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dual of L%0, 00}, its unit ball is weak® compact. Given g = (g;) €
(252 ®L[0, k])eee, Tot

= (w*) li .
Qg ('w )kl_{?{ Gk

It is easy to see that @ is bounded as a map into LF*°{0, c0), and that Qo §
is the identity on LP*°[0, 00). This proves the proposition. m

The proof of Thearem 1 now follows as in the discussion in §2, using
Theorems 13, 14, and Proposition 15 above.
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A Carlson type inequality with blocks
and interpolation

Ly

NATAN Ya, KRUGLYAK (Yaroslavl), LECH MALIGRANDA (Luled)
and LARS ERIK PERSSON (Luled)

Abstract. An inequality, which generalizes and unifies some recently proved Carlson
type inequalities, i proved. The inequality containg a certain number of “blocks” and it
is shown that these blocks are, in a sense, optimal and cannot be removed or essentially
changed. The proof Is baged on a gpecial equivaleni representation of a concave function
(see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s inter-
polation functor { ), (see [26]) and its Gagliardo closure on couples of functional Banach
lattices in terws of the Calderdn-Lozanovskil canstruction.

Our interest in this functor is inspired by the fact that if ¢ = 7 (0 < 6 < 1), then, on
couples of Banach lattices and their retracts, it coincides with the complex method (see
[20], [27]) and, thus, it may be regarded a8 a “real version” of the complex method.

0. Introduction. In this paper we consider sequences an,n = 1,2,...,
of nonnegative numbers. In 1934 Carlson [8] proved the somewhat curious
inequality

{0.1} Za,n gc(zai)1/4(zn2a’i)

and showed that ¢ = 7%/? is the best possible constant. Carlson also noted
that (0.1) does not follow from Holder’s inequality in the following way:

Z 0 < ( Z ai) 144 ( Z n?h‘cti) 1/4 ( Z n"h) 1/2
= C(r) (Y ad) 7 (Sonhaz) i

hecause () ~ oo as i — 1+, However, in 1936 Hardy [12] presented two
elemeutary prools of (0,1), In particular, he observed that (0.1) in fact fol-
lows even from Schwarz’ inequality Y @ntm < (3 22)Y2(T y2)1/2 applied

1/4
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to the sequences Ty, = an(a+8n2)Y? and y,, = (a+An?)"/% and he got the
hest constant C' = 7/% by making a suitable choice of cv and J. For some
other generalizations and complements of (0.1) see e.g. [2, pp. 175 176].
Here we only remark that (0.1) and its generalizations have sense e.g. in
some moment problems (see [14]) and in interpolation theory (see [11]).

In the sequel we assume that ¢ is a concave and positive funclion on
(0,00) such that p(t) — 0 as t — 0 and @(¢)/t ~ 0 as ¢ — oo. More-
over, ¢(s,t) denotes the I-homogeneous function uf two variables defined by
w(s,t) =sp(t/s) if s,t> 0 and p(s,t) = 0 if s =0 or ¢ = (.

In 1977 Gustavsson and Peetre [11] (in connection with some interpola-
tion problems for Orlicz spaces) considered the Carlson type inequality

(0.2) Y an < Coll[{an/e@) My, {20 /e (2" Hi,

and proved it for min(p,¢) > 1 and ¢ belonging to the class T (see
Section 1).

The first part of this paper is devoted to the question of the possibility
and the form of a generalization of (0.2) for ¢ &€ PT~. Qur result (see
Theorem 4) shows that if ¢ &€ P, then (0.2) is not true and, thus, we
must change the form of (0.2).

Let {2"},ez = Ui, 20 with 2, pairwise disjoint. We consider the

folowing Carlson type inequality:
Ok 2’“0.;,,
03 Hotlw s0o(){ ¥ )| S 2l ),
k:2k &2, 90(2 ) " k12 e, tp(z ) nllly

with a constant C' not depending on {a,}. In our Theorem 3 we give a
necessary and sufficient condition on {2, to ensure that {0.3) holds. We also
present a construction for {2, (see Theorem 1). Moreover, we prove (see
Theorem 2) that (0.3} can be written in the following “symmetric” form:

©4) Ieam bl < Ce(|{ 3 W= w,)

“ki(ag, by )ETY, H T TSI AN
where Tp, 2 = 1,2,.. ., are special blocks in R3. (see Figure 3). We note that
blocks first appeared in Carlson’s inequality (nof in explicit form) in a work
of Nilsson [22, Lemuma 2.2]. In fact, this work was one starting point and
motivation for ns.

