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‘Weighted estimates for commutators of linear operators.
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JOSHLIFINA ALVAREZ, RICHARD J. BAGBY,
DOVGLAS 8 KURTZ and QARLOS PEREZ {Las Crnces, N.Mex.)

Abstract. We study boundedness properties of commutators of general linear opera-
tors with real-valned BMO funetions on weighted L? spaces. We then dexive applications
to particular important operators, such as Calderén-Zygmund type operators, pseudo-
differenitial operators, multipliers, rough singular integrals and maximal type operators.

1. Introduction. The purpose of this paper is to study boundedness
properties of commutators of real-valued BMO functions with general linear
aperators on weighted LP spaces. Indeed, we will give a general result, The-
orem 2.13, from which we will derive applications to particular important
operators, such ag Calderén Zygmund type operators, pseudo-differential
operators, multipliers, rough singular integrals, and maximal type opera-
tors.

More specifically, given a linear operator T' acting on functions and given
a function b, we define formally the commutator [b, 7] as

[b,T]f = HI(f) = T(bS).
The first results on this commutator were obtained by Coifman, Rochberg,
and Weiss 8] in their study of certain factorization theorems for generalized
Hardy spaces, They showed that if T is a clagsical singular integral operator
with smooth kernel and b € BMO, then the commutator [b, T] is hounded
on LP(R™), for | < p < oo, They also showed that the condition b € BMO
i necessary when 7' = Ry, the jth Riesz trangform in R™, for j =1,..., 7.

The proof they gave of the sufficient condition is hased on a delicate
good-) inequality involving several auxiliary operators. Some years later,
J, 0. Stramberg [20] provided a much simpler proof using the sharp maximal
operator of C. Fefferman and B M. Stein. Coifman, Rochberg, and Weiss
outlined in the same paper a different approach, which is less direct but
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shows the close relationship with the existence of weighted inequalities for
the operator T. Roughly speaking, their idea is that an appropriate weighted
inequality for T provides an unweighted inequality for [b, T if b & BMO.
In this paper, we exploit that idea further to obtain one ane two woighted
inequalities for [b,77.

The organization of the paper is as follows. In Section 2, we state and
prove the main result, with the aid of several auxiliary results. In Section 3,
we show the broad use of these results by considering varlous applications
of interest.

The notation we use is standard. We will write f: 4 - B {0 denote a
function defined on A with values in B, with no assumption of continuity.
Civen Banach spaces A and B, L(4, B) will be the space of continuons lincar
operators T : A — B with operator norm || T||. Given p with 1 < p = oo, 9/
will satisfy 1/p+ 1/p" = 1.

2. Main result. A nonnegative, locally integrable function on B™ is
called a weight. We will consider weights which satisfy the following condi-
tions.

DerFmITION 2.1. Let 1 < p < 0o, A weight w satisfies the A, condition,
w € Ay, if there is a constant C' > 0 so that

p-1
('I‘é— C{ w(:c)da:) (%ﬁ bf w(gg)l——p' dm) <, forl<p< oo,
or

1
Lo f w(z)de < Cessinfw, forp=1,
@l Q

for all cubes @ in R™. The smallest such C' is called the Ay, norm of w. We
set Ao = (5 Ap-

For further information about A, weights, we refer the reader to [(5].

DErINITION 2.2, We say that a collection of couples of weights W is
steble if (w,v) € W implies that there is an & = 0 such that (w'te,u+e)
e w.

We will also use stable collections of single weights by considering the
pair (w,w). Thus, it follows from well-known results about A, weights that
the A, spaces are stable for 1 < p < co. Moreover, the 4, spaces defined
with respect to othel bases form stable classes of weights. Similarly, for a
fixed p, the collection of weights u(x) = w(z)|z|*, where w € 4, and a € K,
is a stable class of weights,
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Let | < p < oo, Cousider the class W7 of pairs of weights (w,v) such
that
1/p'r

L, ey :
sup ( ] wax)" da:) (m fv(a:)(l""’J r dm) <,
¢\ @l

for some | < r =2 oo, The class WP is stable [26].

