variable then there exists a unique element of A (denoted by ¢(a}) such
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that for all g € K,
(ela) o) = [ p(A)dlel,0).

Moreover, ¢ needs only to be defined on the spectrum of o (denoted by
o(a)) [3], and the functional calculus defined by the mapping @ -+ w(a) has
the properties similar to those of the usual functional calealus for sell-adjoint
operators in a Hilbert space.

The following definition generalizes the notion of a finite trace from K,
studied in [3].

DEFMNITION 2.2. A function t on the positive cone A% with values iy the
extended positive reals is called a trace if it satisfies the following conditions:

(i) t(a + b) = t(a) + t{b) for a,b € A

(ii) t(Aa) = At(a) for A € BT, a € A,

(ili) t(a) = ¢(Pa) + t(P'a) for a € A+, P € P;
with the usual convention 0 - (+-c0) = 0.

Put

my ={ac At |t(a) < oo}
and denote by m, the linear span of m. Then t can be uniquely extended
to a linear functional on m, which will also be denoted by &.

A trace t is said to be finite if t(e) < oo. Clearly a finite trace can he
viewed as a positive continuous functional on A

A trace t is said to be faithful if t{a) > 0 for any a € A\ {0},

A finite trace ¢ is said to be g-orthoadditive if BV pen) = 50, tey)
for any sequence {e,} of mutually orthogonal projective units. By usual
arguments it is easy to show that if ¢ is o-orthoadditive then for any a € 4
and a bounded Borel function © one hag

tlpla)) = [ o()dt(es).
Note that ¢ is o-orthoadditive when # € K.

We close this section by considering the special case when 4 is the self-
adjoint part of & von Neumann algebra M and V is. the sell~adjoint part
of the predual M, with K the normal state space. Then a mapping P
A — A is a P-projection iff it is of the form Pa = pap for a (self-adjoint)
projection p € M, and in this case P'g = (e~ plale - p) {3; Prop. | L.1]. By
standard arguments one can show that a function ¢ on A% is a trace in the
general sense defined in this section iff it satisfies tho concitiony (i) and (ii)
of Definition 2.2 and t(sas) = ta) for all @ € A+ and all symmetries s ¢ M.
From [15; Theorem 1.4] it follows that for every unitary u € A there exists a
finite family of symmetries {s:}2, © M such that AU = 8y L a8y, ... 8
for any ¢ € M. Hence we conclude that Definition 2.2 agrees with the
concept of trace used in operator theory (see also [1] and [4)).
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8. Inequalitics for convex functions: We denote by v, 7T, and ol
the identity function ou R and its positive and negative parts, i.e. ¥{A) = A,

functional caleulus in A for a € A we define a™ = v*(a) and a~ =+fy‘ (a).
We also put |a} = a® —a . Note that a¥,a™ &€ A and a = v(a) =a* ~a".

ProprosrrioN 3.1, Let a € A and a = a1 — ag for some aj,az € A™T.
Then for a trace t one has t(a™) < t(ar) and t(a™) £ tag).

Prool Let P be a P-projection corresponding to the projective unit
¢~ ef. Then a* = Pa and o™ = —~P'a [3; p. 73]. By definition of a trace,
we obtain

o)+ t(Pag) = t(Pa + Pag) = t(Pay) £ ttPar 4+ P'ay) = t{a1),
ta™ )+ t(Par) = t(P'as) < t{P'ag -+ Pay) = t(aa),
hence £(a™) < t{a1) and t(a™) < t(a2). _

COROLLARY 3.2. For o trace t and given a,b € A with a < b one has
tlat) < ).

Proof This follows from the equality a = b—(b—a) = b+t —(b" +(b~a)).

CIOROLLARY 3.3. For o trace t and an element a of A one has

lo] em} < aem,.
Moreover, the function || - ||z : @ — #(|a}) on m; is o seminorm and it is o
norm if the trace t is fasthful.

