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Interpolation of operators when the extreme
spaces are L™

by

JESUSY BASTERO and FRANCISCO J. RUIZ {Zaragoza)

Abstract. Under some assumptions on the pair (Ag, By), we study equivalence be-
tween interpolation properties of linear operators and monotonicity conditions for a pair
(Y, Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the in-
terpolation are L™, Weak and restricted weak intermediate spaces fall within our context.
Applications to classical Lorentz and Lorentz—Orlicz spaces are given.

0. Introduction. Let 4 = (4y, 4,), B = (B¢, B1) be two compatible
couples of rearrangement invariant Banach function spaces (for short r.i.
spaces) over the interval I' (I = [0,1] or [0,00)) (see definitions below). We
denote by A(A, B) the class of linear (or quasilinear or Lipschitz) operators
which are bounded from Aj into By and from A; into By, T Y, Z are
intermediate r.i. spaces with respect to A, B respectively, we say that the
pair (Y, Z) has the Fnear (or quasilinear or Lipschitz) interpolation property
with respect to the class A if every member of A can be extended to a
bounded operator from ¥ into Z.

This interpolation property has been extensively studied in connection
with many aspects concerning r.i. spaces, for instance, Boyd or Zippin’s
indices, monotonicity conditions, boundedress of some suitable “maximal”
operators and so on. Here we are concerned with the case Ay = By = L™
and particularly in connection with the monotonicity property (M) given
in §1 and the boundedness of only one cperator,

In this direction the first result is contained in Calderén’s paper [5] where
it is shown that both properties, say linear interpolation and monotonicity,
are equivalent in the case of Ag = Bp = L*. Later on, Lorentz and Shimogaki
[11] extended this result to the case Ag = Bg = LF with p > 1. The technique
used by them consists in a linearization process of the LF case.
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134 J. Bastero and F. J. Ruiz

Sharpley, Maligranda and other authors (see [12] and references quoted
there) studied the case Aq = A{X), By = M(X} (see definitions in §2)
and A; = By = L® or A, = A(Y), By = M{Y) relating the interpolation
properties with the boundedness of only one “maximal” operator ([19, The-
orem 4.7], [12, Theorem 4.5]). On the other hand, Maligranda [12] obtained
equivalence of the interpolation property for Lipschitz operators and mono-
tonicity condition in the case Ay = A(X), By = M{X) and A = By = L™,
When X = LP, p > 1, then A{X) = LP' and M{X) = L"™, s0 Ma-
ligranda’s result is close to Lorentz-Shimogaki’s. The spaces with the in-
terpolation property, when the extreme spaces are A(X) and M(X), are
generally known in the literature as weak type intermediate spaces.

These papers leave out the more “natural” casc where Ay = L7,
By = I or, more generally, 4p = X, By = M(X). In fact, following
the usual terminology in Fourier Analysis, the term weak fype intermediate
spaces should be reserved to spaces having the interpolation property in this
last setting, while the spaces with the interpolation property in the setting
described before should be named restricted weak type intermediale spaces.

Our final purpose is to study this “intermediate” case between those
of Lorentz—Shimogalki and Maligranda. Our main fool consists in obtain-
ing, in a very general context, equivalence between interpolation properties
of linear, quasilinear or Lipschitz type and monotonicity condition (M),
which ensures that we are working with Calderdn couples. When this result
is established it is an easy .consequence to reduce the linear interpolation
property to the boundedness of only one quasilinear operator.

This general result can be applied in the hoth cases stated hefore, namely,
weak and restricted weak intermediate. So, on the one hand, we obtain some
generalizations of Maligranda’s results, and on the other hand, we get several
resulis in the case of Ag = X, By = M(X). When Ay = L, the quasilinear
aperator can be iterated and, as a consequence, we deduce that the weak
type intermediate spaces are exactly the restricted weak intermediate spaces.

Moreover, by using a characterization of the boundedness of the Hardy
operator in Lorentz spaces due to Arifio and Muckenhoupt, we can character-
ize those Lorentz spaces which are intermediate in terms of handy conditions
on the weights. Finally, the last part of the paper is devoted to extending
some of the previous results to the more general case of Loventz- Orlics
spaces,

The paper is organized in two sections: the first one contains notations
and the general results, and the second one the applications.