Lot M be Lhe set of real-valued, Lebesgue measurable functions de-
fined on B and let L5 be the subspace of those functions in M that
are assentinlly bounded and have compact support. We assume that T' is
a lincar operator in M, with a domain of definition which contains ev-
ery compactly supported function in a fixed LP space, p < oo. Given a
realbvalucd function b € BMO, we can define a family of linear operators
(T,: Lge - Mz a €, |z] < r(h)}, where ‘

Ty f = ¥ T (e f).

Qur first result is the following theorem.

TrroRrEM 2.3, Let | < p < o0, 1 < g £ o0, and let T be as above.
Suppose that W is a stable class of pairs of weights. Assume that

T e L(LP(0), LP(w))  for oll (w,0) €W,
T e LR (), LP{w))  for all u € Aq.

Then, for cach real-valued function b € BMO and each pair (w,v) € W,
there s a 6 = 0, which olso depends on p and g, such that

T. € L{L"(v), LP(w))

jor each |z| < 8. Moreover, supyy <5 | T:| < oo,

(2.4)

Proof Fix b € BMO. There is a v > 0 such that.e™ € A, (see, e.g.,

[15]). Thus, by (2.4), ‘
T e L(LP(e™), LP (")),
with norm Af). Tn fact, v and M depend on the BMO norm of . Since
b e BMO jwplies that rb € BMO for [r] € 1 with a smaller BMO norm, we
gee Lhat
T e LU (), LPe®)  for [H S,

with narm bounded by M. 3

Fix (w,v) &€ W. Since W is stable, there is an e > 0 such that (w
& W. By (2.4), :
(26) T & L{IP ), P ('),

with norm My,

Ite gylt+e)
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Civen z = a+i3, the operator T}, will belong to L{L#(v), L*(w)) provided
that

(2.7) T € L{LP(ve®??), LP(we™)) .

Let 6§ = ~ve/p(l + &) and suppose that |z| < 6. Then |af < ve/p(l +¢e) or
lalp(1 + &)/e < . From (2.5), we obtain

Te [j(LP(Eapb(1+s)/r) L;o( apb(l4-e) /8 ))

Applying Stein’s interpolation theorem [29] to this last result and (2.6) yields
(2.7) with a norm bounded by max{M, Mz}. This completes the proof of
the theorem. =

We would like to point out that if ¢ = 1, Theorem 2.3 is still true if we
assume that b € VMO, the space of functions of vanishing mean oscillation.
The comment applies to the later resuits in this section, =

We will need a vector-valued version of Theorem 2.3 to obtain certain
applications. Let A be a Banach space with norm || ||a and u a weight. For
1 € p < oo, define the Banach space L (u) to be the set of strongly mea-
surable functions f : R™ — A such that [ ||f(#)]% u{e) de < oo, We will use

F(A) and M(B) to denote the vector-valued analogs of the spaces coun-
sidered above. Repeating the proof of Thecrem 2.3, we obtain the following
vector-valued result.

THEOREM 2.8. Let A ond B be Banach spaces and suppose that T -
L§(A) — M(B) s a linear operator. Let | < p < o0, 1 < ¢ < o0, and let
W be o stable class of weights. Suppose that
T e L(IA(v),LE(w)) for all (w,v) e W,

T e L(4 (u), L{w))  for allue A,.

Then, for each real-valued function b € BMO and each pair (w,v) € W,
there is a & > 0, which also depends on ¢ and q, such that

Ty € L(I4 (v}, L (w))

for each |z| < §. Moreover, sup, <5 ||T:| < oo, =

(2.9)

We would like to show that the mapping z -+ 7%, with values in
L(LA (v), Dg(w)), is analytic near z = 0, in order to idemtify the cocffi-
cients in its Taylor expansion with the iterated commnuttators of 7' and b,
When'A = B = C, we are able to prove the analyticity of this map using
a characterization stated in [21]. The proof relies on selecting appropriate
dense sets in LP(v) and the dual of IP{w). We are unable to extend this
proof to the vector-valued case without imposing some conditions on the
space B, such as the Radon- Nikodym condition. However, it is still possible
to show the boundedness of the iterated commutators without proving the
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analyticity of the map z — 7. The rest of this section is devoted to showing
this alternative proof, Let D, = {z € C: |z| < n}.

