Contents of Velume 104, Number 3

T. MoUTON and H. RAUBENHEIMER, On rank one and finite elements of Banach

algebras ... e e 211-219
7. NURLU and J. SARSOUR, Bessaga’s conjecture in unstable Kdthe spaces and

PIOAUCES + v o o v i e e e e 221-228
Vi Qudc PHONG, Semigroups with nonguasianalytic growth . .. ... ... .. 220-241
P. GLowaCK] and W. HEBISCH, Polntwise estimates for densities of stable semi-

groupd of Measures . ... . ... ... 243-258
L. BIAEAS and A. VOLBERG, Markov's property of the Cantor ternary set . . . 259268
K. YLINEN, Representations of bimeasures . . ... .. ... ... .. ... ..., 269-278
V. P. FonF, On supportless absorbing convex subsets in normed spaces ..., 279-284

K. Nowak, Commutators based on the Calderén reproducing formula . .. . . 285306

STUDIA MATHEMATICA
Munaging Editors: 7. Clesielski, A. Pelezyniski, W. Zelazko

The journal publishes original papers in English, French, German and Russian, maialy
in functional analysis, abstract methods of mathematical analysis and probability theory,
Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and
correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-203997

Correspondence concerning subscription, exchange and back numbers should
be addressed to

- INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Publications Department

Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-203997

® Copyright by Instytut Matematyczny PAN, Warszawa, 1993

Pyblished by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by
-.

. WARSRAY, ul, dshshintw
"PRINTED IN POLAND

- ISBN 83-88116-842 ISSN 0039-3228

icm

STUDIA MATHEMATICA. 104 (3) (1998)

On rank one and finite elements of Banach algebras
by

T. MCUTON and H-. RAUBENHEIMER, {Bloemfontein)

Abstract. We give a spectral characterisation of rank one elements and of the socle
of a semisimple Banach algebra.

In [6] J. Puhl defined rank one elements in a semiprime Banach algebra
in such a way that it was possible to define a trace functional in a subalgebra
of this algebra. Puhl also gave a characterisation of rank one elements ([6],
Corollary 3.3). Our main aim in this paper is to give a spectral character-
isation of rank one elements in a semisimple Banach algebra. Our paper is
organised as follows: In Section 1 we collect some basic properties of rank
one elements, Section 2 contains a spectral characterisation of rank one el-
ements and Section 3 contains a spectral characterisation of the socle of a
semisimple Banach algebra.

1. Basic properties of rank one elements. Throughout this paper
A will denote a complex semiprime Banach algebra with invertible group
A~1 and identity 1. The rank <1 elements of A are the members of the set

FilA)={ac A: L, R, e A Qa:A— A},

where A’ is the dual space of A, and L, R, denote respectively the left and
right multiplication by a. We write f ® o(y) := f(y)z for each y € X. Thus
a € Fi(A) if and only if there is a bounded linear functional 7, : A — C
for which aza = 7,(z)a for each & € A. Evidently 7, is unique if & % 0; if
a = 0 we take 7, = 0. For example if A := B(X, X) is the bounded linear
operators on. & Banach space X then the rank one elements are what they
ought to be: F1 (A) = X'®@X ([6], Proposition 2.6). If instead, A := Co (12) is
the bounded continuous complex-valued functions on a completely regular
Hausdorff space (2, the rank one elements are the “delta functions”, i.e,
Fi(A) = |U{C6 : ¢ € iso(2)}, where iso(f2) denotes the set of isolated
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212 T. Mouton and H. Raunbenheimer

points of 2, and §;(s) = 1 if s = ¢ and 6(s) = 0 if s 5 ¢ (]6], remark
preceding Lemma 2.7}

If A is a Banach algebra then the centre of A is the set centre{A4) :=
{a € A:za = ax for every x € A}.

ProrosiTION 1.1, Let A be a semiprime Banach algebra and @ € A.

(1) The rank one elements in A form a multiplicative ideal, i.e.,
AF(A)A C Fi(A) (6], Lemma 2.7).

(2) If L, € 71 B(A,A) or R, € FuB(A, A) then a € Fi(A).

(8) Ifa € F1(A) Ncentre(A) then L, = R, € F1B(A, A).

Proof. (2) f L, = ¢ ® b € F1B(A, A) then a = ¢$(1)b so that we can
always take b = a. Observe that LoRy, = (¢ @ a)R, = (¢R,) ® a, giving
a € Fi(A) if L, is rank one, and similarly if R, is rank one.