1. General results. A Banach space (X, || ' ||) of real-valued, locally
integrable, Lebesgue measurable functions on I {I = [0,1] or [0, 00)) is said
to be a rearrangement invariant Banach function space over I (for short r.i.
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space) if it satisfies the following conditions:

(i) If |g| < |f] ae. and f € X, then g € X and |g|l < |f]].
(i) 0 < faT, SUPnen [ fall £ M imply that f =sup f, € X and 171l =
suP,er ||fnl-
(iil) X contains the simple integrable functions.
(iv) f e X & f* € X, and ||f] = ||f*||, where f* denotes the nonin-
creasing rearrangement of the function f.

(i) is known in the literature as the Fotou property (cf. [10]). It is quite
clear that if X is r.i. then L*N L™ e X =+ L' + L™ (where the symbol <
signifies continuously embedded).

A classical result by Lorentz and Luxemburg ensures that for these spaces

) IF = supygy, <2 | [; fgl, where X' is the associated space of X
which is also r.i. In particular, X = X' isometrically.

The fundamental funciion ¢x of a r.i. space is defined by
¢x(t) = |xpqll, tel.

There is no loss of generality if we assume ¢y to be positive, nondecreas-
ing, absolutely continuons far from the origin and concave and to satisfy (see
[19], [22]):

(vi) dx (t)opx: (L) =t for all t € T,

(vil) depx (t)/dt < ¢x(£)/t ae. on 1.

In what follows it may be convenient to let X be a r.i. quasi-Banach
space. The main difference occurs in the triangle inequality satisfied in X,
ie. ||f +gll < CUISI + llgll) for some constant ¢ > 1. In this case we
suppose that a quasi-Banach space X satisfies properties (i)~(iv) but, in
general, no other conditions will be assumed. We say that a quasi-Banach
function space is o-order continuous if every order bounded nondecreasing
sequence converges in the quasi-norm topology (cf. [10, Proposition 1.a.8]).

Let (Ag, Lo), {Bo, Leo), be two compatible couples of r.i. quasi-Banach
spaces on 1. Let Y and Z be intermediate r.i. spaces on I with respect to
{(Ag, ™) and (Bg, L™) respectively. We introduce the following notation:

o (Y, Z) € LI(Ag, Bo; L) if any linear operator 1 : Ag+L°° — By+ L™
wltich is bounded from Ag into By and from L* into L™ is alse bounded
from ¥ into Z. The closed graph theorem implies that there exists a constant
C > 1 such that

[Ty z < Cmaax{||T] a5 | Tllzeo 120} -

o (Y, Z) € QLT (Ag, Bo; L) if any quasilinear operator T : Ap + L™ —
By + L™ which is bounded from Ap into By and from L into L™ is also
hounded from Y into Z.
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o (Y,Z) € LPI(Ay, By; L™°) if any operator T' : Ag + L™ — By + L™
that is a Lipschitz operator from Ap into By and from L* into L™ also
maps Y into Z.

Recall that a map T' : Ay — Bp is bounded quasilinear if there are
constants K, C > 1 such that [T(Af} = [M|T(F), [T + ¢} < K(T(f)] +
IT()]) and |T(F)|| < CY|f|l- We define || 1] 4g—n, = inf C. In the same way,
amap T : Ag — By is a Lipschitz operator if there is a constant C > 1 such
that T{0) = 0 and | Tf — Tg|| £ C||f — gl; we define || T a4g—p, = inf .

Next we shall introduce another class of spaces and for that we need the
following

LEMMA 1. If X is o r.i. quasi-Banach space, f € X+L™ and m(E) < oo
then fyr € X.

Proof Let f =g+ hwith g € X and h € L™, Since gxr € X and
|hixel € |Allexe € X the result follows immediately. m

We say that the couple (Y, Z) belongs to M{Ag, Bg) if there exists a
constant C' > 1 such that if f €Y, g € By + L™ and

(M) 2 lg" x4l VE> 0,

then ¢ € Z and ||gl|lz < Cl|f|y-
It is clear that

QLT (Ao, By; I°°) U LPT(Ag, Bo; L) C LI{Ao, Bo; L) .

Under some more restrictive assumptions the four classes of maps introduced
above coincide.

Prorosirion 1. Let (Ag, By) be a couple of r.i. quasi-Banach spaces
such that ¢p,(t) < Cda,(t) for allt > 0. Then:

(1) M(Ao, By) C QLI(Ag, By; L*).
(12)  If I=1[0,1] and Ay is o-order continuous then
M(Ao, BD) Q EPI(A[), Bo; Lm) .

