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Characterizing translation invariant projections on
Sobolev spages on tori by the coset ring and Paley projections

by
M., WOJICIRECHOWSXT (Warszawa)

Abstract, We characterize those anisotropic Sobolev spaces on tori in the L' and
unifornt norms for whicl the idempotent multipliers have a deseription In terms of the coset
ving of the dual group. These results are deduced from more general theorems concerning
invariant projections on vector-valued function spaces on tori. This paper is a continuation
of the anthor's earlisy paper [W). :

Introduction. In the present paper we study the translation invariant
projections on the anisotropic Sobolev spaces LL(T¢) and Cg(T%) on the
d-dimensional torus. Here S, called a smoothness, is a finite set of points of
R¢ with nonuegative integer coordinates containing the origin corresponding
in an obvious way to & finite set of partial derivatives. The space LE(T?) is
the completion of the trigonometric polynomials on the d-dimensional torus
with respect to the norm

Hf IS,p = ( f (ZiDmf(m)‘2>P/2 dm).l‘_fp

it nEs

where the integral is taken against the normalized Haar measure on T, and
the space C's(T%) is the completion of the trigonometric polynomials with

respect to the norm
: 1/2
, - 2
[Fllse = sup (30 ID°F@)2) -
. wel ey , :
1t is known (ef. [W]) that for some class of smoothnesses including the
clagsical isotropic case the family of the supports of the multipliers of transla-
tion invariant projections on Li(T) colncides. with the coset ring of Z¢ (de-
noted by coset(%9)), Le. with the boolean ring generated by:the cosets of all
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subgroups of Z¢. On the other hand, such a description of translation invari-
ant projections in terms of the coset ring does not extend to all smoothnesses
(cf. [P-W1]).

Our main result, Theorem 5, says that in fact a dichotony holds: ei-
ther the translation invariant projections on Li{T%) arc characterized by
coset(Z¢) or there exists a Paley projection on LL(T%), i.c. a projection
onto an infinite-dimensional hilbertian subspace of Li(T).

We also study the translation invariant projections on the spaces C'g(T4)
and on polydisc algebras and we prove that they are always determined by
the coset ring. This implies that every translation invariant projection on
C5(T4) uniquely extends to a translation invariant projection on C/(T#) (the
space of continuous functions on the torus). A similar fact for L%(T4) for
1 < p < oo is proven in [P-W2].

Our results for Sobolev spaces are derived from similar results concerning
translation invariant projections on certain translation invariant subspaces
of the spaces L1(T%, E) and C(T%, E) of E-valued functions on T, Here F
is a finite-dimensional complex Hilbert space,

The present paper is a continuation of [W] where a description of trans-
lation invariant projections on L(T%) is given in a particular case (for §
elliptic). The proofs in this paper are modifications of those of {W].

The paper consists of 4 sections. Section 1 containg preliminaries. We
recall several notions from [W] and introduce some new properties of trans-
lation invariant subspaces of vector-valued function spaces, The cases of L'
and uniform norm are treated in Sections 2 and 3 respectively. Section 4 is
devoted to applications to Sobolev spaces.

The author would like to thank Professor A. Pelazytigki for inspiration
and many valuable remarks.

1. Preliminaries. Let us recall several definitions from [W]. T% stands
for the d-dimensional torus group, and 7% for its dual group, i.e. the lattice
in R% consisting of points with integer coordinates. By ZZ"I' we doenote the
set of points of Z4 with nonnegative coordinates. A lineay manifold in R¥ i
called a hyperplane. We call a (d — 1)-dimensional hyperplane in RY rationa
if it is perpendicular to some nongero vector with integer coordinates. For
every hiyperplane H C R? passing through the origin the intersection Z4M &
is a subgroup of Z“. This subgroup is isomorphic to Z% for some d =
0,1,...,d — 1 and we will regard it ag Z¢.