Proof. If ja] € my then t(a™) +t(a~) =t(ja]) < oo, hence a™,a™ € m

and ¢ € my. _ . N
Conversely, if & € m; then we can write o = a1 — ag With a3, a0 € my". By

_+_
Proposition 3.1, #(|a]) = t(a™) +t(a”) < #(a1) +t(0€z) < 00, hence laj € my
Next we prove that |- ||; is a seminorm on my. It is clear that this function
is nonnegative, and it follows from the definition of a trace and the properm&s
of the functional calculus that [|Aa|: = |A|l||al]; for any a € m; alm.d XE .
Let a,b € me. Since a + b = (et +b%) — (¢ + b7), by Proposition 3.1 it
follows that )
t(ja+b)) = t((a+b)7)+t((a+b)7)
< tlaty 4ty + t{a”) +1(07) = t{]eaf) + (]b]) -
Thus || - ||; i & seminorm on m,. Clearly it is a norm if the trace ¢ is faithful
Remark. The seminorm || - ||; on m, can also be expressed as follows:
Ha][t = inf{ozlt(m) -+ agt(ag) | ;& R* , 4 € AT , t(a.;,) = 1 (’b = 1,2)} .
Thus, if ¢ is assumed to be faithful, then m; is a bage-norm space with base
{a e m} |t(a) =1}
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LEMMA 3.4. Let © be a nonnegative, conver, nondecrensing, and plece-
wise linear function on R, For a trace t and elements a, b of A witha < b
one has

t(p(a)) < tlp(b).
If t(e) < 0o then the nonnegativity assumption may be omitted.

Proof. Let [o,A] be an interval in R including the spectra of a and b.
For any ¢ satisfying the assumptions of the lemma we can find an integer n,
real numbers )\;, and nonnegative numbers g, such that

p(A) = po + Zm'y*’()\ ~ ) for A€o A

i=1

Then by Corollary 3.2 and the functional caleulus,

tpla)) = t(#oe + Z iy (e — Me))

i=1

— ot(e) + 2 bt (7 (a - Mie))

< pot(e) + Yy pat(rt (b~ hie)) = 1((b)).

i=1
If #(e) < co then we can omit the requirement jp > 0 and proceed as above.

THEOREM 3.5. Let a trace t be lower semicontinuous with respect to the
norm on A, and let @ be o continuous, nonnegutive, conver, and nonde-
creasing function on o conver subset E of B. If @ and b are elements of A
such that o(a),o(b) C E and a < b, then

(1) t(p(a)) < tlp(h)).
If t(e) < oo then the nonnegativity cssumplion may be omitled.

Proof. Without loss of generality we assume that £ = {o, f].

For given w one can find a sequence {py} of nonnegative, conves, nonde-
creasing, and plecewise linear functions on B which is polntwise nondecreas-
ing on [ev, 8] and uniformly converges to ¢. Then the sequences {wy(a)} and
{@r(b)} are monotone and they converge in norm to ¢{a) and w(b), respec-
tively, as & — oo, By Lemma 3.4, 1(wi{a)) < t{en(b) for every k&, and by
semicontinuity of ¢ we get

Hp(@) = lim bpu(a)) < lim tln(8)) = Hp(t))

It is clear how to-modify this proof to obtain the last assertion of the theo-
rem.
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Remark. The monotonicity of the mapping a -+ t{¢p(a)) can also be
proved for some other classes of monotone functions ¢. Namely, (1) holds
when ¢ is continuous, nonpositive, concave, and nondecreasing. This can be
easily deduced from Theorem 3.5 by considering —(—A) which is nonnega-
tive and convex if ¢(A) is nonpositive and concave. Since 0 < a < b implies
rp(a) < rp(b), it follows that (1) also holds for x(g,00) defined on [0, co).
Note that this function is concave but not continuous. Similarly, (1) can be
proved for some other functions that are nondecreasing and either convex or
concave, but not continuous. Finally, in the case when t is finite, (1) holds
for any function p on E admitting a representation ¢ = 1 + s where @1
is convex, o 1§ concave and they are both nondecreasing on E.

LeMMA 3.6. Let ¢ be a nonnegative and convez fungtion on an interval
(o, ], and let a finite family {z;}7, C AT be such that 3 ", & = e. Then
for a trace t and a family {\;}iy C [o, 8] one hos

D et = e(e(3 ).
=1 i=1

If t(e) < co then the nonnegativity assumption is superfluous.