Proof. (1.1) Let (¥, Z) be a couple in M(Ag, By) and let T Ag-+ L —»
By + L™ be a quasilinear map, bounded from Ag into By and from L™ inlo
L. Suppose that ||T)| 495, < 1 and |7 zec—ape < 1. We have to show

that T' is bounded from Y into Z. Let f ¢ ¥. We only need to prove that

(%) T 5 X015 < 1(CF)* X101 | 40
foralit > 0.
We know that

KT F)"x10.411l 8 = sup |(T'f)xell 5,
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where E runs over the borelians in I with m(E) < t. Set s = f*(1) and

define
s if f> s,
fisy = {—s if f < —s,

[ otherwise,
and f0) = f — fis)- Since flsy € L™ and &) e Ay we have

T f)xelle £ 1T f s loollxeline < | fisllaotn, (1) < Csda, ()

< Ol Oxpallas < CNF 0.0 40 -
Now

T e lse < WTF 1By < CIE a5 < ClIF X140
and hence we easily obtain the inequality ().

(1.2) In order to show that the couple (¥, Z) belongs to LPZ(Aq, By; L™°)
we will follow the ideas of [12, Lemma 4.4]. For the sake of completeness,
we include the proof here, Suppose that T is a Lipschitz operator mapping
Ag 4+ L> into By + L™ with |T'||ay—5, £ 1 and [|T||zec— = < 1.

Ifo<t<land f €V, weset f*(t) = s. Consider fi ) and [(T'f)*]y)
defined as before. Since f5) € L™ we have |[T(f,))| e < 5, and so

Tf = (Tl <|TF =Tl
If Q< z <1t then
|(Tf) ()] <

(T (@) — [Ty (@) + [(TF) ] sy (=)

and thus

KT f) IZH™ = [(TF) e x0.0 180 + F* E)lx0.0]l20)

(
(HTf = (T Fhalxpmilze + 1 0,0l 40)
(
{

NTf = T(fen)ixnlize + 17 X001 40)

17 f = T(fsy} 3o + 1f "X 10,11l 40)

(Hf - f(s)“Aa + Hj X[O,t]“Au

O”.f*X[O,t]HAu .

This implies that 7" maps ¥ into Z. Next by using the fact that 4 is o-order
continuous we can follow the proof of [11, Theorem 4.5, and conclude the

proof of this part. (The constants ¢ appearing above may change from line
to line.) =

<C
<C
<
<C
<C
<

In order to obtain other implications we need to restrict our attention
to Banach spaces.

PROPOSITION 2. Let Ag be a r.i. Banach space and let By be a r.i.
quasi-Banach space. Suppose that da, < Cop, and 1/¢dp, € By. Then

[—:I(A(MBO}LOO} - M(Aﬂ: BO) -
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Proof. Let f €Y, g € By + L™ such that
£ x100l40 = 9" 0,305 V&> 0.
For every k € Z we define Ej, = [2,2571), We have

o< o0

=3 gBxa®) < Y, 9@ )xe.0)

h=—00 fozs w05

__. Z ¢) 2;‘)”‘f XUB]”A(JXEk(

k== —o
For every k € Z we can choose a function hy € Ajy with [[f/l4y < 1 such
that

1F %20l ag < 2 f F* 10,05 P
I

Then

g* (1) < Z X (2'~ (ffh:‘)xn,e

For any locally integrable funcuon w on I we define the “linear” operator T’
by

)=2 Z T (I‘Phk)"ébk(t)
Tt is clear that if p € L™ and t € E,-c we have
2
< il € .
[Tt < éBO(Qk)HQDHOOHX[O,Z“]HA() < Clelioo
On the other hand, if ¢ € Ag then

|T0(t)] < 2[4, Z v,

]

) T X By (ﬁ) .