Aset AC Z% is called essentially periodic with essentiol period o € 74,
o) £ 0 for § = L,...,d, and exceptional family Hy,..., H; of (d - 1)
dimensional hyperplanes if there exists B ¢ 2% such that the symmetric
difference
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k
A+Bc) H
F=1
where I3 i a periodic set of period g = (Q(j))¢ e

g
B4+{0,...,0,90,...,00=B forj=1,..,d
Let B be avn arbiteary finite-dimensional complex Hilbert space with
norm |+ g, Then LY(TY E) denotes the space of equivalence classes of
E-vadued functions on ‘T4 absolutely summable with respect to the Haar

meagure with the norm

1= [ 17(2)zde.
-Ew(l
By (£, 1) we denote the Gragsmannian of one-dimensional subspaces of
E and by d(-,-) the usual metric on G(F,1), Le. d{X,¥) = the Hausdorff
distance of the sets X M By(0,1) and ¥ 1 Bg(0,1).

A one-dimensional bundle (or briefly a bundle) is a function ¥ : Z% —
G(£,1). By Ly (T%) (or L}, for short) we denote the closed linear subspace of
the space LT, E) generated by the set {ze® 7% 1 v € Z¢, & € ¥(v)}. Re-
placing the L* norm by the sup norm we define similarly the space C (T% E)
and its subspace C'y (T4, ‘

Given any tranglation invariant operator P : L3(T%) — Li(T%) the
corresponding multiplier B is & function from Z% into the complex numbers
such that Pz, e 1)) = Ply)z,e?™ ™) for every v € Zi and z-, € (%)
(cf. [W]). If P is a translation invariant projection then F : Z* — {0,1}.
Hence every trauslation invariant projection P on L(T%) corresponds to
some subset of Z9, namely to the support of P (= {y € Z%: P(v) # 0}).

For any hyperplane H < R® pagsing through the origin, g is the re-
striction of a bundle ¥ to H N Z% A set F © Z% is called e-stable for a
bundle ¥ §f d(yp(v), 9 (vs)) < & for any 1,72 € F. Recall (cf. [W]) that a
bundle v is called stable if for every m > 0 and g > 0 there exists M>0
such that |y » M implies that the ball B(y,m) is e-stable. A bundle 4/ is
called asymptotically symmetric if for every € > 0 there exists M >0 such
that it [y] > M then the set {v, =7} is e-stable.

Now we introduce certain properties of a bundle which-we use in this
paper. For any bundle ¢ on Z¢ and finite family H of (d - 1}-dimensional
rational hyperplanes we will say “4 is stab(?)” provided for every ¢ > 0 and
m > {) there exists M = M(e,m) > 0such 'l;h:at mingex dist(7y, H) > Miand
|v| > M implies that B(y,m) is e-stable, Similarly “¥is sym(’H)l” provided
for every € > 0 there exists M = M (g) > 0 such that mingen dist(v,H) >
M and |y o

> M implies that {y, -7} is e-stable. .. ¥ -
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Now we define inductively two classes of bundles: S and S8,

DEFINTTION. If % is a bundle on Z then we say 1h € 8 (resp. ¥ & 88)
if 4 is stable (resp. 7 is stable and asymptotically symmetric). For d > 1 a
bundle 4 on Z% belongs to § (resp. S8) if there exists a finite family H of
(d — 1)-dimensional rational pairwise nonparallel hyperplanes such that
is stab(H) (resp. ¥ is stab(H) and 4 is sym(H)) and for every H € N the
bundle ?,b‘H €S ('J,D|H S SS)

(8 stands for amost stable and S8 stands for almost sbable and weakly
symmetric.)

We will also use yet another property of a bundle:

DEFINITION. A bundle ¢ : Z% — G(E, 1} is called shiftable if for overy
~ € Z® there exists ., € ¥(v) such that for every 8 € Z4 the operator given

by
Tﬁ ( Z a7$762w’i(7")) = Z (L'r-l-ﬁmw@%iﬁ")
is bounded simultaneously on L};,(Td) and on Cy (T4),

Note that if a bundle ¥ on Z¢ is shiftable then Yy s algo shiftable for
every hyperplane H C Z¢ passing through the origin.