LenvMa 2,100 Let A ond B be Banach spaces. Lel 1 < p < oo, 1 <
g < oo, and let W be o stable class of pairs of weights. Suppose that T :
L {A) ~ M(B) is a linear operator which satisfies conditions (2.9). Then,
for each realvalued function b € BMO and each pair (w,v) € W, there is
an n = 0, which alse depends on p and ¢, such that for each f & L§(A),
the map & — 1y (f) 48 continuous from Dy, into Ly (w).

f. We need to find an n > 0 such that for z € D,; and {z.} C Dy,
it 2y, = z then [|[(Te, — T2)fllng ) = 0 as n — oo, Write

Tz,. f e 1 f . (."r”hf[T(( b o »b) ) }_(ﬁzu . sz)T(B—be) _ I+ IT.

Cousider the L (w)-norm of I. Let o, = Re(z,). We have

e [ lle= (e — &) ) () fpw(e) do

Proo

H

|| () dae

B [
= [T — e ) ) (o) [ue) da

"
< [l =e &™) P(@)lfae” () de,

for |z = 1.
Tix « » 0 such that e @ A, Then e7?ltl/2 ¢ A, and by hypothesis,
T & L(LA (773, 1% B (erpltl/2Yy, %mce (w!te, vty € W for some & > 0,
we also l‘u-we T e E(L‘R(?JL +e), Lh{wl e, Thus, by Stein’s interpolation
result, we obtain
A (,U(ﬂplblf/-a (-e)y, 7o (w{;wws/ztl-ks 1.

Henes, selting n = '7.;/2( , we have
T ¢ L(Li’\_(w"”"”"), 12 (we M)

1L Follows that the nomn of T is bounded by a constant times

[' H canh(®) g zb(a ) “p ]J‘.'}“)(tﬂ,u( )Cl’ﬂ
" .
We claim that this integral approaches 0 as n — oo, Indeed, it is clear
that the iuwp;mnd converges to 0 pointwise. Furthermore,
e Ee)) Py }HA(,Jrlb(w)\
) HA@.”M“’)‘ P \b(M)%”f(x)“Aenlb(w)l

Aeznib(uﬁ)\ ,

H S e

< a‘“’nl |b()i “

< 2l f(z)
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and

S M@ e @ h(e) do < | fE iy [ A HNu(a) do
E® supp (/)

2B} (1e) fe g, Y5 (LFED e g, YO
gc;fufnpgm)( [ ity dm) ( () Ldﬂ)
supp(/} supp(f)

= CHf“pff'(A)( f 2TPib (@) dm)s/(l-l-s)( f 'U(*:c)i 'Wl,r) 1/{1be) |

supp(f) supp(f}

Since e"?1%l and v'** are locally integrable and f has compact support, this
last expression is finite. By the Lebesgue Dominated Convergence Theorem,
S Ewdz goes to 0 as n — co.

We will use similar arguments to estimate the norm of I7. Since

S gy de = [ (e — ey T (e £) o) o (e) da,
™ E"
it is clear that the integrand converges to 0. This last integral is hounded

by 2 [T (e f)(z) | he?"@w(x) dz, so vsing the same interpolation an-
gument as above, we see that

HHI w(z)de < C e pa) [ Py (1) dar
B

R'ﬂz
<C f I| £ () |[h P () de
R"
As before, we can conclude that f [|ZI||}w dz goes to 0 as n — oo, It follows
that ||(T%, T,)fHL% (w) — 0 a8 n — oo, which completes the proof of the
lemma. w

Remark 2.11. Let 6 > 0 and % > 0 be as in Theoremn 2.8 and Lenima,
2.10, respectively. By taking 7 < & if necessary, we cau assiune that

M = sup |T;,
Dy

<00,

where the norm denotes the operator norm in L (), L (ur)).