(3) If @ € Fy (A) then o® = 7,(1)a, and if a € centre(A), then 7,(1)  O:
Suppose to the contrary that o is nilpotent (see Proposition 2.1(1)). Then
the two-sided ideal Aa would satisfy (Aa)? = {0}, which is not possible
because A is semiprime. Hence 7, (1)L, = Ly2 = L R, = 7, ® a, giving

La=(ﬁl—)n)®a.u

The converse of 1.1(2) is not in general true. For exarple, let A be the
algebra of all 3 x 3 matrices. Then

00 0
a:=10 1 0
0 0 0

is a rank one element in A while neither L, nor R, is a rank one element in
B(A4, A).

A homomorphism T : A — B is a linear map such that T(ab) = T(a)T(b)
(a,b € A) and T'1 = 1. Rank one elements are to a certain extent respected
by hemomorphisms.

ProroSITION 1.2. Let A and B both be semiprime Banach algebras ond
let T: A— B be a homomorphism.

(1) If T is one-one then T~1F,(B) C Fi(A).
(2) If T is surjective then TFi(A4) C Fi(B).

Proof. (1) I Te € F1(B) and y € B then (Ta)y(Ta) = ¢(y)(Ta), and
if y = Tz then azo — ¢(T'z)a € T-1(0) = {0}.

(2) o & F1(A) then there is a linear functional 7, on A such that aza =
Ta(2)a for every = € A. In order to show that Ta € Fy(B) it is sufficient to
show that dim(TaBTa) < 1 ([6], Corollary 3.3). Indeed, TaBTa = T(ada)
which implies that dim(7TeBTa) < 1. =

1
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‘We provide examples to show that the injective and surjective condition
in the above result cannot be omitted.

Exampris 1.3. (1) Let A be the Banach algebra C" and let B be
the Banach algebra C. f T : A — B is defined by T(ey,...,0n) =
oy, (@r,...,05,) € C% then T is a homomorphism which is not injec-
tive. Furthermore, the element (1,1,0,...,0) is not rank one in €™ while
7(1,1,0,...,0) = 1is rank one in C.

(2) Let D := {A € C:|A| <1} and let A(D) denote the dis¢ algebra.
Consider the complex numbers C as an algebra over C. If T : C — A(D) is
the homomorphism defined by T'ov := ol (o € C) where 1(2) := 1 (2 € D)
is the identity in A(D), then T is not onto. Furthermore, the image of a
rank one element is not a rank one element because every 0 % o € C is rank
one while A(D) contains no nonzero rank one elements {see the remarks
following 2.1).

2. A spectral characterisation of rank one elements. In this sec-
tion we give a spectral characterisation of rank one elements in semisimple
Banach algebras. In order to do this we first take a look at some spectrai
properties of rank one elements.

The spectrum of an element a € 4 is the set o4(a):={AeC: A ~a ¢
A~} and if the spectrum of a in A is finite, #0 4(a) will denote the number
of elements in 7.4 (a). Rank one elements are algebraic, since a(e—7,(1)) = 0,
so that their spectrum can at most contain two points:

ProrosiTION 2.1. Let A # C be a semiprime Banach algebro and let
@ e F]_(A)

(1) oala) = {0, 7 (1)} ([6], Lemma 2.8).

(2) If be A thenb+a & A™! if and only if T (b71) = —1.

(3) If b e A and 5,t € C with s # t then ca(b+ta)Noa(b+sa} C oalb).

Proof. (1) Note that 0 € ca(a) because a € F1(A4) and A # C.
(2)Ifbe A" then b +a = b{1 + b"a). Hence,

btad A e —leosble) & —1e {0, )} & ™) =-1.

(3) If A & ca(b) then by (2), A € oa(b 4 sa) N oalb+ ta) implies that
sta((A =01 = =1 =tro((A—b)"") and so s = £. =

If A # C is a Banach algebra with no nonzero divisors of zero then
Fi(A) = {0}. Indeed, if 0 # a € F1(A) then by 2.1(1) the spectrum of a
is either {0, 7,(1)} or {0}. The first instance is not possible since it would
imply the existence of nontrivial idempotents, which is impossible because in
an algebra, with no nenzero zero divisors the only idempotents are 0 and 1.
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The latter case is also not possible, because if it were then a? — 7, (1)a = 0
would imply the existence of nonzero divisors of zero.