The Sobolev space L:({T%) can be identified with the space L1 (T%) for
an approprifmte bundle 1. For every partial derivative L) =« gy'' ... 87" we
denote by D the symbol of D, i.e. the polynomial on R¥ given by f)(E, =
(i€ (1))°f1 ... (i€"¥N=e. For any smoothness § the fundamental polynomiol Qg
is defined as

Qs(g) = > [DE).
Des

With a d-dimensional smoothness § we associate the bundle g @ 74 —
C{(E, 1) defined as follows. For 7 € Z* we put ¢g(v) = span{w, } where zy =
(D(7)/Qs(7)*)pes € E. Here E is a complex Hilbert space of dimension
card §. Then the Sobolev space LE(T%) (resp. Cs(T9)) is invariantly and
isometrically isomorphic to L) _(T%) (resp. Cyg (T9)) (for details cf. [W]).

A(D%) stands for the polydisc algebra, ie. the subspace of ¢/(T%) con-
sisting of functions whose Fourier transforms are supported by %‘f

2. The main result. The main technical result of the present paper is
the following

THEOREM 1. If ¢ € 88 is a shiftable bundle on Z* and P L,b, ot L},;J i3
a translation invariant projection then suppf3 & coset(Z4).

In..order to prove Theorem 1 we need some lemmas, First observe that all
technical lernmas of Section 2 of [W] are true if we replace the stable bundle

icm

Translation mvoriant projections 185

4 by a bundle ¢ ¢ § and an arbitrary nabounded sequence (o, )7%, C Vi
by oue for which the sequence ming ey dist(a),, H) is unbounded. Hence we
have the following three lemias:

LeMMma LI B ¢ 2% is an n-element set which is 1/(3n)-stable for the
hndle 4 then there exists a translation invariant dsomorphism H LllF —
Lop\p with || H1| - HH"'] =2 =

LEMMA 2. Let o0 & 8§ and let P+ LY -+ LY be a translation invari-

W i
ant projection, Then cach sequence (00, ) < 2 for which the sequence
ity dist(ed,, 1) is unbounded conteins an unbounded subsequence
(0 )2, such thal Hiny, e P+ ) esists for eachy € 7 and the formula
Rvy = ]hrrig Ply + o) foryeZ8
Thr
determines « translation invariant projection R : LYT%) — L}(T?). =

LuMMa 3. Let (2 : L,‘b, - L;‘j‘) be o translation invariant projection (¢ € S
on 74}, Assume that Q satisfies either

(i) there crist My > 0, o sequence {w)72y C R with 2| = '_;for
k= 1,2,... and a sequence of balls (B, rx))fey with (i), C Z° for
which the sequence min grey dist(oy, H) 45 unbounded and limry, = o0 such
that for k= 1,2,...

rp € supp QO Blag, ) € {2 (z - o ) < Mo},
or ‘

(i) there emists o sequence of balls (B(ag, 8) Yo, with lim s = o0 and
sequences (ay)is, © R and (ox)fz; © Z% for which the sequence MINHex
dist{ae, ) s unbounded and i — ay| = s, for k=12, such that for
koe=1,2,... _

Qlag) =1 and suppQN Blag,se) =9,
Then, there cxigh M > 0, ¢ & 2% and o subsequence (Bk)iL, of (ap)3, such
that for k= 1,2,.."
B & supp O 1 BB, #) C {23 (2~ o)l MY
Next wo prove the following
LesMMA 4, Sunpose that the assertion of Theorem 148 *ualifi forall d' < d
1 4 ¢ e t .7l ] + A -

and all shiftable bundles ¢ € S8 on ZE. Lei P oo Ly — Ly be a transla
tion invariant projection. Then H N su{jp P ¢ coset(ZY) for every (d —1)-
dimensional rationael hyperplane H C R

Proof. Define R : L}MIM - L}PIHM by R‘ =T, 0P ?T_.,y wkllere
v & Z% is chosen so that 0 € H + 7. Certainly R i3 a translatlodn inva.nant
projection and ¥4y € §S and it is a shiftable bundle on Z%". Hence,
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from our assumption it follows that supp Re ccmet(%“" M ). To complete

the proof observe that H Nsupp P = supp R4y m

We will denote by S the family of all components of R - | JH which are
not contained in any strip determined by two parallel rational hyperplanes.