Proof Without loss of generality we assume that o < A <... €Ay £
5. Since

7L
ae < A < ZA,-:L@ < Ape < fPe,

il
the right hand side of (2) is well-defined. Construct a function & on [Ar, An]
linear on each [A;, Al (3 = 1,...,n — 1) and such that 3(A:) = w(A).
Since i is convex, so is @, and if ¢ is nonnegative then & is also nonnegative.
Moreover, G(A) > @{)\) on [Ar, An]. It is easy to prove that if ¢ > 0 then
there exist u;, g, = 0 such that

B = (vt (= M)+ Ty (= A)).
=1

Set @ = ¥,;_, Ayw;. By Proposition 3.1,

T

ter o= xed) = ¢( (20 - Mas) )

i=1
= t(Z’Y+(Aj - Ai)fﬂj) = Z;,Y—F(Aj - )\,-)t(a:j)
§=i §=

and

B (a—e)) £ S — Mt(zy)
i=1
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for every ¢ = 1,...,n. Hence
t(p(a)) < t(&(a))

= (Lo =)+ 47 (o =)

< j (#Erji“ﬁ(/\j - Ai)t(a;) -+ #Iﬁ:if()\j - M)t(iﬂj))
- jmflt(w 7y = X0 0 = )

= jzila(,\j)t(mj) = j: (At}

In the case (e} < oo, for ¢ not necessarily nonnegative, we put p, =
¢ + pp where g is so large that o1 > 0. Then

tp(a)) = t{p(a) — poe)
<Y e (a)t(a) — Z pot(e;) = itp(/\,;)t(mi) .
f==1 de=1 ‘ i==1

The following lemumna is, in fact, a simple statement on piecewise linear
real-valued functions.

LemMa 3.7. Let @ be a continuous piecewise linear function on [ov, f]
let o= Ay < ... < Ay = B, and let © be linear on each interval A, )\";;.1]?
Then for cvery a € A with o(a) C o, B] there ezists o family {mi}?-’:.‘ C AT
such that 377 wi = e, 31, Mz = a, and 3 1, w(\)a; = wla). =

Proof. Define functions on (o, 8] as follows:

£.00) = { (A= A)/(a = A1) M LA N,
0 otherwise:
En()) = { (o = D/ = A1) 1Ay SAE Ay
0 otherwise;
and fori=2,...,n~1,

(A= Xien) /(= Aicn) A <AL A,

(Aitr =AY/ (Mir = M) A A< Ay,

0 ifx< Afe1 OF A > /\H.]-

Then &(A) > 0, T8 &(A) = TN = ) ane .

20T on 8 T e v S = P A A
{A:}i=; have the required properties. - T e B

&(A) =
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PROPOSITION 3.8. Let ¢ be a continuous conver function on (o, B] and
¢ be a finite trace. Then for every a € A with o(a) C [, 8] one has

n
(3) pla)) = inf { 3" p(h)t(w) }
i=1
where the infimum is taken over all representations a = Sy iz with
r; € AY, S m = e, and A € [, B]. Moreover, if t is o-orthoadditive
then the continuity requirement is superfluous.

Proof. It follows from Lemma 3.6 that the left hand side of (3) is less
than or equal to the right hand side, so it suffices to construct a sequence
of repregentations such that the sequence of expressions in braces converges
to t{p(a)). For n=2,3,..., let py, be the plecewise linear function interpo-

lating o, where the interpolation nodes AE”) (i = 1,...,n) are assumed to

be equidistant and a = )\gﬂ’) < ... < 2P = B. Since  is convex, 50 1§ @n,
and i, > @on (o, 8]. If i is continuous then {spp } uniformly converges to ¢
as 7 — oo. Hence, constructing the families {:55”)}?=1 as in the proof of
Lemma 3.7, we obtain

T i

3 e(Mi(al) = 3 e (A2l = tlpn(e)) — tela)).
q==] i=1

In case @ is not continuous and ¢ is o-orthoadditive, to justify the limit

process we make use of the Lebesgue Dominated Convergence Theorem.

THEOREM 3.9. Suppose two order-unit spaces (A, e) and (A',¢) are in
spectral duality with base-norm spaces, let 1 and mg be positive linear map-
pings from A’ to A, let t be a norm lower semicontinuous trace on A, and let
@ be a continuous, nonnegative, and conver function on a conver subseil B
of R. If either

(a) mi(e') +male) =e, or

(b) w1 (e) + ma(e/) < e, 0€ E and p(0) =0,

then for all @), 0} € A’ with o(a}), o(ay) C E one has
(4) Hp(ma(ay) +ma(ah)) < tlmle(ar)) + malp(az))) -
If the trace t is finite then the assumption of nonnegativity of @ may be
omitted, and in (b) the equality (0} = 0 may be replaced by (0) £0.
Proof Without loss of generality we assume that E is an interval, say

(0, 8]

Let wi(e') + male’) = e Note that since ae = a(mi(e') + mle")) <
m(a}) + ma(ah) < Be, the left hand side of (4) is well-defined.