Let 0 <r <npand 8D, = {z € C: |z = r}, oriented counterclockywise,
By the previous lemma, the Bochner integral

19 n! ' Tz(f)
(2'12) '2"%_";: j z”““’l dz
238

™

exists for each n = 0,1,2,..., and yields an operator, C,,, which is densely
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defined in LY (v) with values in L (w). Moreover,

“( b “I" (1) < Iu"'"“fHL“ (v)

thus showing ', € L(L7% (v), LE(w)) with an operator norm bounded by
Mulp-™,
We are now ready 1o prove the continuity of the iterated commutators.

TuroREM 2.13. Let A and B be Banach spaces and suppose that T ¢
L (AY - M(B) is a linear operator. Let 1 < p < o0, 1 < g < o0, and W
be a stable closs of pairs of weights. Suppose thal
T ¢ L(L (v), Ey(w))  for all (w,v) e W,
T e L(LY (u), Lg(w))  forallug Ay

B{
Then, given b € BMO and (w u) € W, the n-th commutator (.Jf T and 'b,
defined pointwise as T{(b(x) ~b(-))"f(-))(x) for f € L& (A), coincides with
the operator O, giver by (z 12) Henece, for each n = 1,2,3,..., the n-th
commutator belongs to L(LY (v), T (w)).
Proofl Fur N ¢ Mand [ € LF(A), set
N ﬂ'i "t
Swla,) = 30 Tobla),  TIV(e) = Sl TS~ )(e).
jasl) -
Since Sn (@, ) ~ ¢* ) and |Sy (e, 2)! < gnib(=)] f01 all z € Dy, the same
arguments used to prove Lemma 2 lU show that T4 ( £ = T(f) in L (w)
with ||’1'(N)( Pl ) miformly hounded for z € D, Using the Dominated
Convergence T heorem for the Bochuer integral (see [32]), we see that
()

o e, T,

= o gl

: a0, DI

exists tn L% (w). But sinee 1" 1s linear, for all N > n, we have

nl o TV, 2
Gulpo) = 2 [ i e
yn,
MO b, [ (b)), A W' AR
Jal) fon
~ b (BN Y ) = Tb() = B O ).
.::’n,tj%:n f l( i f())(r) ({b(z)

We cnn conclude that the nth commutator T((b(z) ~ b(-))"f(:))(z) coin-
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cides with the operator C, and, thus, it belongs to L{L (v), LE(w)). This
completes the proof of the theorem. =

3. Applications. In this section we present applications of Theo-
rem 2.13. As we mentioned in the introduction, one of the main tools for
obtaining weighted norm inequalities for the operator T involves the sharp
function of C. Fefferman and E. M. Stein. Let M f be the Hardy -Littlewood
maximal function of f and set M,(f) = (M{|f["})"/?. Now, suppose that
for some p, 1 < p < oo, there is a constant ¢ = ¢, > 0 such that for all
z € R" and f € C§°(R™),

(TF#(z) < CM, f{a) .
Then T is bounded from L4(u) into L¥{u) for p < ¢ < oo and u € Aysp
(see for example [22, 27]), If T is linear, then we can apply Theorcm 2.13
to prove that [b, T} is also in £{L%(u), L9(w)) for p < ¢ < o0 and v € Ay
Several of the applications below arise as a consequence of this situation.