The crucial lemma in the proof of Theorem 1 is the following

LEMMA 5. For every K € & and every translolion invarient profeclion
P: L}p — L,fj, there exists o set A € coset(Z) sueh that supp PN = ANK.
In particulor, if d=1 then suppﬁ g coset{7).

Proof. The proof of Lemma 5 is similar to that of Theorem 1 of [W] and
therefore we restrict ourselves to point out the modifications only. We use
induction on the dimension. Assume the validity of the assc&rticm’ol’ Letma b
for all integers d’ with 0 < d’ < d — 1 and for all 7 € 88 on Z* .

First observe that the inductive hypothesis implies
{«'}  for every shiftable bundie ¥ € 88 on Z4, for every translation in-

variant projection P : L}, — L}, and for every (d — 1)-dimensional
hyperplane H of R? there exists a set 4 € coset(Z4} sucl that
Knsupp PN H=RKnNA.

To prove (+') we simply apply Lemma 4.

Let P: Ly — L} be a translation invariant projection for some ¢ € 8S.
Agsume to the confrary
(AN supp PNK # ANK  for every A € coset(Z")

The proof consists of 4 steps. The first s the proof of the implication

(A")=(B’) where (B’) is the following modification of (13) from [W]:

(B')  there exists a translation invariant projection ¢ : Lig, —t ij such
that supp@ NK # AN K for every A € coset(%”"), and for some
sequence of balls (Bn)3%, € K with unbounded sequence of radii,
SuprmBn ={ for n= 1,2,...

In this step we repeat the construction of step 1 from [W] beginning,
instead of an arbitrary unbounded sequence (o, )%, ¢ %4, from a sequence
such that ming ey dist{a, , H) is unbounded.

It follows from (') that one can assume without loss of generality that
(xx")  supp@ N K is not contained in a unijon of finitely many (d — 1)-

dimensional hyperplanes.

The second step is the proof of the implication (B')s=+(C') provided @
satisfies (#+'). Here (C') is the following modification of (C) from [W]:

(C)  form=1,2,... there exists a ball C, = B(a,,n) with a,, &€ R and
point oy, € Z4 with |ot, — ay| = n such that supp N G, = §, Qo)
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=1 and mitgyen dist(o,, H) — oo, Moreover, |{yk, an ~ ai)] = n
for i,k = n where ()7, i any enumeration of the set {v/|v]: v €
AREE S

To prove this implication it is enough to repeat the proof of step 2 from
(W] letting now A be the family of those components of the set K — [J Ry,
(the symbol Ry, is defined i [W]) which are not contained in any strip
determined by two parallel rational hyperplanes. For this “new” family the
property (12) of [W] iy true (the proof is the game).

The other two steps: the proofs of the implications (C')=>(D) and
() condrudiction, are the same as in [W]. w

The Cartesian product of a (d-1)-dimensional ball contained in a (d— 1)-
dimensional hyperplane and the line (half-line) perpendicular to this hyper-
plane is ealled o eylinder (half-cylinder) and the diameter of the defining ball
s called the widlh of the cylinder, If the line is rational (contains a nonzero
vector with integer coordinates) this cylinder is called rational.

The elements I<y, Ky of & are said to be opposite provided there exists
a rational cylinder with atbitrarily large width which contains two half-
cylinders, one contained in Ky and the other in K.

LEMMA 6. (iven K/, K €  there eists a chain {K1,..., Kn} C & such

that Ky == K, K, = K" and K s opposite to Ky fori=1,...,n~ 1.
Prool. Every K € O is defined by a system of inequalities:

(1) lapg,ay>by for HEH

where a9 o suitable vector perpendicular to the hyperplane H and by € R.
Let us call P € S antipodal to K if it is defined by the system

for H e'H.