In the second part of this paper we show how our geueral Carlson type
inequality “works” in our proof of the characterization of Peetre’s interpola-
tion functor { ), {see [26]) and its Gagliardo closure on couples of funetional
Banach lattices (*). Before the most general result of this kind was obtained

1

Iy

(*} We want to mention that the first inferpolation functor of this type was introdneed
(and even computed for the couple (Ly,, Ly, )) in 1968 by Gagliardo [9).
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by Nilsson [22]. However, he has some restrictions on ¢ and the couples of
Banach lattices. Morcover, our proof is more “elementary” and we do not use
e.g. stch properties as K-monotonicity and K- ~divisibility. The main ideas of
our prool are taken [rom a work of Kruglyak [15] (cf. [8, pp. 560-564]) and
also our generalized Carlson inequality with blocks is used in a crucial way.
For the roader’s convenience we write all definitions and proofs in detail.

Finally, we remark that the interpolation properties of the Calderén--
Lozanovskil coustroction were investigated in a lot of works; in our opinion,
the most, important achievements were obtained, in chronclogical order, in
(7], [29], [17], [t0], [23], {11], [20], 3], [28], [10], [24], [15] and [22] (see also
the books [26] and [21]).

1. On an equivalent representation of a concave function. Let P
denote the set of all positive concave functions ¢ : Ry — Ry (R4 = (0, 00)).
It is casy to see that o(t) is nondecreasing and that o(t)/t is nonincreasing.
For ¢ ¢ P we consider

3 (1) = supp(st)/ip(s), 0<t<oco.
ax(i

We also define the following subsets of P:
Py={pepP: lim cp(t) = lim p(t)/t = 0},
Py fpe P 11n1 go( )= llm p(t)/t = oo},
Pt = lpe P lnn+ sp(t) = 0}
T={pe P lim s (t)/t =0},
In particular, we note that
(L.1) P c PNk,

For a given p € Py Brudnyi-Kruglyak [5] (see also {6, pp. 320-325])
constrocted a tricky increewing gequence such that

Ltp 1) II(E, 1/ E 0501}

Pt~ =pPtnp-.

el
() ms rxmx(np(zf;gﬂ,.+.1 Jwdn(l,t/tanar)),

whore tho equivalence constants are independent of ¢ and ¢. Since the ge-
otaetric propertios of this soquence will be used several times in this paper
we deseribe briefly the construction of {t,} and notice some inequalities.

Let g > 1 be fixed, For ¢ & (0, 00) we denote by x, the closed interval
defined in the following way:

tey, I @E) < ge(s)min(l,#/s).
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Geometrically v, means the set of all ¢ such that the graph of (¢} is below
that of g(s) min(1,¢/s).

) A
w=4(1)

y=qi(s)min(l, /) e

qo(s) ==

e —_— \— — —

Y

X
Fig. 1

‘We note that the right endpoint of . can be +o00 whenever ¢ is hounded
and the left endpoint may be ¢ whenever ¢(£) /% is bounded. The points ¢y,
in the Brudnyi-Kruglyak construction are chasen such that the intervals
Xtons, COver (0,00) and their interiors are digjoint. The right endpoint of
Xtsnps (equal to the left endpoint of xy,,,, whenever tu,.g exists) is, by
definition, denoted as {25+2. Similarly, the left endpoint of x4,,,, is denoted
by tgn.
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Fig. 2
From this construction we have the inequality

(ﬂ(t) < q I'Ilil'l(l, t/t271+1)(,0(t211.}.1) for t € thn.“ == [tﬁnaﬁ?ﬁnm}ﬂ] y
and also

wllani)/tanp = QMI‘P('@n)/th p(tonn) = go(tons1),  tonpy 2 qﬂtg“ .
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By making some straightforward calculations we obtain

o , +1
L @(tanr) min(l, t/t,41) < g—_*iﬂﬁ(t); 0<it<oo.
"

We note that in some questions of optimality the best choice of g is ¢ = 14++/2
(ef. the proof of Theorem 1). The properties of the sequence {¢,,} are closely
connected with the properties of @, In particular, we will need the following
lemrna;

LEMMA L Suppose that w € Py and let {t,} be the sequence from the
above construction. Then @ € PT iff sup,, tap4a/ton < 00.

Proof Let w & P~ and ¢ > 1 be fixed. Then there exists « > 1 such
that

Su 1
al )<~u for any s >0,
w(s) g
which we can rewrite ag
&t L(s
fﬁ,(..._.,.}.< __M for any s > 0.
s q &

Put s = 1q,,. Since

‘p(t’ln-{-l) — _1_‘.9(752:7,)
ton+1 g ton
it follows that o) /ta, < u (because ¢(t)/# is nonincreasing).

