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Isomorphism of certain weak L? spaces
by

DENNY H LEUNG (Singapore)

Abstract. H is shown that the weak L” spaces £°°, L°°[0, 1], and LP*°[0, co) are
isomorphic as Banach spaces,

Introduction. The Lorents spaces play an important role in interpola-
tion theory. They also form a class of Banach spaces generalizing the classical
LP spaces. In this paper, we continue the comparison of the Banach space
structures of various weak L? spaces begun in [2] and {3]. In [2], mimicking
the construetion of the Rademacher functions, it was shown that £2 can be
embedded complementably into £7°°. In [3], we showed that €2 can in turn
be embedded complementably (even as a sublattice) into LP°°[0,1]. Here,
we complete and extend these results by showing that, in fact, the three
weak LP spaces £0°9, [#2[0), 1], and L**¢[0, 00) are isomorphic as Banach
spaces. Thiy question was also mentioned in [1].

We start by recalling some standard definitions. Let {2, X, u) be an
arbitrary measure space. For 1L < p < oo, the weak LP space L (£, ¥, 1)
is the space of all Z-measurable functions f such that {w: [f(w)| > 0} is

o-finite and
= sup S < 00,

with 0 < pu(3) < oo, I (£2, 3, 1) 18 a real interval 1 endowed with Lebesgue
measure, we write L2 (1); while £2° and % (m) will stand for the weak
L¥ gpaces on W and {1,. .., m} respectively, both with the counting measure,

For a real-valued function defined on (2, 2, u), let f* denote the de-
creaging rearrangement of |f| [5]; similarly for (a¥), where (a,) is a real
sequence. It is well known that the expression

£l = sup £4/2 F*(¢)
(V]
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satisfies || f]ll < 17l < qlllf|l. Let L' (12, X, p} denote the space of all
measurable functions f such that [|f| 41 = fﬂ t~Ur () dt < co. Then
L»®{(2 ¥, p) is naturally isomorphic to the dual of L® L2, 3, 1), where
the isomorphism constant depends only on p. Finally, we note that any
weak LP space satisfies an upper p-estimate with constant 1 [5]

2. Main theorem. Fix 1 < p < o¢ and ¢ = p/(p — 1); our goal is to
prove the following

TeEoREM 1. The Banach spaces €04°°, LP™[0,1], and LP™[0, 00) are

isomorphic.

Since the proof of the theorem goes through several intermediate embed-
dings and is rather circuitous, we first give an outline of the procedure. We
start by recalling the following well known variant of Pelezytiski’s “decom-
position method” [4]. The square of a Banach space F is the Banach space
EaE.

THEOREM 2. Let E,F be Banach spaces which are isomorphic to their
squares. Suppose that each is 1somorphic to a complemented subspace of the
other. Then they are isomorphic.

Proof. Using the symbol “~7 for “ig isomorphic to”, we find Banach
spaces (f and H such that B~ F @ G and F ~ EF & H, Then

E@F~E®(EGH) ~E®GH~F, and
EBF~ (G F~GOF~E u

It has already been mentioned that £7°° embeds complementably into
L7[0,1] {3], and it is clear that L”°°[0, 1] embeds complementably into
LP+*°[0,00). Since these spaces are obviously isomorphic to their squares,
the proof of Theorem 1 will be complete if we can show that LP*°[0,0c)
embeds complementably into ££:°°. This we do in a number of steps.

For any k € N, let X), = (3o, @ % (k- 2"} }poe. Then, using © <57 g
denote “embeds complementably into”, we will show that

(L OIP0H)
(Z X, )ﬂ 3

k=1

LPoo(lh, oxa}

xS e
‘T'he third embedding in this chain is obvious, and the first is also straightfor-

ward. The second embedding is accomplished by showing that L# [0, & S
Xy with uniform constants. This relies on the techniques of [2]. For the
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last link in the chain, we show that X is isomorphic to a weak* closed
subspace of 7™ generated by long blocks with constant coefficients. The
complementation is theu effected by a conditional expectation operator [5].