Jafarian and Sourour ([5], Theorem 1) have shown that if 4 = B(X, X)) is
the algebra of bounded linear operators on a Banach space X the condition
2.1(3) is sufficient for a € F1(A). Condition 2.1(3) is also sufficient for
a € Fi(A) when A = C(f2) is the algebra of complex-valued bounded
continuous functions on a completely regular Hausdorfl space £2: Suppose
a & Fi(A). If there are 5,t € 2 with 0 # a(s) # a(t) # 0, then 2.1(3) fails for
b=0and k := a(s)/a(t) since oo (b+a)Noa(b+ka) ¢ g4(b). This argument
also shows in general that if A is a Banach algebra and 0 % ¢ € A satisfies
2.1(3) then the spectrum of & cannot contain two distinct nonzero points.
We will show later that in actuality a stronger statement is true (see 2.6). If
& is a nontrivial idempotent then there exists an open-closed subset 2 of 2
consisting of more than one point. Let b be a bounded continuous function
which is nonconstant on (27 and which is invertible in A. It ig then possible
to choose complex numbers ¢; and ¢ such that 0 € o4(b+cra)Nog(b+eaa)
and so c4(b+ e1a)Noa(b+cza) € o4(b). If the spectrum of a consists of 0
and one other point a similar argument holds.

If o is a scalar o with « 5 0, pick an element b in A such that its spectrum
contains 0 and ¢, but not 2. Then o4(b+a)Naalb+ 2a) ¢ ca(b).

Before we formulate our main theorem we point out that the spectral
condition 2.1(3) is not always sufficient for membership in F;(A4): Let A
be a commutative semiprime Banach algebra which is not semisimple. If
0 # a € Rad A then a satisfies the spectral condition 2.1(3), but a is not
rank one. If it were, then the ideal Aa would satisfy (Aa)? = 0, which
contradicts the fact that A is semiprime.

THEOREM 2.2. Let A be o semissmple Banach algebra and o € A, Then
a is rank one if and only if a satisfies the following condition:

(23) bcAoandso,s1€C, 0#sg+# 5150
= oa(b+ sa) Noalb+ sa) C oalb).

As we have remarked, Jafarian and Sourour ([5], Theorem 1) proved 2.2
for the algebra B(X,X). Our proof uses entirely different methods. Two
important features of our proof are the use of minimal idempotents and an
application of a scarcity lemma of Aupetit ([1], Theorem 3.2, p. 67).

A minimal idempotent in an algebra A is a nonzero idempotent e such
that eAe is a division algebra. It was remarked in ([6], Remarks 2.4, 2.5) that
in 2 Banach algebra there is a close relationship between minimal idempo-
tents, minimal ideals and rank one elements. It follows from these remarks
that if a is a rank one element then Aa is a minimal left ideal and that there

' is a minimal idempotent p € Aa, ie., there exists ¢ € A with p = ca. In our
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next result we will demonstrate an explicit way to obtain such a minimal
idempotent.

To prove 2.2 we need the following results:

PROPOSITION 2.4. Let A be a Banach algebra, o € A and suppose ¢ s

a nonzero isolated point of oa(a). If p is the spectral idempotent associated
with o then there exists a ¢ € A such that p = ac = ca.

Proof. Let I' be a circle centered at o separating a from 0 and the rest
of the spectrum of a. For A ¢ I we have

(A—a)' = % + %a()\ —a) L.
So we have

1 1 a 1
=— | “dA+-— | “(A—a)  dr.
P 27rir'!.)\ +2mrf,\()‘ a) " dh.
Since the first term is zero, p = ac = ca with

_ L 1 -1
¢ = mrf/\()\—a) dX\. =

COROLLARY 2.5. Let A be o semiprime Banach algebra and let o € A be
a rank one element which is not quasinilpotent. Then the spectral idempotent
p associated with the nonzero spectral point of a is a minimal idempotent p
with p = ca = ac for some c € A.

Proof. Since a is not quasinilpotent, 7,(1) # 0. In view of 2.4 the
spectral idempotent associated with 7,(1) has the property that p = ca = ac
for some ¢ € A. It remains to show that p is a minimal idempotent. Observe
that Aa is a minimal left ideal of A with {0} # Ap C Aa. Hence Ap = Aa and
from ([3], Lemma 2, p. 154) we conclude that p is a minimal idempotent. =

LeMMA 2.6. Let A be a semisimple Banach algebra and let b € A~1L.
If 0# a € A satisfies (2.3) then the specirum of b~la cannot contain two
distinct nonzero points.