Similarly, if ¢ € P*, then fonio/tanr1 < 1fv, where 0 < v < 1is
taken from the inequality @(sv} > ©(s)/q and where s = tg,,45. Therefore if
@ € P, then sup,, bogwa/tan < ufv < co.

Coouversely, assume that sup,, tonts/ten < K < 0o, For any s € {0,00)
there exists ng such that s € [tan,, bang+a). Theit fo, 44 < K 25 and, accord-
ing to the construction of {¢,}, we find that

WU:\NES) < (P(t'g!'mrl»%l) < Ep(tﬂng-}-ﬁ) = E(P(t‘.lno-{—ﬁ) < }_tp(s) X
K2 Loy .. ti!*ﬂ.umkﬂ 7 bang+2 q &

Therefore w(K*s) < ¢ " K*p(s) and we conclude that s,(t)/t — 0 as
{ =+ oo, which means that ¢ € P~. The proof that ¢ € Pt is quite similar
#0 wa omit the details,

2. A Carlson type inequality. We begin by giving the following re-
marks to the inequality (0.2). Gustavsson--Peetre [11] have proved that (0.2)
holds for 1 < min(p, ¢) < oo if ¢ € P*~. On the other hand, the simple
example (4) = min(1,t) shows that (0.2) does not hold in general for all
i € Py. For the limiting case p = ¢ = 1 we have, for every v € P, the Jensen
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inequality

(2'1) Z ‘P(ambn) < [P(Za'mzbn) .

Let {t,} denote the sequence of numbers defined in the Bruduy! Krug-
lyak construction (see Section 1) and put x, = [tan, tan4e). Our generaliza-
tion of Carlson’s inequality reads:

Py. Then, for any

’5)’

by

THEOREM 1. Assume that 1 < p,qg < oo and ¢ €
positive sequence {a,},

02 et 0u{[{ 3 wis}] J{ 3 osei)
k2 r 0l

€Xn Rl
(1+ V2%

Proof. It is sufficient to prove (2.2) with p = ¢ = o0, We consider

oy
Amen 2

with the constant C' not depending on {a,} (C' <

W2k ey
PR

B =gup Z ——-—;’A—f—, M= B/A.
n e, P(2)

We denote by ng the index for which M € x,, and make the following
decomposition:

‘.
Y=Y T oat Y ary Y oa
n<ne 2k Ex, ki2k &y, nEng k2kExy,

If ¢ > 1, then, according to the properties of the Brudny-Kruglyak con-
struction, we have

2. 2 m< ) )] M kgfgg; w(2")

n<ng k:2h &y, n<no k:2k Sy,
Z Z Q“P t2u+l)
MLy fpadh EX;
< Ag(e(M)/q+ o(M)/g* + .. )

~Aw(M g/(g~ 1) = (A, B)q/(g ~ 1)

and

Z Z ag < Z Z —ers INAX [’f%i)

] sk E¥n
n>no kdkex, n>no b2k Gy,

2k o(ton )
< Z Z {p(gﬂﬂk in-l)

n>ng ki2k Sy, 52”"4“1

< Bq(so(M)/(McJ) +p(M)/ (M) +...)

icm
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= Bp(M)q/ (Mg~ 1))
= (4, B)q/(¢-1).

The third component will be estimated in the following way: If (M) >
Wtang41), then

N < 5 ke
(£ TP }_4 (P(Ek) I:]E-‘l)?'f ('0(2 ) Z

I\?(‘.’-)‘iw(; AJG‘:}(‘H” A‘EXVL(]
& Agp(M) = qp(4, B),

£33
“—(ﬁqﬁﬁ(tznoﬂ)

and if @(AM) < w(bun,p1), then

- R LI (2%) 2" ay
TR : : <
2omE P(OF) pee ok = > om) 1

RE Xy, ]\“E‘an(; kExno

< Bap(M) /M = qp(A, B).

e(tang+1)
bang-+1

By combining these inequalities we obtain

Sons (s v =L va)ola )
alg+1)
= A B
-1 w(A, B).
The infimum over ¢ > 1 is attained at ¢ = 1+ V2 and we get (2.2) with
C = (1 +v/2)?, The proof is complete.

Roewm ark. Trom the proof of Theorem 1 we can also obtain the inequality

(2.3) I} <2 - (H{ LQWL } {%} zq)'

Next we will prove that the inequality (2.1) can be formulated in another
useful syminetric form. We consider the following subsets of R : Ty, n =
1,2,..., are the sectors in [R.Z hetween the lines ¥ = ton 2 and ¥y = tonio®,
rospocnvely (i, are defined in the Brudnyi-Kruglyak construction).