3.1. Convolution kernels, Let k(x) = Q(z)/|z|™ For 1 < r < oo and
0<86<1, set o

T
wrl6) = swp ([ [0(2) - (gl do(r)) !
lel<s ¥
W?lﬁl"e the supremum is taken over all rotalions p of the unit sphere Xy,
with || = sup,es, |2 — ox| < 6. We say that  satisfies the L' Ding
condition if 2 € I"(Zn-1), [y Rdo =0, and [ (w,(6)/8) d6 < cc.
Define the singular integral operator 7' by T'f . ' i
y T1(z) = pv [ b(y) [z —y) dy,
for f € C5°(R™). As shown in [23], (T'f)#(z) < Owa(:z:)‘{ "
Wl?en r = oo and Woo is defined in terms of the L7 (X5, )-nom, we
essentially get the classical singular integral operators. Since these operators
are 1—;‘nown to be bounded on LP(u) for 1 < p < oo andw € 4 g Theorem 2,13
implies that the commutator [b, 77 is also bounded on LPa) for b€ BMO
I <p<oo,andue 4, s ‘

3.2. Calderdn-Zygmund operators. Tet A {(s R

‘ ‘ (! d ope s Lo = {{w,e) @ B} be the
dlago'na,l of ]R’."” x R™. We defive a standard kernel Lo he a locally integrable
function & : R™ x R™\ A — € which satisfies: l A

h(,y)| £ Cla -y,
k() = k(z )] + k(y, 2) - k(y, 2)| < Cla ~ 2]y - 2] (779

for 2z ~ 2 < |y — 2| and some 0 < ¢ < 1.

HLCtlat TG: cge QR”) — D'(R™) be a continuous linear operator. Then 7 is
called a Calderdn-Zygmund operator in the sense of Coifman and Meyer [7]
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it T extonds to a coutinmous operator on L#(R™) and it is associated with a
stancdard kernel &, which means

i) = J K

for f & Cpe(R") and e & supp([f).

Given a Calderdn Zygmund operator ' and 1 < p < oo, there exists
(e Oy 2 0 such that
(3.3) (T1Y*(r) < OM, f(z)

(sce [7]). Sueh an inequality fails for p = 1, as can bhe seen by considering
the Hilberl transform [7].

3.4, Weakly-strongly singulor Colderdn-Zygmund operators. There are
singular integral operators which enjoy properties similar to those of the
Calderdén Zygmund operators, while the kernels are more singular near the
diagonal than in the standard case. The model for these operators is the
multiplier opevator Ty defined by

ptlEl® ~

(Hcmﬁ)l\(’f) = W[J(E)f(o )

where 00 « o < 1, > 0, and # is a standard cutoff function. This operator
was named weakly-strongly singular by C. Fefferman [13]. The convolution
kernel of 7,y turns out to he essentially the function exp(ifz| “y /||, with
Vo 1/a" = 1 and A = (na/2 -~ 8)/(1 - ). The non-convolution case is
modeled after this example as foliows.

Lei T Cpe(IR") - D(R™) be a continuous linear operator. Such a T is
called a weakly-strongly singtlar Celderdn-Zygmund operator if there is an
o, 0 < o< 1, 80 that 7" extends to a continuous operator from LP(R™) to
LB and from LP(R*) to LI(R™), for some 1 < p, g < 1 with /g < e [3]

For [ & C9(T™) and = & supp(Sf)

Tfe)= [ kzy)fly)dy |
where the distribution kernel coincides with a locally integrable function
ko R™ s I\ A e € which satisfles

|k, y) — Rz, y)| < Cle - 2[[y -~ P
for Qa5 « |y - 2 and some 0 < & £ 1 and 0 < v < 1. Gliven a weakly-
sorongly singular Calderén Zygmund operator and given 7, p <1 <. 00,
there oxists a ¢/ = ¢, = 0 such that ()% (x) < CMf(z).

3.5, Paoudo-differentiol operators. We next consider pseudo-differential
operators in the Hérmander class L7 [17]. Let m € R, 0 5 §< 1, and
0< p < 1. Anoperator T' € L' if it has the representation

Ti@)= [ e (s, &)f(€)

holeg /o)
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for f € C§°(R™), where p € C*°(R™ x R™) and satisfies the estimates
D2 DEp(2,E)| < Capd+ |y V2.

The function p, which is uniquely determined by 71', is called the symbol of
the operator.