For t € Ey the triangle inequality of the quasinorm implies that
d,(t) < b5, (2MF1) < T, (29),

hence

X, (2) :
ITo(t)] < Clle| 4, k;@ 0 = Clleella T

Since 1/¢p, € By we see that T is also bounded from Ay into By. Eventually
we conclude that g € By and ||gllg, < C!|f|la, because g* <Tf* ¢ By =

The above results imply the following
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THEOREM 1. Let Ay be a 4. Banach space and let By be a r.i. quasi-

Banach space. Suppose that C™1¢p, < ¢, < Cdp, for some constant C
and 1/¢p, € By. Then:

(i) £T{Ao, Bo; L) = M(Ap, Bo).
(ii) A couple of r.i. quasi-Banach spaces (Y, Z) belongs to any of these
classes if and only if the quasilinear operator

1
Qu(t) = mHWX[o,t]HAD

is bounded from Y into Z for nonincreasing functions.
(iil) The couples (Aqg, L™) and {Bg, L*) are relative Calderdn couples.

Proof (i} follows from Propositions 1 and 2. For (i), observe that Q
is bounded from Ap into By and from L* into L* and so if (Y,Z) €
LT(Ag, By; L) (= QLI(Ag, By; L)), then Q is bounded from ¥ into Z.
On the other hand, note that condition (M) implies that g*(¢) < QF*(t)
and, therefore, the boundedness of @ for nonincreasing functions implies
that (Y, Z) € M(Aq, Bo; L™°).

For (iii) we recall (see [6]) that the couples (Ag, L™), (By, L) are termed
relotive Calderdn couples if a couple (Y, Z) € LI{Ag, By; L) if and only
if for some constant C' > 0 and for each f € Y, whenever the inequality
Kt g; Bo, L™) < K(t, f; Ay, L) holds for all £ > 0 and some g € By + L™
then g € Z and ||gllz £ C|f|ly (K is the K-functional introduced by
Peetre). It is easy to prove that the quasilinear operator @ satisfies

O Qu(t) € —— K (60 (8), 21 Ao, L7) < CQu(2)
¢Bo (t)

for all £ > 0 and for all nonnegative nonincreasing functions ¢ € Ay + L.
Therefore (iii) holds trivially. =

Remarks. (i) Under the same hypotheses as in Proposition 2, but
supposing only that Ao is quasi-Banach, we can prove in a simpler way that
QLI Ay, By; L™®) € M{Ap, By). The operator we have to use instead of T
s Q.

(i) Proposition 2 is not true when Ag is quasi-Banach. For instance,
let 1 = [0,1], 4y = Bp = L*™, 0 < p < 1. In this case it is easy to
see t.lm,t (LP, LF) @ M(LPo, LP*°; L) = QLI(LP, LP>°; L), but by
using a regult by Kalton [8, Theorem 1.1], we can deduce that (L?,LP) €
LI(LPee, Loy L2 (this result was quoted to the authors by Oscar Blasco).

2. Applications. Not all r.i. Banach spaces By satisfy the condition
1/¢g, € Bo. In order to study this property we introduce the Lorentz spaces
following [2], [12], [19], [22].
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In what follows we assume that X is a r.i. Banach space. We use the
following notation:

o A(X) is the space of all measurable functions with
fllagxey = f Frit)dex(t) < oo.

Since ¢x is concave, the expression || f|| 4¢xy is & norm and moreover A(X)
is a r.i. Banach space,

e M(X) is the space of all measurable functions f for which f** exists
and

[ aeaey = sup dx () (1) < o0

Recall that f**, the Hardy transform of f*, is defined by

[
4]

:-b.iv—‘

H(f"){t) =

M(X) is again a r.i. Banach space.
e M*(X) is the space of all measurable functions for which

[ F|ag=(30) = sup éx (8) £* () < 0.
el

The function || - ||lar«(x) is & quasinorm on M™(X).
It is clear that for these spaces we have:
X CM*X), AX) — X — M(X),
(1) dacxy = dar-(x) = dx = bar(x)
(i) 1/dx € M*(X),
(iv) 1/¢x € X & X = M*(X).

M(X) C M (X),

Lemma 2. Let X be a ri. Banach space. The following conditions are
equivalent:

(a) The space M*(X) is convezifinble {i.c.
equivalent fo || - “M* (X))

(b) M{X) = M*(X).

(c) 1/ox & M(X).

(d) There exists a constant C > 0 such that

there 48 o norm on M*(X)

px(t) [ _ds y
Tf¢xs)gc, Wiel.