Assume first that ¢ is piecewise linear and construct families {z;} and
{zh;} by Lerama 3.7 with, respectively, af, x}; and a}, #b; in place of a, ;.
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Then

)+t = o000 #3005
= Z%D )iz, "4"290(/\ Jmalan;)

P

K
!
Wl(al "i'-ﬂ‘g a;z ZA T ﬂf‘l‘,‘ Z)\L'ﬂ"‘](;ﬂm),

Wl(mii)zoi m?l = Zﬂ'l ml! +ZW° /I’l =

and by Lemma 3.6,

tle(mi(a)) +melag))) < ZW Je(ma () “f'Z‘P t(ma(y;))

i=1
= t{m (p(a))) + m ‘P(“z)))-

If p is an arbitrary continuous, nonnegative, and convex function on B
then, constructing the sequence {p;} of piecewise linear functions as in the
proof of Theorem 3.5 and using the continuity of the positive mappings m,
and g and the semicontinunity of ¢, we obtain

Hop(m1(ay) + ma(ay))) Jim (g (mi(ar) + ma(ab)))
Jm 4y (prlal)) + ma(enab)))
= t(mi(p(a))) + malelal))).

Assume next the conditions of (b) to be satisfied. Put d = ¢ ~ mq (/) —~
ma(e’). If ¢ is piecewise linear, construct the families {2},} and {w};} as
above. Then

i

A

’ﬂ'(al ‘|"ﬂ"2 0«1 Z/\'ﬁrl -'L1, FL/\TF) ’n l"( d,

Z‘M(mn E ’f‘rz mo) b d =g,
i=1

=]
and proceeding as above we obtain (4) for a piecewise linear and then for
an arbitrary function.
The modification we must make in the special case t(e) < oo is obvious.

COROLLARY 3.10. Let t be a norm lower semicontinuous lrace on A,
and let ¢ be a continuous, nonnegative, and conver function on o conves
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subset I of R with 0 € E and o(0) = 0. Then for any a € A with o(a) C F,
and any P € P one has
t(p(Pa)) < t(Py(a)).
If t is finite then the nonnegativity assumption may be ometted.
Proof. This follows from (b) of the preceding theorem by setting
Al = A, w1 (b) = Pb, and ma(b) =0 for b € A.

COROLLARY 3.11. Let £ be a norm lower semicontinuous trace on A and
@ be o nonnegative convez function on a conver subset E of R. Then for all
a1, ap € A with o(ay ), o{es) C E and every o € [0,1] one has

(5) t(p(ar + (1 = a)az)) < at(ip(ar)) + (1 — a)i(plaz)) .
If t is finite then the nonnegativity assumption may be omitied.
Proof. If ¢ is continuous then (5) follows from Theorem 3.9 by setting

= A, mi(b) = ab, and ma(b) = (1 — «)b for b € A. For the general case,
consider two convex functions: '

1 for A=20,
<P1(/\)={o for A € (0, 00),

() 1L for A=0,
PrAVZ V0 for A e (—00,0),
which are not continuous. Let o{a1),o(asz) C [0,00) and o € (0,1). Then
a1, 00 € AT,
rp{ea; + (1 — a)ag) > rplecer) =rpe1) s
and
rp{eay + (1 — a)as) = rplas) .

Since i, (b) = 1 — rp(b) for any b € A", applying the above relations one
has

o1 (ar + (1 = adaz) = 1 — rploay + (1 — @)az)

< ot = rpfan)} + (L~ @)1~ mp(a2) = cwprfan) + (1 = a)psaa)

Hence (5) holds for ¢y in place of o, Since 2(A) = wi(—A), (5) also holds
for @, in place of @. Now, it is easy to complete the prool.

COROLLARY 3.12. Let t be a norm lower semicontinuous trace on A. For
p € [1,00) wrile wu(A) = |)\\" (X € R). Then the function a — t{pp(a)))H/P

onmy = {a € Alwpla) € mf} ds a seminorm, and it is o norm if the trace
t is faithful. Moreover, if a € my, b € A, and |b| < |a, then b e m, and

[1(ep(O))]7 < [Hpp(a a)].
Proof. This follows from the properties of the functional caleulus, Corol-
lary 3.11, and Theorem 3.5.
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