THROREM 2. Let @ € Py and 1 < p,q < oo. Then the inequality (2.2) is
equivalent to

00 ezl X all T )
In
L (U‘-, LIET, k‘:(ak!bk)ETn
Remark. Our proof shows that the constant C can be estimated by
2(1 -4 22,

ig
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XN
{1, by)
by~ ————————— T
4
b~
|
|
|
I >
1 ki
Fig. 3

Proof, (2.2)=-(24). For n = 1,2,... we define m,, to bhe such that
fop < 2™ < tonig, We put b = ay, if 4 = m,, and b; = 0 elsewhere. Then

(2.2) implies that
o= 0+ v |{ s | 5 e )

By using this inequality and (2.1) we find that

(2.5) ”{ﬁﬂ(ﬂmbn)}Hh = Z . E

nok (@Je br ) €l

SZQD( Yoo oam Y.

l’k) SR ZAn
” hilay bu)eT, Rt by) 6T, i
A 2fim 4
savmn| )l 1)
(P(an) L w(gmn} I

=) bfc/ >,

ki(ap,by)ETn hi(aw,bp)el,

then from the definition of T, it follows that tan € 8n < fonpa. Therefore
we can choose my, so that 2™~ € x, and s, < 2™*+' Hence (s ) <

‘P(@fw bk)

If

icm
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@(2””"‘"“) < 2p(2™n) and it follows that

A 3,
\___‘._T";.%,._ o E ay w(8n) <9 Z o,
('[j(z n) (p(g’m,-ﬂ)
]ﬂ:(“‘kvb}ﬂ)ETn k:(qk,bk)ETn

ancd

THap

2'““/1 } — 9 ‘P(Sn)
(‘o(zm " ) - )_4 Ak _SD(an) =2 Z

k(g by ) &7, ke{op, 05 )ET,

Oy 8p,=2 Z by -

ki(ag,be)ET,
By inserting these inequalities into (2.5) we find that (2.4) holds.
(24)=»(2.2), Let ¢, k = 1,2,..., be arbitrary posttive numbers. By

taking ap = cp/e(2%) and bk = 2"%/(,0(2") we find that by/ar = 2% and
therefore {ay, by) € T, if 2% € v, Hence, according to (2.4), we have

{ew iy = [[{wlan, bs) Hin

(% w)
{Z &)

) ’{ z 73
k:lay,bp)eTy ki(ag.by)ET,
Ck
<oe(|{ = b5

[N 2“ Exn Ip f:2k @y
3. An optimality result concerning the system of blocks in The-
orem 1. The main purpose in this section is to explain how the block de-
composition in Theorem 1 is in a senge “optimal”. First we note that if each
Xn = [tan, tanaz) 18 decomposed into no more than M subsets x%,...,xM

(M i3 independent of n), then, by using the inequality

(S 0 s e (8 ) s ( T w)

kb ey, o R2bexl i=l klkexd

Iy

L.e. (2.2) holds and the proof is complete.

and Theorem 1 we find that, for ¢ € P,

el s Co([{ 30 wre@n} || { X 2are™),
i R 3

2VEXn 12V EX
< s

LIPIRTLCI M B

This means that our Cazlson type inequality (2 1} also holds Wlth the system
of hlocks ;m, nw=l,2,...,¢=1..., M, but with a constant of order M.
Therefore it is tempting to suggest that there are only such possibilities to

obtain a Carlson type inequality with blocks for a general ¢ € Fy. We give
a more precise meaning to this suggestion in our next theorem.

)

a'k/‘!’(gk }

- : [
k2R ext,

l[,_
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THEOREM 3. Let p € Py, 1 <7 = min(p,q) < oo and xn = [tan, banra],
where t, are the numbers defined in the Brudnyi-Kruglyak construction,
o0

Moreover, assume that {2" }nez = U, ey 20 with 2y, pairwise disjoint. Then
the following conditions are equivalent:

holds for any nonnegative sequence {an ez with a constont C independent

of {an}.

(if) There exists a finite positive number M such that, for any k € Z,
{3.2) card({n: 2, Nxy #0}) < M.

Proof. (i)=(ii). Assume the contrary, i.e. for any M > 0 we can find
ko = k(M) such that the number of n for which £2,, Ny, # { is greater than
M. Choose distinct points 2%1,..., 2" each in one of these intersections.