Proof Let b € A™' and suppose o; € ca(b™%a) (i = 0,1) with the

o nonzero and distinet, If we assume that o € A satisfies (2.3), then in
particular, for b e A™1, .
b+spaeA™ or b+saedl.

This implies that

L goalbla) or  — L g oa(b™ta).
S0 81

If we choose s; = —1/a; (i = 0,1) we obtain a contradiction. m
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LeMMA 2.7. Let A be o Banach olgebra and 0 £ a € A, If #o4(ba) < n
for every b & A™! then #oal{ba) < n for every b & A.

Proof. Let b€ A~ and 2 € A. The map
A [b+ Az —b)la

is an analytic function from C to Aa. Since A™' is open, there exists an
r > 0 such that #o4[(b+ Az — b))a] < n for all A with |A] < ». By ([1],
Theorem 3.2, p. 67 or by the subharmonicity of the log of the nth diameter
of the spectrum [7]) one deduces that #o[(b+A(z~b))a] < nforall X € C; in
particular, for A = 1. Hence the spectrum of zza has the required property. =

LEMMA 2.8. Let A be a Banach algebra and lel B be a subalgebra of A
such that o4{b} consists of 0 and possibly one other point for every b€ B.
Then there are no orthogonal idempotents in B.

Proof. Suppose p and ¢ are orthogonal idempotents in B. Then {1,2} ¢
aa(p + 2q), which is impossible. ®

LEMMA 2.9. Let A be o semisimple Banach olgebra and let 0 £ a € A
be such that the spectrum of za consists of 0 end possibly one other point
for every x € A. Then there exists o minimal idempotent p € Aa.

Proof. If every element of Aa is quasinilpotent then o € Rad A = {0}
Hence there exists an za € Aa with a nonzero isolated point in its spectrum.
Let p be the spectral idempotent associated with this point. By 2.4, p = cza
for some ¢ € A and hence p € Ag. It remains to show that p is a minimal
idempotent. Let B = pAp. Then B C Aa and hence op(pyp) consists of
at most two points for every pyp € pAp. However, if o5(pyp) contains two
points then there exists a nontrivial idempotent pzp in pAp. But pzp and
P —pzp are orthogonal idempotents in Aa, which yields a contradiction with
the fact that the spectrum of every element of Aa consists of 0 and possibly

one other point. This together with the fact that pAp is semisimple implies’

pAp = Cp ([2], BA 3.9, p. 108) and hence p is a minimal idempotent. =

Proof of Theorem 2.2. (=) This is 2.1(3).

() Suppose a 3 0 satisfies condition (2.3). There are two cases to be
considered: (1) a € A or (2) a g A™L.

(1)Tfa € A" then Aa = A and by 2.6 every element of A~La has exactly
one point in its spectrum, while by 2.7 we deduce that every element of A
has a one point spectrum. This together with the fact that A is semisimple
yields A = C1 and hence a € F; A.

(2)f o & A™! then Ao # A or aA # A. We only consider the first case.
Since Aa # A the spectrum of every element of Aa contains 0. It follows
from 2.6 and 2.7 that the spectrum of every clement of Aa consists of 0 and
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possibly one other peint. By 2.9 there exists a minimal idempotent p € Aa.
If we suppose ap % a then

Alap —a) C da

and by 2.9 there exists a minimal idempotent ¢ € A(ap — a). Clearly gp =0
and if w = g — pg then gw = ¢ = 0, which shows that 1 # 0. Furthermore,
w? = w and pw = wp = 0. This is in contradiction with the fact that the
spectrum of every element of Aa consists of 0 and possibly one other point.

Since p € F1(A) and a = ap the result follows. =

3. Finite elements. We conclude this paper by extending the theory de-
veloped in Section 2 to the set of finite-dimensional elements of a semisimple
Banach algebra.

The finite elements of 4, denoted by F(A), is the set of all @ € A of the
form

n
axZai with a.,;Efl(A).

i=1
In the case of a semiprime algebra the set of finite elements coincides with
the socle of A, i.e. Soc A = F(A). Since F1{A)A, AF1(A) C F1(A), Soc A is
a two-sided ideal in A.