3. Finding L**[0,k] in X,

LeMMA 3. Lel k€ N and let f € I7°°[0, 00). Then

n

7/ n
X k2
wrfl( S .=
. / "
Prool Fix w. Siuce the E‘,Xplé‘,hbal()l’h involved are rearrangement in-

. an
variant, wo may assume that | j(”;/ 1y/2n f1 decreases with j. Let a; =

i '.."/2“ [ r A N A .
G e 1 Then for 1< 5 € k227,

F/an J /9"
[lfi>}jj [ #zaM.
iml (1) /2"
Hence
. j/zn
LAl G/2m e [ 1f] 2 2%/
0

Taking the supreviun over § finishes the proof. =

We introduce some more notation. An element x & X, will be written
as @ = ()00, whoire Mch 2 € £P7°(k - 2"). Each 2z, is in turn a finite
real sequence (2, ()52, Define

Viw={we Xy

,'_l
Ty (J 58 2%1/(1(-’5'!:»%1 (23 - l) + mn-{—}.(zj)):
1€£3<k2" n20}.

We will say that a linear operator T mapping between Banach spaces is a
K-igomorphism (into) i i’\;"’1||.'1:|] < 10| < K|

ProOpOsUroN 4. Define Ty o LP°[0 k] — Xy by Thf = @, with z,(f) =
only (/A" . - - - b ,
an/l ].:I;/ 020 S Jor 1 < 4 < A,-‘a”, n = 0. Then Ty s o g-isomorphism of
Ll k) onto Y.

Prool Fix f ¢ LP[0,k] and let x = T} f. By Lemma 3, sup,, |||zn[]] <
I/ Thus

|51 == sup || < gsup 2]l < gl 71
" ” .

On the other hand, letting £, denote the conditional expectation operator
5] with respect to the partition ([(F — 1)/3'*,3/2”])3% , it is easy to see that
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[zl = | Eaflll. Now since E,f — f in the weak* topology, we have

1£ ]} < limsup | Eaf]) < glimsup |15, ]
= glimsup |||2.|| € ¢ limsup ||z < gl|Tefil

This proves that Ty is a ¢- 1somorph1£am Cleaxly, 7% maps into ¥, Conversely,
forz €Yy, let fiy = 2“/3”2 2,(3)xn j, where xq; is the characteristic
function of the interval [{(j— 13/2“”'/2”] Then ||| £l = {2l Tn particnlar,
(fa) is a bounded sequence in L7°{0, k]. Now if [ is a weak” cluster point
of the sequence (f,,), then, using the fact that = € Yy, it is easy to see that
T f = . Hence T, maps onto Yy, as required. m
We proceed to show that Y} is complemented in Xp. Uix & € N and let
k 2'"
Zy = {:r € X, . there exists ¢ such that E To(g) =0 for all n > z} .
F=l
Tt is clear that Z; is a linear subspace of Xy. Alse define w ¢ X}, so that
Un(f) = (k-2°)" Y7 1< §< k2 n 2 0.
LEMMA 5. Define ¢ : span{Zy, {u}} — R by
Plztou)y=a forallzeZy, andae R,
Then ||¢l| <1 with respect to the norm on Xy,

Proof For all o > 0, the functional z/, on X) given by 2f (@) =
Zkf“l 2,(7) has norm < (k-2)% Now z € Zy implies x/(z) = 0 for
all large n. Thus

[z -+ aul] < 1
= fah(e+au)| < (b2
= Jalely (o) < (k21

= lo|<1, =

Let & be a norm preserving extension of ¢ to all of Xy, For an element
z & Xg, the support of x, suppax, is {(n, ) « 2, () % 0}, As it s clear
that any finitely supported element of X}, is in Zy, we must have & = (0 on
(T &8 (k:2%)),. -