Then, according to (3.1), we have
M M M
Gy, 2%,
o Fosol )| A1)
; i ‘10(2'”‘;\,) Re=1 (10(2,““) LN
(Note that now each block contains only one element. )
We divide the interval Xkg = [t2]\‘5glt2k()-|—2) into [I'Ig,ir,u, b +1)  and
[tako+1: targ+2). Then at least half of the points in {27} is in one of these

subintervals. First, we assume that they are in [tag,, tog, +1). We put a,, =0
if 2™ is in the second interval and obtain
< Takg-1 -

L
p(2m) k=11l ‘P(Qn") k=111,

On the interval [tax,, tok,+1) we have ©(t) < glo(targy ) /tawg41 for some
g > 1from the construction of {¢;} (see Section 1). Thercfore, by using (33.3)
and making some simple caleulations, we find that

M \ M
PALLY

E (425 < Cq‘{—_———-@w’:; }

fo=1 ¢

k=

(i) The ineguality

(3.1) Il{an}llzlﬁa"’(u{

ok

ay, } { 2 (LAL}

o " "

A:;zé:m w28 Jall, k:z%i‘;,, () ) Iy

b

t?..'cu S

(tang1)
5 2kt

< C"Q'”{“w-/\-}ﬁ:.] i, -

Here we can choose at least M/2 of the numbers thy,, Strictly posttive and
since r > 1 we get a contradiction as M — oo.

Assume now that at least half of the points in {2} is in [fag, 1.0, farg42):
We let an, = 0 if 2™ is in the other interval and fnd that

n M M
Lok +1 < H{z iy } / { Gy, }
Ly 99(21””') k=1

99(2”": ) k=1

< kg -
I

icm
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This yieids thal w(t) < gle(taga) on [fagg+1, forg +2). Hence, according to

(3.3), we have
M
{ Gy, }
@(2m) J

which leads to a contradiction as before.

(ii)=+(1). Assme that the uniform bound M < oo from (3.2) exists and
put 1\»ff6 = 2, My For fixed ¢ no more than M of the X:iz are nonempty.
Therefore we ean use the inequality before Theorem 3 to obtain

I tla <me(|[{ 30 aree} | {5 2a/eeh)
kst b ki2kExd,

Moreover, we note that 2y, = ey xh, xn N x4 = 0 if i # j, and when

passing from the blocks xi to the bigger blocks {2, the expression in the

right-hand side can only increase; this yields (3.1) and completes the proof
of Theorem 3, '

M

>t S Cgpliag, )
M=l

< Coll{am il »
ir

' .
In imllily

4. A precise version of the Gustavsson—Peetre inequality. The
tustavsson Pectre inequality is connected with the following subsets of R :
S, o= 1,9, .., are the sectors in Rﬁ_ between. the lines y = 2"z and y =
2t by, yespectively, The following equivalence theorem is to be compared
with our Theorem 2:

THEOREM 4. Let w € Py and let 1 < min(p,q) < oo. The following
staternents are equivalend:

() pe Pt

(i 3 an % CollHan /@02 it 2" 0 (@),
i) ettt <oe(|{ X el I X wg

ki(an by ) &8N ki(ak b ) E€Sn

Proof, (iJ=(ii). See Gustavsson-Peetre [11, Prop. 3.1], where instead
of p,q we must take max(p, ¢), and also the book [21].

(ii)e(1). First we note that (i) can be interprefed as (8.1) with blocks
€2, == {2} consisting of only one element. Assume that ¢ Pt~ Then,
according to Lemma 1, for any k > 0 there exists n = n(k)' such that
lapga/ton = 95 i.e. xn contains at least &k — 1 blocks (2,. Since k was
arbifrary we get a contradiction with the optimality theorem (Theorem 3).

(1i)=(il1). We note that

Hetan bt = 25 32

n k:(ﬂﬁn,bfq )E‘—qﬂ.

Iy

ty

w(ak, br)
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<3y Y elar, 2 ey

T ki{an.by)ES,

:22 Z app(2").

n ki(ag,by) €8,
Therefore (ii) implies that

Mottt sCo(l{ 5w}l {5 w)])

ic:(a.k,h;c)ES'n Iﬂ:(”w‘nnbh‘)gyn ¢

soe({ = wjl {2 w}]).

ki by }€Sy kil b )85, ¢
(iii)=>(i1). The proof is similax to the proof of the implication (2.4)=(2.2)
in Theorem 2 so we omit the details.

5. A characterization of Peetre’s interpolation functor on
couples of Banach lattices. Let us recall some notations and delnitions
from interpolation theory (see [4], [6]). We say that 4 = (4, Ay) is a Banach
couple if the Banach spaces Ay and 4; are both continuonsly embedded in
some Hausdorff topological vector space. Let

A(!I) = AO M Al and ﬂ(}T) e A(J T Al
with

lallaz = maxlala, and Jallpzy = inf Claofa, -+ loulla,),

st o

respectively. A Banach space A is called intermediate hetween Ap and Ay if

—

A(A) C A C Z(A) (here and in the sequel C denotes continuous imbedding).