Pirst we will prove that any two antipodal elements of & are opposite.
To do this, take any r > 0 and choose v € 74 go that {ag,y) > 0 for all
H & M (this i possible because the set K is nonempty). Then for every
b e RY there exists M (b) such that

{ap, ) < b

(2) {Copg s by ot by > bu
for H & M and t > M (D) and
(3) {agr by +b) <bu

for H & M and t < ~ M (b). Bince B(0,r) is compact, we can find M > O'Such
that (2) and (3) hold for all b € B(0,r) and £ > Mor ¢ < ~M respegtwely.
Hence there is a rational cylinder of width 2r containing two half-cylinders,
one of them contained in K and the other in the element of & antipodal
to K. '
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Let us call K1, Ko € & neighboring if there exists a (d — 1)-dimensional
cone contained in K N Ko. Note that this definition is equivalent to the
definition of the relation “~” from step 2 of Section 2 of [W] (because hy-
perplanes from H are pairwise not parallel). Hence it follows from property
(12) of [W] that any two elements of & can be joined by a chain of neigh-
boring elements of §. Hence to prove Lemma 6 it is enough to show that
for any two neighboring elements of ¥, say K and K', there exists I & &
which is opposite to both K and K'. The element of & antipodal to K is
the one we need. Indeed, we have shown above that K and I’ are opposite
50 $0 end the proof it is enough to check that K’ and P are opposite. 1 K
is defined by a system (1) then there exists Hy € 7 such that K is defined
by

(4) { (G,H,:E) > by

<G,HD,.’IZ> < bj'{ﬂ.

for H ¢ H — {Hp},

Hence we have
{{aﬂ,m)>bﬂ for He H- [Hy},

{am,, %) = bu,
for z € K" N Hy and

{ ((LH,m> < by
(a'Hmm> = bHu

for H € H — {Hy},

for « € P Hy. Since the restriction of H to Hy gives a (d — 1)-dimensional
case of Lemma 6, the inductive hypathesis implies that there exists a rational
line o 4+ ¢3 such that o +nB8 € Z¢ N Hy for all n € Z and

5) (ag,a+t0) > by  for He M - {Hy},
(CLHD,CM + tﬁ) = by,

for sufficiently large positive ¢ and

{(@Hyﬂ‘ +t3) < by
(aHm x + tﬁ) - an

for sufficiently large negative t. From (5) we derive that
((.Lf-j.,ﬁ) >0 for H & H - {II;)}‘,
(aHn,ﬁ) =0 and ((J,HU,CI'.) = b][“ .

for H e M - {Hy},

Hence there exists a continuous positive function N : RY -+ R such that for
every v belonging to the half-space (ag,, @) < byy,, if ¢ > N(v) then

(6) { {ap,y +18) > by for He M~ {Hy},
{amo, y +18) < ba,,
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and if ¢ = N(v) then

- { (i, v+ 48 > by
{ape, ¥ +18) = by .

By a compactness argument for every ball B contained in the half-space

{ogry, @) <7 by we can fitd N such that (6) and (7) hold for every v € B
and { > N ort < ~-N respectively. This means that K' and P are opposite. =

for H & H — {Hy},

Proof of Theorvem 1. We use indnction on d. The case d = 1 follows
immediately from Theorem 1 of [W] because a one-dimensional bundle 1
belongs to 88 iff 11 is stable and asymptotically symmetric. Assume the
validity of the Indnetive hypothesis for all integers d' with 1 < d' < d—1and
for all shiftable bundles ¢ € 88 on 2% Let P . Lf,') — L},,, be a translation
invariant projection for some shiftable bundle 1 € 88 on Z#. Assume to the
coutrary that

(N) supp P & coset{Z4).