In [7] it is shown that pseudo-differential operators in LYy are Calderén-
Zygmund operators. Thus, the pointwise estimate (3.3) holds. This cstimate
has been proved by alternate means by N. Miller [24]. More generally, op-
erators in L7 with 0 £ § < 1,0 < ¢ = 1, and m & ~{n -+ 1)1~ p)
are Calderén-Zygmund operators [2] and thus satisfy estimate (3.3). Simi-
larly, pseudo-differential operators in L;’fé with 0 <& < 1, 0« ¢+ 1, and
m < n(l — p) are weakly-strongly singular Calderdn Zygmund operators,
with p = 2, ¢ = 2/p, and o = 1/p [2]. Such operators satisfy (3.3) with
r> 2.

S. Chanillo and A. Torchinsky [6] have proved that pseudo-differential
operators in the class L;g(l_g)/z, B <8<p<,satisly (3.3) with p= 2. 1t
is an open problem whether the same pointwise inequality holds with » < 2.
The following result is a partial angwer to this problem [2].

Given T' € L%, 0 £ 6§ <1 and 0 < ¢ £ 1, and given v, 1 < r < oo,
there is a C' = C, > 0 such that (Tf)#(z) < CM, f(z) for f ¢ CF(RY)

0 s

‘ ()
provided that A = max{0,(§ — ¢)/2}, 0 < C3(1 ~ 2nA/(n A+ 2)), and
m < —n(l— o) — p, where

2u={l+n{o+ X ~ V{1 +n(o+ N}~ 4dnA}.
One should note that 4= 0if A =0.

3.6. Multipliers. The pointwise conditions imposed on the kernels or sym-
bols of our operators are at one end of a scale of integral conditions [27]. We
will now consider a class of operators whose symbols satisfy a Hérmander
type condition.

Let m be a bounded, measurable function on . Define the multiplier

say that m € M(s, 1) if

J L/s
sup sup (R |DAmie)|" de) " < o0
R>0ia]1 (§ie <2

(see [23]). For [ > n/2, M(2,1) is the usual Hérmander multiplier condition.
Itm € M(s,l) with 1 <s <2 and n/s <1< n, then for r > n/l there is a
constant & = C; > 0 so that (Twf)*(2) € OM, f(). Here, Tl s defined
by a smooth cutoff of m, T converges to T' as N ~ oo, and the constant
C is independent of N..
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The M(s,1) condition has been generalized to include cases where [ is
not an integer. Let A he a nonunegative real number. Set M(s, \) = M (s, 1)
if A is an integer. II' A is not an integer, let | = [A] and v = A — 1. Then
me M(s, )il m ¢ M(s,!) and

r\7"*
sup  sup  max ((ww) R
R0 (< |nlsr/2 LA ed M?I

1/
<[ IDPm© - DPme-nldg)  <oo.
(6:R< g« 2R)

Such multipliers have been studied in [25] in one dimension and in [9, 28,
30] in higher dimensions, The associated multiplier operators are bounded
on LT (R") for certain As weights which are not necessarily in A,. The
weights in question are a product of an A, weight and a function of the
forng. (1 + [2])* II}JM |z -~ p;|*“. The conditions on the A, weight and the

exponents a and @y create a stable class of weights.

3.7, Rough singular integrals. There are two standard techniques for prov-
ing weighted inequalities for classical singular integrals. One involves the
so-called “good-A" inequalities and the other is based on the sharp func-
tion. Both methods require fairly strong regularity conditions on the kernel
of the operator.