If this is the case, then we denote by A9 the closure of A(A4) i Al

The Gagliardo closure with respect to S(A) is denoted by A and deflined
in the following way: a € A® iff there exists a sequence {a, ¢ A such that,
for some A < 00, ||lan]4 < Aand ||a, ~a piay — Dasn - oo, A% s a Banach
space with the norm [Jaj|4e = inf \. The Banach couple A = (Ag, Ay) i
called regqular if A} = Ay, i = 0,1 If A = (Ao, A,) und I = (B, ;) are
two Banach couples, then we say that 7 is a continnous lingar operator from
Ato B (T € L{A,B)) if it is a linear operator from X(4) to L(B) and if
T|A;: A; — By (i = 0,1) are continuous. We then set

“T”L(ﬁ,ﬁ) s ?__}gj‘f(l[T|iAi.-w>IJ@.) .

Let & = (By, B)) be a fixed Banach couple and let £ be an intermediate
space between Ej and Fy. For an arbitrary Banach couple A= (Ag, A1)

b
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the orbit of I in E(/f) is the space of all 0 € E(X) which admit the repre-
sentation

0= ZTnfn:

n=1

where the series converges in Z(A4)
s (D r
),.,n;;m ”f'u« i < oo
This space, which we shall denote by Orb = Qrb%(A), was introduced
] y o H

by Aronszajn and Gagliardo [1]. It is a Banach space with the norm

lallo = mt 3 ||T3,

=]

-

with f, € E, T, € L(E, A), and

o
H

Lyl

v, a M falle,

where the infimum is taken over all admissible representations.
It is easy Lo see that Orbg(ﬂ) i an exact interpolation functor, which
means that if T € L(A, B), then

T OrbE(A) - OrbE(B) and 17 ombmoes < 1T 0z5

1 —
Moreover, if the exact interpolation functor F is such that E C F(E), then

o,

I P | 3 " -
Orbg (A) C F(A) for every Banach couple A.
Our main interest in this construction is when
B=dy = (e0,e0(27"),  E=co({1/p(2M}),
whete i € Py and

[Han 37 -celles = max jan],

“{a?a}m~m|lcro({2“‘“}) = H{a'nzun '.?Lo=—00 “cn-
This orbit coustruction was introduced in 1971 by Peetre [26] in another
equivalent form (see [13]) and we denote it by G'9. Thus Peetre’s interpola-
tion functor is delined by the formula
A0yl b .
G = Obiygqaspiamy)
If we everywhere replace ¢y by Lo, then we obtain the corresponding functor

% o (Ophles
(}:;,O == C)l].)lm({l/('a(gﬁ)}) .

In the sequel we say.'lshat X = (Xo, X1) is a Banach couple. of lattices
if it is a Banach couple of functional lattices defined on a measure space
(£2, ). Let @ € P, put ‘

w(9,t) = sp(t/s) and (st =0ifs=0o0rt=0/
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and consider (see [7), [18]) the Calderdn-Lozanovskil space (X)) equipped
with the norm
1F 1|2y = inf mas((| follxo, ILAallx0} s

where inf is taken over all representations of | f| in the form [f] == @(| ful, | /1])
fieXyi=01
For example, for the couples &, lm we have with equality of norins

(@) = co{{1/e(2M)}) and ¢ j;o = Lo ({1/0(2")}) .
Cur main interpolation result reads:
THEOREM 5. If ¢ € Py, then, for any couple of Bonach laltices X,
() GL(X) = p(X)°, and
(b) [GS(X))° = (X))~
The constants in tfie equivalence of norms of the spaces in both (a) and (b)
do not depend on X and .

Remark. For the special case when ¢ € Py N/ and Xisa regular
couple of lattices this theorem was proved by Nilsson [22].

Qur idea of proof is taken from [15] (see also (6]} and for the reader’s con-
venience we begin by stating the following lemmas, which are of independent
interest:

Lenvma 2. If p € Py, then, for any couple of Banach lotfices X,

Lo (EE
Go(X) < w(X).

Remark. Another proof (without estimate of the imbedding constant)
was given by Ovchinnikov [25].

LemMa 3. If w € Py, then, for any couple of Banoch lottices X“,
o(%) & GF(R).
LeMmna 4. If @ € By, then, for any Banach conple ff,
) eEY & L) & 6(X)°, and
(i) G2 (X) € (63D
Remark. For ¢ € FyN P, (i) was proved by Janson [13] (see also [16]).