(&) 1 llarcxy ~ 1 Flimexy, VF € M*(X).
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Proof. We only sketch (a)=>(b). We may assume there is a r.i. norm
Il - Il on M*{X) equivalent to || - llaz+(xy- If f € M*(X) and ¢ > 0 then
T @ex () < CUF* (Expall < ClIf*
and therefore || fl{srx) < Cllfllaes - =

From the preceding comments it is clear that By = M *(Ap) is the only
space (after renorming) satisfying the conditions of Theorem 1.
When Ao = A(X) (and so, By = M*(X)), the corresponding quasilinear
operator is
t

1) Qapoelt) = 5)}(-;) [ e(@)dox(s)
¢

= H{po¢x') o gx(t).

Note that this operator is actually “linear” and then Theorem 1 is more or
less immediate since the linearization made in Proposition 2 is not needed.
This case was already studied by Maligranda [12]. In the general case of
(X, M{X)) the quasilinear operator is :

1
@xp(t) = M“‘:"X[Q,t]“x -

Next we are going to apply the theory to the class of classical Lorentz
spaces A(w, ¢) with nonmonctone weights Let w be an a.e. positive weight
defined on T = {0,00) such that [, w < oo, V£ < oo, and Joow = co. We
recall that the classical Lorentz space A(w, q), 0 < ¢ < oo, is the clags of all
real-valued measurable functions on such that

Il _ [ @) d)? <o 0 <q < oo,
Alwg) supt>0f ( ) w(t) < oo if g = co.
For ¢ = co we will only consider nondecreasing weights w. Arifio and Muck-

enhoupt [1] showed that given 0 < g < co, there exists a constant C' > 0
such that the Hardy operator satisfies

”Hf”!l(w,q) < G”fHA(w,q)

for all nonnegative and nonincreasing functions f on R if and only if the
welght w satisfies

o] i
(AM,) f <o f w(z)d

for some constant B > 0 and for all £ > D. Moreover, for 1 < g < 00, con-

dition (AM,) implies that A{w,q) is a Banach space. Sawyer [18] proved

that the converse is true for 1 < g < oco. Raynaud gave also another

equlvalent conchtion by using guasiconcavity conditions for the function
= fy w(z) dz (see [17]).

tﬁ
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In the case ¢ = oo and w nondecreasing, the same arguments as for
Lemma 2 show that A{w, co) is a Banach space if and ouly if the weight w
satisfies

Lod
(41 wy) o

wie) <

for some constant ¢ > 0 and for all ¢ > 0.
If we suppose that the weights satisfy the conditions (AM,) or (A;) then

~ 1l agwa

1 I ago.g) ~

and conversely.

In the next statements, when we say that A(w,¢) is a Banach space we
will mean that conditions (AM,) or (A;) are satisfied.

PROPOSITION 3. Let X be a r.4. Banach space and suppose that Alw,q)
18 @ Banach space. Then:

(i) For 1 < g < oo, Alw,q) € LL(A(X), M*(X); L) if and only if

(2.2) }0 wle) 4o B

&
ey S e | e W20

(ii) A(w, 00) € LI(A(X), M*(X); L™) if and only if

(2.3) f Bx(@) o odx{l) gy g
0

wlzy — 7 wt)’

(iil) If 1 £ g < oo, then Alw, g} € LI(X, M*(X); L™) & condition (2.2)
holds.

(iv) A(w, 00} € LIX, M (X); L™} if and only +f

Xog
wu

(24) m(())‘

<O, Y0,

X

Proof. First of all we remark that condition (2.2} implies that w satisfies
(AM,).

(i) We only have to prove that the operator Q a(x)

Quxyf =H(fo ¢z )odx

is bounded on A(w,q) for nonnegative and nonincreasing functions. We

defined by
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have

OL_ﬁg Oi__jg

19403 F 1%k ) H(f o 63" )(éx(t)w(t) dt

= [ H( o 67 ) (e ) (5 () dy
SC [ Fox ) w83 ) (63" (v) dy

0
=0 [ f(z)w(z)dz = C|| £},

Q

where, by using condition (AM,), the inequality is satisfied if and only if
the weight

o(y) = w(ex @) (ex") ()

satisfies
B ¢
1< 6[ y)dy, V>0,

for some constant B > 0, and this inequality is equivalent to (2.2).

(if) This proof is simpler. Suppose that {2.3) holds. If f € A(w, c0) we
have
%

¢

sup “(z)d )< (10,00 Su

E)IO @x Uf Fr(z)dox(z) <] aguw,o0) up 2
S G“f”/l(w,oc) .