If Ais asubset of I'= {(n,7) : 1 < j < &-2%,n > 0}, the operator on Xy
given by multiplication by the characteristic [mmllon of A, whicli we denole
by x4, is a norm one projection on Xy. For any (n,j) & I', let A, ; == supp
TkX[(jw]_)/Qn}j/z-n]. Then let @n,j = X{‘ln,jgﬁ'

~ LeMMa 6. For every n > 0, (D, ;)52 is a sequence of pairwise disjoint
(n the lottice sense) functionals on Xy. Moresver, Dop1,25 1+ Pty =
@,y foralln >0, 1 <4< k2m,
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Pro of. Note that Avl,-”!-‘l,ij] J ATH-LQ,’}' = An,j. Then hoth assertions
follow easily from the fact that Apg M Ay is finite for 1 < 4 £ < k2
and ¢ is 0 on finitely supported elements.

Given 1 2.0, 1 S J < k20 doine 5,
where z,, = 0 for (]
for m = 0, 1 <
o Sy gt € Dy

Luvma 7. Forn >

it Xg = Xg by Spz = 2,
i < n, ;Ll’ld zm(') == :Lm(?}+ (j - l)Zm' mod(k -27Y)

0, 125 S B2, Byl =[]
Proof Forany ¢ ¢ Xy,
P (@) = P(xang2) = D(Su 51X, ;)

since @ == (on Zg. Bub the support of 8, ;x a4, ,% is contained in A, ;.

Thereflore,
B (@) = Doy (STL,jXAn.;fx) S|P, || e
since both S, ; and x4, ; are norm 1 operators. Thus {|®, ;|| < ||#r,1]. The
reverse inequality can be obtained similarly.
2 0, @] < (k292
Proof. Binee 6™ satislies an upper p-estimate with constant 1, so does
Xp. Henee X, satisfies a lower g-estimate with constant 1. By Lemma 6,

4 om0
‘:b = >_4|j;z:]

LEMMA B, For all n :

&,, ; and the sumnands are pairwise disjoint. Then by Lemma 7,

‘zn

IWH*(EJWMH)

LiMMaA 9. Given real numbers by, ...,
ball of fi,

H(}jb Cliog ')man'r . < ¢ Z 1/(? - l)lftl) i

Josl

= (k-2")M|| @ m

by and o sequence (c;) in the unit

Proot. Lot

1“1'

bye
”()-4 ““ L)

By rearranging (r S, we may assume without loss of generality that

l}_:n Lbyerag ! is a decreasing fanction of . Recall that |[|z[| = |l=]]/¢ for all
@ € ¢ Thus, given € > 0, there exists r such that .

(r + 1) ”f"zm,m‘>(ff_c/ .

J=i
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Then, since ¢ =1/ for all j > 1,
K- - 1)
( E)(T_] ) <Z|Zb C“F-"<Zz‘b (f?+}
7 I=0 j=1 j=1 (=0
< Zb*z (G— D4 1)+ 14 1)
3=1 =0
i
g+ DY B G- 1.
jranp)

Multiplying by g{r --1)~7 finishes the proof. m
Lemma 10. For any real sequence (ay),

”Zaj ﬂj‘<qk 1/1HZCBJX[; l/zn;,/:m]‘

where || - |41 denotes the norm on LT[0, k].

Proof. Fix = € X;, with norm < 1; then
k .)'n. .I'\. 27!

@,Za@m) Z xa,, @8

n

= a?(Sn.JXAMI ¢) =
j=1

ELR
vz il
-

(’Ja(pu l>

i

LT

k-3
where y = 7.7 075,,;X4, % By Lemma 9,

k2™
IlymHqu G (G =1y

for all m > 0. Hence
A‘ 2”

(=, 2« Boi ) < IolIn | < 22 Lw

]w 1)1/r1
(A *)n)

Z GX G- 1372 ] H
i=1 e, 1

Here the second inequality follows from Lemma 8, while the third inequality
is true because (|6 < 1. =