Using the method of rotations, Calderén and Zygmund obtained L¥ es-
timates for the principal value operator

20 (o~ )y
vl

Tf(z)=pv [

asswning only that the function §2 18 homogeneous of degree zero, 2 €
(o) and f,, | f2do =0,

The method of J. Duoandikostxea and J. L. Rubio de Francia [11]
gives 4, welghted inequalitios for operators sueh as the T above . Thus, The-
overn .13 implies that [b, 7] & L{LP{u), L7 (w)) for be BMO, 1 <p < o,
and u & A,. :

Recently, 1D, K. Watson [31] and J. Duoandikoetxea [10] have consic}ered
kernels satisfying the weaker assumption {2 € L7(%y-1). They proved, m'de—
pendently, that T ¢ L{LP(u), LP(u}) for p in an appropriate range depending
on v and u € Ay, with ¢ depending on p and », and also for weights -u__sgc,h
that u? € A,, with g again depending on pandr. Since all of these classeb: of
weights are stable, we can invoke Theorem 2.13 to olitain the corresponding
weighted estimates for the commutators [b, T] with b € BMO. o
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Now, congider the kth Calderén commutator T3 defined by

T f(z) vaf wlgﬂ.),; CL({L')"a("tj))’c_f((z--«;lj)(ijg,

where a is a Lipschitz function, £2 is homogencous of degree zoro, 2 €
L%(3 1), and for |8] = k, [p _ 27 Q2de = 0. 5. Hofrwann 16] has proved
welghted resultb for 1 <p<o0 Wlth A, weights for these operators, so that
Theorem 2.13 applies to the commutators [b, T;].

3.8. Vector-valued operators. Given a function ¢ & s LMY, we can con-
sider the approximation to the identity {Ps}io, whm e By (a) = b P/t
and its associated maximal function My defined by

Mpfa) = sup |y * flz)].
t>0

When @ is the characteristic function of the unit ball in K", we gel the
Hardy-Littlewood maximal function. Under fairly mild conditions on &,
such as

8w ~ ) — B(@)| < Clyl/la|™" for 2] > 2fyl,

M is bounded on LP(w) for w € Ay. Since the convolulions are linear, Ay
is realized as the 1°° norm of a linear operator. Thus, the commutator

sup |B(P; % f) — Py = (b))
>0

is bounded on LP(w) for w € A,. In particular, we extend the vesult of Cloif-
man, Rochberg, and Weiss to weighted L spaces with more general kernels,
This same idea applies to maximal singular integrals and the Carleson max-
imal function [19, 27].

Let T be a sublinear operator which satisfies the conditions of The-
orem 2.3, In many important instances, T' can bhe realized as a Banach
space norm of a linear operator S; in other words, T'f (2} = |5 f{w)||ln. The
weighted norm inequalities for T imply that § satisfics Theorem 2,03, so
that the commutator [b, 8] € L(L¥{v), LF(w)}, However, since the difference
of norms is bounded by the norm of the difference, we have the {following
inequality:

[, S @) e = |6{x) S f () -~ S(bf ) ||H
2 HB(@)Sf @)l -~ 1SS} ) ls]
= | |b(z)|Tf () -~ T (b ) ()]
It follows that for a nonnegative function b € BMO),
[, ST () = ([0, TV ()]

Thus, when & is nonnegative, the commutator results for § apply to 7.
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The main application of this situation that we have in mind is to square
functions.

For the second application, let ¥ be a Schwartz function with integral
mean value zero, [ W = 0. We define the Littlewood-Paley operators by

S (j @ ey ar)

swiine = ff

{(x )R |zmm| <t}

, 1/2
By % fz) |20t dzclt) / ,

anl
1/2

LAl (fj (Hﬁwﬁ)'\”m*f(z)|‘-’-rl"ﬂczzdt) . L< A

'n{l.

In the classical situation, % () = tV.P(z,t), where P is the Poisson kernel.
Each of these operators can be realized as the weighted L? porm of a linear
operator; for ecxample, :

SIPI(F) (@) = |xrw) (e D@L

where 1',(x) is the cone {(z,t) € R} ¢ [z—z| <t} and'the L? norm is taken
with respect to the measure ¢~ d~ dt. The condition on ¥ guarantees that
these operators are bounded on L?(w) for w € Ay Thus, Theorem 2.13
applies to show that the commutators of these operators with nonnegative
BMO functions are bounded operators. We would expect this to hold for all
BMO functions, though our methods will not yield such a result.
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