In the proof of Lemma 2 we use our block version of Carlson’s inequality
in a crucial way. We postpone the proofs of the lemruas until the next section.
Proof of Theorem 5. (a) By using Lemmas 2-4 and G2 (X) =
G2 (X )° (this equality with equal norms follows frora Lemma 3( (1)) we find

Clarlsan ype inequality 175
that

' 02 A0 3 - 2
PR & Xy Ca SX)= 60X T (XY,
and, iu particular, (“’ () = tp(}e)”,
(b} According to Lmnma,s 2, 3 and 4(ii) we have

-

0 gy L oo By & a0 e
WlX) O e(X) CGFX) C{GuX)F,
which yields that [(7% (X)) = (X)),
We close this section by stating the following interpolation result:

COROLLARY. If o € Py, then ()" and ©(-)¢ are interpolation functors
on the category of couples of Banach lottices with interpolation constants
<10(1 + v2)% und < 2(1 + /2%, respectively.

6. Proofs of the lemmas

Proof of Lemma 2. First step. It is sufficient to prove that for any
interval (a,b) < Ry and 7' &-»X we have, for wx(ap) = 22 ¥X(a,) (2" )€,

(6.1) HT(WY a.b) )H (%) ('L + \/— HT“L (0,5

In fact, since w(&) = col{1/(2™)}) it follows from (6.1) that, for any
J € w(dy) with finite support, we have

(6.2) 1T oy € O+ V2P IT g2 1 o) -
If f € (&) does not have a finite support, then fisasum f = Y 00 | fo
of functions with finite support and such that
%)
Y I Fnllog S (el o, &> 0.
nsl

The series 37T f, is absclutely convergent to Tf in 2(X) and, according
to (6.2), it iy also absolutely convergent in qa(X ) so we conclude that it is
absolutely convergent to 7'f in @(X}, Moreover,

1741, S (14 VDTN ey 2 (Zufnnw @)
S(l+e)(t+ x/'z‘)QHTHL(aD,;z)Hflh,o(ao) :

Letting & — 0 we find that (6.2) holds for all f € »(¢). Now, if fe G&(-f),
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then f = E;‘le T frn and
ol 50 .
[l = | Zcfﬂfn S Zl \Tutall, 2,

<(1+v2)? Z“T'LHL(QX [ ESE

=l
Le, HfH(P(X) (1+v2)? ”f”('n(x

Second step. Let @ = @y p), 0 < a < b < oo, and consider, for x,, =
ton, tan+2) (see Section 1),

‘T(QEXN.N ty N
—=  and == max B T (B )|,
(tanti) g1 o (tannt) [7'(@xn )l

where, by abuse of notation, we also write x,, lor the characteristic function
of the interval x,,. We will prove that
(6.3) lgillx: < gl Tl

Since @ has finite support and ¢, — 0 as n — ~00 and &, — +o00 as
n — ~+00 it follows that the maximum in both expressions defining gy and
g1 can be taken over only a finite number of indices, say N. According to
the well-known inequality n

ma‘x |an<2"N Z ’ZEJ?TT‘!

go = max 2n-p 1

i==0,1.

Cu, i

En=kl n=l
we have
g <277 ————T(Pxn
e:n-—-Z:LL E‘P(Z +1) (Bxn)
N [y
-+ 2 ()
&-n-_-__-z:tl g (p(lan H)‘P)Cn
and, thus,

lgolixs 27 37 1T pay. 29

N
S i
‘P('i.ln l) "

Enesdl thas] [30+)
Since the @y, for different n have disjoint supports and |gox,, 1@(tony1)
it follows that ||gollx, < ATz, 2y Similarly we find gl||x <

g||T HL (@, %) end (6 3) is proved.

Third step. Accordmg to our generalized Carlson inequality (in the form
(2.3)) we have :
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‘T‘?j‘ “ Z iT(‘PM:)‘

| [ (P\ TL } 1:2”,4..1 " ) + l
o @ R st Aoyl LT T "‘ " S ,
}7_‘_'4 ((,0(1 _— ) [P(t27l+'l)l (QDX 1)' g 99(90 9’1)

Thersfore T3 ¢ y( f) and, in view of (8.3}, we conclude that
s B4t
=
By talking infimum over ¢ > 1 we obtain the estimate (6.1) and the proof is

complete,

7@

“L(EQ }\.}

Remark In fhe proof of the first, step we did not at all use the structure
of X and @(X).

Proof of Lemma 3. The proof of this lemma is standard and
well-known (see e.g. |25, Lemma 8.2.1]) but for the reader’s convenience
we present the idea of the proof: Let | f|,, %) < 1, ie. that there exist
fo € Xo and fi € Xy such that [f] < o(|fol,|f1]) and [|fillx, €L, 4=0,1
Let {2, = {w & 2 :2" £ W/ folw)| < 2711}, consider the mapping
A [m -+ X such that Ae ,b = fxn, and make an extension to E(f ) for-
mally defined by A(3" Anen) =3, /\,,Af’,L Then A = f (here it is important
that v € Fo) and [All, g g $2.