PROPOSITION 11. Define Py : Xj — Xy by Pyx =y, where
vn(f) = (k2™ Ilq( &y gl)n_,)

< gk
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for all n 2 0, L5 j = k2% Then Py is a projection from X onto Yy of
norm <, 4=,

Proof. Since (£91) = 7°° jgomorphically, there is a constant K (actu-
ally ¢ sullices) such that

[I(e)]| = K (sup Z&J

hiyets

for rlH ( ) ¢ 0 where U7 denotes the unit ball of £4+1, Thus, given = € X,

(g (e Pu B2 S a2 sup 37 b (e, 8,)

(bs)EU
< q(k-2m)4/4 bup .L‘H b;®, 1
s ol 322
< ¢2"e] sup | ijx -1/

g1

by Lemma 10
= gl

Hence < ¢?. Using Lemma 6, it is casy to see that P, maps into Y.
Conversely, let iy € Vi, Then forn 20, 1 <5 < k2%,

'Un( )(k 2”)1/{1;&/1“ ~ XAn ¥ € Zr .
~ XAn,u € Zp. Hence for 1 < 5 < k.27,

Note also that 5, x4,

QP(XA-A.;"“’) = P(SngXan, ) = P(Xan. %) -
Thus
Feam
tom Plu) = > B(xa,,u) = k2" B(xa, ).
Ve
Thercfore,
P () == B, ) = v () (B-27) /P (x,, )

) .y 'yz(j)
= Y (5 (B2 PP (x4, u) = W

Thus Pyy =y for all y € Yy, as required. =

Propogitions 4 and 11 combine to give

PROPOSITION 12, For all k € N, LP°°[0, k] is g-isomorphic to g subspace
of X, which 4s complemented in Xy by o projection of norm < ¢~

The following theorem, the main goal of this section, now follows easily.
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THEOREM 13. The space (3, @LP%°[0, k])eee 45 isomorphic o « com-
plemented subspace of (3 po | ®Xg)gee.

4. Embedding X, into £°° complementably. Choose a strictly in-
creasing sequence of integers (mn,)3%, so that my = 1 and

Tyl

My 2 Z 2m;  foralln 1.
i=l

Then choose a pairwise disjoint sequence of subsets of N, (Bw-)'j-:__ oy SO
that |B, ;] = my, where |B] is the cardinality of the set B. Finally, let
Wnj = XB,,, for 1 <7 <2% n >0 IfW is the weak* closed subspace of
9% generated by (wy ), Le.,

W = {(a;) € £ : (a;} is constant on cach B, ;},

tlien we will show that X is isomorphic to W. Since W is complemented in
£2%° by the conditional expectation operator with respect to the a-algebra
generated by (B, ), we will have proved

THEOREM 14. X embeds complementably into £/,

To show the isomorphism. between Xy and W, define

o0 2™

Re = \/ \/ %l%)wwn,j

n=={) j=1 a

for all z € X, where the suprema refer to the pointwise order on the vector
lattice of all real sequences. We first show that B maps into /7™, Fixz € X;.
Let A De the set of all ordered pairs (n, 7) such that 1 < J 2" and

(1) Iy 2, (5)] < g Py (3|

forsomel > n, 1 < i< %, Since sup, |m4[l/"”m,,‘(j)| < m;[”“HmI - ) ag
n — o9, for every (n, j) € A, there exists (1,4) € A® satisfying equation (1),
with I > n. Let ¥ : A — A° be a choice function such that Win, ) = (1,4}
satisfies (1) with respect to (n,7), and [ > n. Let