Lemma 5 implies that for every K € & there exists a set Ax € coset(Z4)
such that supp £ 1 K = Ag N K. Since each Ag is essentially periodic (cf.
Fact 1 from [W]), there exists a finite family § of (d — 1)-dimensional hyper-
planes such that for every K ¢ & there exists a periodic set By satisfying
supp P M (K - |JG) = Bg N (K ~J§). From Lemma 4 it follows that
supp PN G & cosel(Z4) for every G € §. Hence (N) implies that there exist
K' K" & & such that By % Byw. Using now Lemma 6 we deduce that

fori=1,..., &~ 1, Hence there are opposite elements K, K’ € ¥ with
(8) By # By . ,
Let ns consider the operator R @ Lj, — Ly given by the formula
R (P~ Ti)o (P~ Tk)

where T i the convolution with an idempotent measure satisfying supp T
= Ay, Certainly A is a translation invariant projection, supp RN K = @
and supp BN K" = Ay 4 Ak, The set A+ A is essentially periodic and,
by (8), it by nonewpty periodic part (= Bg + Biye). Hence there exists
r o 0 such that for every rational gylinder €' of width greater than r the
sot supp 211 K7 01¢ s infinite. Since K and K’ are opposite we deduce that
there exist a cylinder ¢ and half-cylinders D and D’ contained in C such
that

supp RN K’ ND' s infinite
aned

supp RN K’ ND s empty.
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This implies that there exists a rational line L such that supp ROL is infinite
and for some half-line A C L the intersection supp {2 N M is emnpty. This
means in particular that supp PnL & coset(Z). Hence because 1 is shiftable
there exists a translation invariant projection R on L,f}, and a rational line
L' with 0 € I’ such that supp RN L/ ¢ coset(Z). This contradicts Lemma §
because the bundle ¢y is shiftable and belongs to SS, and 8§ = Rf Ly, isa
translation invariant operator acting on the space LfM ;-

8. Translation invariant projections on Cy(T¢). The case of the
space Cy(T?) is simpler than that of LL(T%). It does not involve the sym-
metry of the bundie.

THEOREM 2. If ¥ € 8 is a shiftable bundle and P : Cy(T%) — Oy (T7) 4s
a translation invariant projection then supp P € coset(Z").

Proof. Repeat the proof of Theorem 1 replacing the L! norm by the
uniform norm except that the whole step 4 of Lemma 5 (where the weak
symmetry was involved) must be replaced by the argument taken from Sec-
tion 3 of [W] involving the Rudin-Shapiro construction (instead of Riesz
products).

Define now the bundle ¢4 : Z¢ — G(C?,1) by

dy_ ) (1,0) foryeZd,
Pi(n) = { (0,1) otherwise.

A bundle v will be called ordered if it is isomorphic to qf)ff,“ ; for some hyper-
plane A C R* (not necessarily passing through the origin). More precisely,
this means that there exists a hyperplane H C R? passing through the origin,
a € Z% and an isomorphism ¢ : Z% — HNZ such that hiy) = r/)ﬁ_(v'.(fy)ml« ).
Such bundles usually fail to be shiftable. Nevertheless thoe coset ring descrip-
tion of translation invariant projections holds for the space C‘/"f (T4).

TaEOREM 3. If 4 is an ordered bundle on 2% and P C)’.,,,('E[“’"') - C;’w('ﬂ“{)
is @ translation dnvariant projection then supp Pg coset(Z4),

Proof. Obviously ¢ € 8. The only place in the proof of Theorem 2 where
the property that the bundle is shiftable is involved is checking that supp Pn
H € coset(H N Z%) for every hyperplane # ¢ R? and every translation
invariant projection P : Cy — (. To prove this for an ordered hundle
observe that ¢y is isomorphic to some ordered bundle ¥ on Z% for some

d’ < d and use the inductive hypothesis. Every one-dimensional ordered
bundle is ghiftable. =
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4. Application to Sobolev spaces. We begin this section with an
application to Sobolev spaces. First we recall the concept of odd and even
smoothnesses (ef. [I-W1]).