For the converse implication, consider for each ¢ > 0 the function f*(z) =
w(m)“lx[u 4 (v:) € A(w, 00). Then the ineguality

4

ff* Ydox(z) < Csup F*(Dw(t), Vt>0,
¢yl : t>0
irmplies (2.3).

(iil) We know that A(w,q) € LI(X, M*(X); L*>) < the operator
Qx(F)t)

is hounded in A{w,g) for nonincreasing and nonnegative functions. Since
Qx(f) £ Qax)(f), we see that condition (2.2) implies the interpolation
property. On the other hand, since

1
= n® N Fxponllx

Q)8 = x0.0(0) + o
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we deduce that if Qx is bounded on A(w, ) then
5
q
[ w(z)de + ¢x(s) f¢ —de < cf

0

and hence (2.2) holds.
(iv) Suppose A{w,00) € LI(X,M*(X); L>). By observing that L/w ¢

A(w, c0) and that
1 1
wx (E) = $x(t)

we get condition (2.4).
For the converse, we know that w{z)f*(z) £
Vi € A{w,oc). Furthermore,

, Lo
Qx (")) = E;(T)Hf Xl x

X0t
w

1l Aw,ecy, Y > O and

C c
S o < mu.f”.fl(m,oo)

and since w is nondecreasing we conclude that ¢ v is bounded on A(w, c0). =

X0t
|fnﬂ<w,m)\ 04

Remarks. (i) Assertions (1) and (ii) of Proposition 3 should be com-
pared with those appearing in [19]. In his paper Sharpley deals with the case
of interpolation between (A(X,), M(X1)) and (A(Xs), M(Xs)) and charac-
terizes when A*(Y) or M(Y') are interpolated spaces. Observe that A%(Y)
and M(Y) are particular cases of A{w, g).

(ii) We observe from Propositions 4 and 6 below that the spaces A{w, ¢),
1 < g < oo, belong to LT(X, M*(X); L) and LI(A(X), M*{(X); L*) si-
multaneounsly. Furthermore, if X = L?, 1 < p < g, the weight w satisfies
condition (AM,;,) and then the space A(w,q) is p-convex. The converse is
also true, i.e., for ¢ > p > 1, if A(w, q) is p-convex then (A{w,q), Alw,q)) €
LI(LP, LP*°; [*°). This result should be compared with those appearing
in [17].

(iii) If A(X) # X = M*(X) (e.g., X = LP™, p > 1) then it is casy to
prove (X, X) € LT(X, M*{X); L°) but (X, X) ¢ LT(A(X), M*(X); L™).

(iv) (A(w, 00), A(w, 00)} € LI(LP, LP*°; L) & A{w, 00) is p-convex.

When X = IP, 1 < p < oo, it would not be difficult to prove that for v
p-convex, (Y,Y) € LI(LP,LP™; L) & (Y, Y) € LI(L™', L9 L% (see
[10] for definition of p-convex spaces), but actually we can prove a stronger
result:

ProrOSITION 4 Let 1 < p<ooandlet Ybeari space. The followdng
assertions are equivalent:

@ ry)e ﬁI(LP'leiﬂ:m;Léo)'
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(i) (Y,Y) € LI(LP", L»%; L) for some 1 < r < oo.
(iii} The upper Boyd inder a(Y) < 1/p. (See [4] for the definition of
Boyd indices.)

Proof. We only have to prove (ii)=(i). We restrict ourselves to the case
r = p because the other cases are similar. By Proposition 3, we know that

the operator
Qs 0= o f )"

is bounded in ¥ for nonincreasing nonnegatwe functions, ie. ||@ufly <
Cl flly for some constant C' > 0. Let f = f* € Y. It is quite easy to

compute that
/n
Q(n+1 ( f fp(t log(l/m)] E)
for any natural number n € N. If eC < 1 we define

0= (Yea+swr)”

n=0

(TN Qi FIP) 1 e Y, Sw f(t) T SF(t) as N — oo,
1Sw flly < H ZEnQ(nH)fH

< (S eem)iifly
=0 n=()

we find that Sf € ¥ and |Sf|ly < C'||flly. But

(Z ff o lelog 1/9: dm)””

n=0 0

( [ty s B0/ )’

0 'n—D 7’!
1 t/p t 1/
< ([ s )" < i (] sy aat)”
0 ’ 0

1
= WHJ"X[O,ﬂ]Hqu—w .