Proof of Lemma 4. (i) The second imbedding is proved in the
following way: 1f [|f |z < 1, then the operator Ay : lo — & defined
by Aplen) = (‘3“)/@(2”) ‘has the norm IAfll 5, 2y < 1o Therefore, if

||:r:11(;$’ <1, t;hen 2 has a representation @ =y oo T fn with

Vol
}_4 Tl gz, 23 1 Meogay < 1

XD
[IE

2 1w Ag N syl e@m <1

e |
and the second imbedding is proved.
Tn order to prove the frst imbedding it is sufficient to show that

(6.4) [E HC'” i) g 5““’“(;?(;?) for z € A(X).

< 1, Then = Ag for some A :;T;o —

and, thus, @ = /\ o With

by

Lot & A(X) and ||"3||:'*=w
with HA“l(u Ry < 1. We h&V&

= A(PX (- 00,~N)) + A(EPX i N]) + A(‘F’X(N Fao) )
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First we note that |ox|-n,nlle(z) < 1 and since the restriction of A to
is an operator with norm < 1 it follows that
HA(LPX[—N,N])HGPP()?) <l
Therefore it is sufficient to prove that for every £ > 0 and for sufficiently
large N, we have the estimates
“A(‘PX(-DO,*N)HG:L(X‘) < 2+¢ and HA((IDX(N,OO))H(,JKL’L(\"‘) < 24¢e.

The proofs of these estimates are quite similar so we only prove the secoud
one. Consider an operator B : & — X such that Be, = 0 il n % N and
for n = N we have B(p(2V)en) = Alpx(v,x)). We bave to prove that for
large N

“BnL(a',;E) <2+¢,
ie.
lAlpx (e lxe < 2 +e)0(2Y),
AP0l < (24 )27V p(2").

Since ¢ is concave and [|A| 7, % <1 it follows that

(6.5)

LA(PXN00) 131 € X (v, i gz 1y S 2702V},

and the second inequality in (6.5) holds (even with comstant 1). For the
proof of the first, we consider the following cases:

1%, limpy oo ©(27V) = 400, We choose N so large that || A
and find that

Xo < ‘P(BN}

1AGex(v,00)llx0 S 1 A0lxo + [AlRX(—00.m)) |50 < 20(27) .

2°. limpy oo p(2Y) = € < oo. Now this yields that [¢||;, = ¢ and
llox(~co,m) it < €. Therefore

fAGex v lxo S 148l xy + [ A(0X (00, | %0 < 2C
and for large N we also have 2C < (24 €)@(2%). Thercfore (6.5) holds and,
thus, (6.4) follows, which means that (1) is proved.

(i) follows from the minimality of G in the couple lio and from the
fact that G’ﬁ(}f ) is an exact interpolation functor whose Gagliardo closure
on the pair l_:,o contains. ¢ {because for the imbedding aperator A & — f:,m
we have A(p () = co({1/@(2™)}) with Gagliardo closure o, ({1/0(2™)}).
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Characterizing translation invariant projections on
Sobolev spages on tori by the coset ring and Paley projections

by
M., WOJICIRECHOWSXT (Warszawa)

Abstract, We characterize those anisotropic Sobolev spaces on tori in the L' and
unifornt norms for whicl the idempotent multipliers have a deseription In terms of the coset
ving of the dual group. These results are deduced from more general theorems concerning
invariant projections on vector-valued function spaces on tori. This paper is a continuation
of the anthor's earlisy paper [W). :

Introduction. In the present paper we study the translation invariant
projections on the anisotropic Sobolev spaces LL(T¢) and Cg(T%) on the
d-dimensional torus. Here S, called a smoothness, is a finite set of points of
R¢ with nonuegative integer coordinates containing the origin corresponding
in an obvious way to & finite set of partial derivatives. The space LE(T?) is
the completion of the trigonometric polynomials on the d-dimensional torus
with respect to the norm

Hf IS,p = ( f (ZiDmf(m)‘2>P/2 dm).l‘_fp

it nEs

where the integral is taken against the normalized Haar measure on T, and
the space C's(T%) is the completion of the trigonometric polynomials with

respect to the norm
: 1/2
, - 2
[Fllse = sup (30 ID°F@)2) -
. wel ey , :
1t is known (ef. [W]) that for some class of smoothnesses including the
clagsical isotropic case the family of the supports of the multipliers of transla-
tion invariant projections on Li(T) colncides. with the coset ring of Z¢ (de-
noted by coset(%9)), Le. with the boolean ring generated by:the cosets of all
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