The following theorem is our main result of this section. It is the analog

of Theorem 2.2 for elements of the socle of a semisimple Banach algebra.

TueoreM 3.1. Let A be a semisimple Banach algebra and @ € A. Then
a is a finite element if and only if there exists a positive integer n such that
for every b € A and cvery set of nonzero distinct scalars s; (1 =0,1,...,n),

(3.2) calb+spa)Noalb+sie)N...Noalb+sna) Ca(b).

Before we prove Theorem 3.1 we extend some of the results of Section
2. Since the proofs of these results are easy modifications of those given in
Section 2 some of them will be omitted.

LEMMA 3.3. If A is a semisimple Banach algebra and if 0 # a € A sai-
isfies (3.2) then every element of A7 a can have at most n distinct nonzero
points in its spectrum.

LEMMA 3.4. Let A be a semisimple Banach algebra and let 0 # a € A.
If the spectrum of every element of Aa consists of 0 and ai most n other
distinct nonzero poinis then there exists a minimal idempotent p € Aa.

Proof Choose b € Ae which has a nonzero isolated point A in its spec-
trum. Such an element exists because in view of the semisimplicity of 4 not
every element of Aa is quasinilpotent. If p is the spectral idempotent asso-
ciated with A and b, then by Proposition 2.4, p € Aa. From our hypothesis
we deduce that every element in the semisimple subalgebra pAp C Aa has a
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finite spectrum. By [4], pAp is finite-dimensional and so there is a minimal
idempotent ¢ € Ap C Aa ([6], Lemma 3.2). =

Proof of Theorem 3.1. (=) If 0 # a € Soc A then dimaAda < m,
say. We claim that every element of aA has at most 2m distinct nonzero
points in its spectrum: For every b € A, dim(abAeb) < dim(ada) and hence
it suffices to show that the spectrum of a containg at most 2m distinct
nonzero points. Let B be a maximal commutative subalgebra of A contain-
ing a. Then o4(b) = op(b) for every b€ B. The linear operator L,z : B — B
defined by L,22 := oz (z € B) is a finite rank operator with rank <m. Since
every nonzero spectral value of L,z is an eigenvalue and the eigenvectors as-
sociated with different eigenvalues are linearly independent, it follows that
L,» has at most m distinct nonzero points in its spectrum. The fact that
o(Lq2) = op(a?) and the spectral mapping theorem completes the argu-
ment. It follows readily that the spectral condition is satisfied with n = 2m.

(<) Suppose o £ 0 satisfies (3.2). As in the proof of Theorem 2.2 there
are two cases to be considered: (1) a € A7  or 2) a ¢ A7L.

(1) Ifa € A" then Aa = A and by 3.3 every element of 4~ 1g has at
most 7 distinet points in its spectrum, while by 2.7 every element of A has
at most n distinct points in its spectrum. This together with the fact that
A is semisimple and [4] yields A is finite-dimensional and hence A = Soc A
(i6], Corollary 3.5).

(2) We only consider the case where Aa # A. By 3.3 and by 2.7 every
element of Ae has at most n distinct nonzerc points in its spectrum. We
infer from 3.4 that there exists a minimal idempotent p € Aa. Analogous to
2:8 we conclude that there are at most n distinct orthogonal idempotents
in Aa. Suppose {p; : i =1,...,k} is a maximal set of orthogonal minimal
idempotents in Aa. If we put p = Efxl Pi, then we claim that ¢ = ap and
50 & € Soc A since every minimal idempotent is a rank one element. If we
suppose to the contrary that a # ap then in view of 3.4 the proof is a
modification of case (2) in the proof of 2.2. »

Remarks, 1. If X is a Banach space, Theorem 3.1 gives a new charac-
terisation of finite rank operators on X because the socle of the algebra of
bounded linear operators on X is the finite rank operators.

2. Lemma 3.4 can also be proved directly, without the use of [4] and ([6],
Lemma 3.2), by a medification of the proof of 2.9.

3. In the case of a commutative Banach algebra the proofs of 2.2 and 8.1
would be considerably shorter.

4. Our argument also yields a duality between the radical and the socle
of a semisimple Banach algebra. By an easy modification of the proof of
Lemma 2.7 it can be shown that Rad A = {a : A~la C QN(A)} (QN(4)
denotes the set of quasinilpotent elements of A).
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