Since Sy f(t) =

and

Hence (Y, Y) € LT(Lp/(1=ebp, [p/(1=2)e; [22) and so (i) is true. =

In the last part of this paper we consider a similar situation to the
previous one in the framework of Lorentz-Orlicz spaces. Different versions
of this class of spaces appear in [13], [21]; they have also been studied in [9],
(14], [15] and [17]. Here we follow [13]. :



146 J. Bastero and F. J. Ruiz

In the sequel p will denote an Orlicz function, i.e. a convex, nondecreas-
ing function on [0, c0) such that ©(0) = 0 and lim;—ee @[t} = oo, We also
suppose that o satisfies the A condition: there exists a constant C > 0 such
that @(2¢) < Cplt) for all £ > 0, or equivalently, there exists 1 < ¢ < oo 50
that

elat) < alp(t), VYa>1, Vi>0.

The weight w is supposed to satisly the same conditions appearing in
the definition of Lorentz spaces, namely, w is an a.e. positive weight defined
t %)
on [0,00) such that fw < 00,¥t < 00, and [,” w == co.
The space A(w, ©) is the class of real-valued measurable functions on [
so that [, o(f*{#)}w(t) dt < oo.
The next results extend Arifio-Muckenhoupt's inequality.

LemMa 3. Let @ be an Orlicz function. Suppose that there exists a con-
stant B > 0 such thot

(Az) fgo(gi)w(m) de < Bpla) fw(:x:) dz,

Vi >0, Va > 0.
¢ x 0

Then, for some a <1 and D > 0, we have

oo . ‘
f W(%)w(w) dz < Dip(a) f w(x)de, Vt>0, Ya>0,
' 0

where P{t) = p(t*).

Proof. We can adapt the arguments of [1] to our more general situation.
Ounly a few changes are necessary. Using the notation of [1] the number a < 1
is chosen in such a way that

9B+ 1\'9
281/q=2(2312) <2< 2. m

As a consequence of this lemma and with the same argument as in 1]
we obtain

1

PROPOSITION 5. Let ¢ be an Orlicz function. A weight w satisfies con-
dition. (A,) if and only if there exists o constant B! > O such thal Jor every
nonnegative nonincreasing function f on (0,00) we have

JoHu< B [ o(fiw
o] 0

where H(f) is the Hardy transform of f.
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Remark. If w satisfies (A,) then the expression

I lawg =int {o: [ o(f/ohw <1}

0

defines a quasinorm on A{w, ¢) which is equivalent to the norm

A = T 1 Agw o
and therefore A(w, @) is a Banach space,

By introducing the Simonenko indices (see [L3]) we can give necessary or
sufficient conditions for a weight to satisfy condition (A,). Given an Orlicz
convex function ¢ and a number T > 0 we define

A 't
S0 N )

T p(t) =7 P(t)
where ' (t) is the right derivative of the Orlicz function . We also introduce
po = infpr and gy = supgp. It is clear that 1 < py < pr < g7 < gy < 0
and

Pr

ap(t) < plat) < o p(t)
whenever o < | and 7" < evt.
PROPOSITION 6. Let o be an Orlicz function and let w be a weight. Then:

(i) If o weight w satisfies condition (AMy,) then it also satisfies (Ay).
Furthermaore, the Hardy tronsform is bounded on Alw, @) and A{w, ) is o
Banach space.

(ii) If the Hardy transform is bounded on Alw, ) then w satisfies con-
dition (AM,,).

Proof. (i) First of all suppose that w satisfies (AM,, ). Then

f@(g)w(m) dz < p(a) j? (é)pow(m) dz

t

and hence w satisfies (4,) and so the Hardy transform is bounded on
Alw, ). The other statements are clear.
(ii) Now we assume that there exists a constant C > 1 such that

“Hf”!l[w,:p) < CE[fHA(m,zp)

for all nonincreasing functions f € A{w, ). In particular, given ¢ > 0 if
8 == [|X[U:f'1||;;(1'!u,tp)’ we obtain

w (O

1 E (xjo,) | g,y £
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Therefore

jw(%)w(w)dz+ fﬁa(%)w(m)dm <1,
< p(s/C) and

@
o(&)2+(3) () 2 e0(a)”

i o0 " qo 't\

f w(z)de + f (~) w(z)de < CP J wiz) dw,
0 AN 0

and this completes the proof. =

Since (s)/C%

we have

For the space A{w, ) on the unit interval I = [0,1] (or more generally
I =[0,I] for { < 00) we can give a more precise result,

PROPOSITION 7. Suppose I = [0,1] (I < oo) and let ¢ be an Orlicz

Sfunction. Let

ot (E) : t' (t)
= liminf ond ¢ =limsup .
P =200 ‘P(t) Foet 90 (P(t)

Then:

(i) If w satisfies condition (AM,) then the Hardy transform is bounded
on Alw,p) and Alw,p) is o Banach space.