DEFINITION, IA sm()o'thnesls S i3 called odd provided either there are
a,b € 5 with 377 a(jf) # 2., b(j) mod 2 and a (d ~ 1)-dimensional hy-
perplane I ¢ Z9 given by the equation

He={zeR: (1,8 =1} for some §= (8()) € R?
such that

(i) (e, 1) = (b, ) == 1,
(i (e =lloralces,
(1) A) » O for f=1,...,4d,

or the same property holds for some lower dimensional smoothness which
i the Intersection of § with some coordinate plane. A smoothness is called
even if it i3 not odd.

Applications of Theorem 1 base on the following
Proposirion 1. If S 49 even then g € 8S.

Proof. We uge induction on the dimension. It is clear that ¢ g € S8 for
every oue-dimensional smoothness 5. Let us assume that we have already
proved Proposition 1 for all d'~-dimensional smoothnesses for d' < d. Let H
be the family of all coordinate hyperplanes of the form {z € R% : z{4) = 0}
for some 7 € {1,...,d}. Then ¢ is stab(H), by [P-W1, Proposition 1.1].

To prove that 4 s sym(H) suppose that this is not true. Hence there
exists a sequence (vy,) satisfying limg inf; |7 {7)| = oo such that d(¥(n),
Yl=yn)) = ¢ for n=1,2,... We have

- (Dpeg |1 D) + eD(=3)BY?
A Gl ) = iy =2 e |

Hence we see that, after passing to a subsequence if necessary, there are
Dy, Dy ¢ § such that

D) + Di{=m | Qs ()M > ¢
adicl

Bl - Dol=3)|Qs (va) 712 > '
for some ¢ > 0 and n = 1,2,... ]3u£ this means that Dy has even or-
der while Dy Las odd order and inf,, IDi(fy,-L)|Qs(77L)'1(a' >0 for ¢ = 1,2.
Henee the smoothness S hag property (O') from Definition 1.2 O_f [P-W1]
and therefore Proposition 1.2 of [P"W1] gives that the intersection of .5
with some coordinate plane bas property (O). This means that § is odd. A
contradiction. ' '
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To end the proof it is enough to observe that H NS is a (d—1)-dimensional
smoothness for every d-dimensional smoothness § and every H ¢ H. Hence
we can use the inductive hypothesis.

Analogously we have
PROPOSITION 2. thg € S for every smoothness 5.

The proof of this proposition is even simpler than the previous one be-
cause the part concerning property sym(7?) can be omitted.
We also have the following obvious

FACT 1. Bvery bundle corresponding to o smoothness is shiftable.

Proof. This follows from the boundedness of the operator of multipli-
cation by a character in Sobolev spaces on T =

Now, from Theorem 1, Proposition 1 and Fact 1 we have

THEOREM 4. For every even smoothness S the translation invariant pro-
jections on LL(T%) are characterized by coset(Z?). m

Theorem 4 together with the main result of [P-W1], namely the equiva-
lence of oddness of a smoothness and the existence of a PPaley projection on
LY(T9), yield the following dichotomy.

THEOREM 5. For every smoothness S either there cxists a Paley pro-
jection on LL(T%) or the translation invariant projections on L(T4) are
characterized by coset(Z4).

For Sobolev spaces with uniform norms we obtain from Theorem 2,
Proposition 2 and Fact 1 the following

THEOREM 6. For every smoothness S the franslation invariant projec-
tions on Cg(T?) are characterized by coset{Z%). u

Finally, we use our method to prove the kuown characterization of the
translation invariant projections on the polydise algebra {ef. [K]).

THEOREM 7. For any translation invariant projection P on A{ID?) there
is an A € coset(Z4) satisfying supp PN Z4 = AN ZL.

- Proof Define Rf(t) = I ( f(t})) where IT| : C? — C? is the projection
onto the first coordinate axis. Certainly R : Oq,)ci (T4) — A(I) is a bounded
proqect%on. Because R and P commute, P o R is a translation invariant
projection on Cye (T%), so we apply Theorem 3. m

icm
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