Cl,'l. = U Bvr“j
(e ~1{(ii)}

for all ([,7) € A°. Then

Zn(7) 2y (i) (i
Z 1/p Wn,j < 1 Z Wn,3 = 'J—(")" Xyt
_ wlm miP 1/p
(r)e@—{(L,i)} M I (nd) w1 {0} ™
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Note that
-1 27 i1 2%
Ol £33 Bagl = 30 Y ma < my
i) ja=1 n=0 j==1

hy the choice of (m.,). It follows that the sequence \/ (n.)eA T Yo 2 (5) o, 3

can be rearranged so that it is <V, oy ma Y2 30 7)|wn ; in the pointwise

order. Since the norm of 7% is rearrangement invariant, we have

@ |V m e <[V m |
‘ (ng)ea (md)EA

Ou the other hand, for all n > 0, let (z3(3) ?;1 denote the decreasing

reartangement of {jaz, (§) \)j; Then

Vs <al| Y m e,
{1, EA (2, d)EA
' o (1) (fmn + 20 2im )P
S qsup T )( lz/p 1

n,f M,
@y, 37+ 1)my, p
< goup TG+ o)
LV m'n.

< q2% sup 77z (5) = q2'/7 sup ||zl
n.j "

< g 24P sup ||z, = ¢2Y/7||z) .
n

Together with equation {2), this shows that R is bounded as a map into
£0°° On the other hand, for all z € X,

on .
25 ()
Z 1/p Wn,g

je=1 n

| Bzl = sup = |-

Therefore, R is an embedding, as clabmed.

5. Proof of the main theorem

PROPOSITION 15, LPo9[0,00) embeds complementably into (3 4o, @
L2220, B]) pre

Proof, This is rather straightforward. Define § : LP*[0,00) — (35,
®BLP0, k]) peo by

SF=(fxon: fxmpap---)

for all f & LP*°[0,00). Clearly, § is an isometric embedding. Now choose
a free ultrafilter I ou N, and regard LP*°[0, k] as the subspace of L**°[0, co)
consisting of all functions supported on [0,k]. Since LP°[0,00) is the
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dual of L%0, 00}, its unit ball is weak® compact. Given g = (g;) €
(252 ®L[0, k])eee, Tot

= (w*) li .
Qg ('w )kl_{?{ Gk

It is easy to see that @ is bounded as a map into LF*°{0, c0), and that Qo §
is the identity on LP*°[0, 00). This proves the proposition. m

The proof of Thearem 1 now follows as in the discussion in §2, using
Theorems 13, 14, and Proposition 15 above.
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A Carlson type inequality with blocks
and interpolation

Ly

NATAN Ya, KRUGLYAK (Yaroslavl), LECH MALIGRANDA (Luled)
and LARS ERIK PERSSON (Luled)

Abstract. An inequality, which generalizes and unifies some recently proved Carlson
type inequalities, i proved. The inequality containg a certain number of “blocks” and it
is shown that these blocks are, in a sense, optimal and cannot be removed or essentially
changed. The proof Is baged on a gpecial equivaleni representation of a concave function
(see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s inter-
polation functor { ), (see [26]) and its Gagliardo closure on couples of functional Banach
lattices in terws of the Calderdn-Lozanovskil canstruction.

Our interest in this functor is inspired by the fact that if ¢ = 7 (0 < 6 < 1), then, on
couples of Banach lattices and their retracts, it coincides with the complex method (see
[20], [27]) and, thus, it may be regarded a8 a “real version” of the complex method.

0. Introduction. In this paper we consider sequences an,n = 1,2,...,
of nonnegative numbers. In 1934 Carlson [8] proved the somewhat curious
inequality

{0.1} Za,n gc(zai)1/4(zn2a’i)

and showed that ¢ = 7%/? is the best possible constant. Carlson also noted
that (0.1) does not follow from Holder’s inequality in the following way:

Z 0 < ( Z ai) 144 ( Z n?h‘cti) 1/4 ( Z n"h) 1/2
= C(r) (Y ad) 7 (Sonhaz) i

hecause () ~ oo as i — 1+, However, in 1936 Hardy [12] presented two
elemeutary prools of (0,1), In particular, he observed that (0.1) in fact fol-
lows even from Schwarz’ inequality Y @ntm < (3 22)Y2(T y2)1/2 applied

1/4
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