(ii) If the Hardy transform is bounded on A(w, @) then w satisfies con-
dition (AMg...) for alle > 0.

Proof. (i} If w satisfies (AM,,) then by Lemma 2.1 of [1], w also satisfies
(AM,..;) for some € > 0. Then there exists 7' > 0 such that p — & < pyp.
Define now the function @p by

Bolt) = o(t) if > T,
PRV (T (t/TYPT  otherwise.

Note that &y is an Orlicz function for which

@ (i
pp = inf f()
>0 @(t)
Hence by the preceding proposition the Hardy transform ig bounded on
Alw, @p). Thus it is also bounded on A(w, ), as m(I) < oo and the Orlicz
functions are equivalent at infinity.
(i) Let & be a positive number. There exists 7 > 0 such that
tp'(t
—('?—L—liqaﬂ<q+s, vizT.

wo(t)
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If we define the Orlicz function @ as before it is clear that SUp,q 1@ () /3 (2)
< gp. Since @y is equivalent to ¢ at infinity and the Hardy transform
is bounded on A(w, @), by using again Proposition 6, we deduce that w
satisfies (AM, ) and so (AM,.). This completes the proof. =

Now we can state the corresponding interpolation results whose proofs
follow the same lines as in Proposition 3.

PROPOSITION 8. Suppose that ¢ 45 an Orlicz function and w satisfies

condition (Ap). Let X be a ri. space. Then the following assertions are
equivalent:

(i) Any linear or quasilineer operator T which is bounded from A(X)
into M*(X) and from L into L™ satisfies

[ A@D @iy de < 0" [ o(r* () (e do
4] 0

for some constant C" > 0 and for any function f € Alw, ¢).

(it} The same as in (1) but with operators mapping X (instead of A{X))
into A*(X).

(i) There exists a constant D > 0 such thoz

o0 qﬁx(f) i
Zftp(qsx(m))w(m)dxgl)bfw(m)d:c.

Moreover, if one of these conditions is satisfied for X = L?, 1 < p < oo,
then the space A(w, ) is p-conver.

Acknowledgment. We want to thank Stephen Montgomery-Smith for
polishing an earlier version of condition (A,).
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Isomorphism of certain weak L? spaces
by

DENNY H LEUNG (Singapore)

Abstract. H is shown that the weak L” spaces £°°, L°°[0, 1], and LP*°[0, co) are
isomorphic as Banach spaces,

Introduction. The Lorents spaces play an important role in interpola-
tion theory. They also form a class of Banach spaces generalizing the classical
LP spaces. In this paper, we continue the comparison of the Banach space
structures of various weak L? spaces begun in [2] and {3]. In [2], mimicking
the construetion of the Rademacher functions, it was shown that £2 can be
embedded complementably into £7°°. In [3], we showed that €2 can in turn
be embedded complementably (even as a sublattice) into LP°°[0,1]. Here,
we complete and extend these results by showing that, in fact, the three
weak LP spaces £0°9, [#2[0), 1], and L**¢[0, 00) are isomorphic as Banach
spaces. Thiy question was also mentioned in [1].

We start by recalling some standard definitions. Let {2, X, u) be an
arbitrary measure space. For 1L < p < oo, the weak LP space L (£, ¥, 1)
is the space of all Z-measurable functions f such that {w: [f(w)| > 0} is

o-finite and
= sup S < 00,

with 0 < pu(3) < oo, I (£2, 3, 1) 18 a real interval 1 endowed with Lebesgue
measure, we write L2 (1); while £2° and % (m) will stand for the weak
L¥ gpaces on W and {1,. .., m} respectively, both with the counting measure,

For a real-valued function defined on (2, 2, u), let f* denote the de-
creaging rearrangement of |f| [5]; similarly for (a¥), where (a,) is a real
sequence. It is well known that the expression

£l = sup £4/2 F*(¢)
(V]
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