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Pointwise estimates for densities of
stable semigroups of measures

by

PAWEL GLOWACKI and WALDEMAR HEBISCH (Wroclaw)

Abstract. Let {14} be a symmetric a-stable semigroup of probability measures on a
homogeneous group A/, where ( < a < 2. Assume that yy are absolutely continuous with
respact to Haar meagure and denote by h: the corresponding densities. We show that the
estimate

he(z) < tzfiz)iel™"", «#0,
holds true with some integrable function 2 on the unit sphere X if and only if the density of

the Lévy measure of the semigroup belongs locally to the Zygmund class Llog LN\ {e}).
The problem turns out to be related to the properties of the maximal function

t
— «
Mf(z)-:l;gtiof hi—s # [+ hs(z) ds

which, as is proved here, is of weak type (1,1}

Introduction. Let {4} be a symmetric o-stable semigroup of probabil-
ity measures on R™, where 0 < o < 2. (Note that the Gaussian semigroups
are excluded.) Assume that p; are absolutely continuous with respect to
Lebesgue measure and denote by k; the corresponding densities. It is known
that the h; are automatically continuous functions on R"™ and vanish at in-
finity (cf. Glowacki [9]).

The guestion considered here is that of the rate of decay of the densitieés
at infinity. Let us remark that in the ideal case when the Lévy measure is
smooth away from the origin we have

. n+a =N -
(1) T]LI‘,BOT hi(rZ) = m{z),
for # € X = {y € R™: |y| = 1}, where m is the density of the Lévy measure
(cf. Dziubasiski [5]). It is easily seen that, by homogeneity, {1) implies

2) he(z) < Ctm(E) |z "7, z#0, t> Q,
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244 P. Glowacki and W. Hebisch

where & denotes the unit vector z/|z| and C is a positive constant.

However, as simple examples show, the densities h; may very well exist
even when the Lévy measure is singular, In addition, they always satisfy the
estimate

(3) he(z) < t25(8))2|"7F, @ #0, >0,

for any 0 < 8 < a, where {25 is a function on the unit sphere satisfying an
integral Lipschitz condition (cf. Glowacki [9]). Therefore, the right question
to ask seems to be: How is the estimate

(4) he(z) <#02(2)|e|", =#£0, >0,

with {2 enjoying certain regularity properties related to the regularity of
the Lévy measure itself? Note that in (4) the exponent assumes the critical
value c.

In this paper we consider this question in the general context of a nilpo-
tent homogeneous group N of which R™ with the usual dilations is the
simplest example. We show that for every symmetric a-stable semigroup
{p} with densities h; the estimate (4) holds true with some 2 in L'(X) if
and only if the density m of the Lévy measure locally belongs to the Zyg-
mund class Llog LN\ {e}). If 1 < p < oo and 2 € LP(N \ {e}), this is so
if and only if m € L (N \ {e}). (In the above formulas n is understood to
be the homogeneous dimension of the group which in most cases is different
from the topological dimension.) We also prove that if the Lévy measure is
absolutely continuous relative to Haar measure, then (1) holds for a.e. & on
the nnit sphere X with m being the density of the Lévy measure restricted
to 2.

Qur method is based on a perturbation formula. The problem turns out
to be related to the properties of the maximal function

1 | |
M) =sup 3| [ B x f 2 ho(a) ds
>0 ) ¢
which, as is easily seen, coincides with the usual maximal function associated
with the semigroup provided N is commutative. It is proved here that M
is of weak type (1,1) in the general case.

1. Preliminaries and notation. Let A be a homogeneous Lie group
endowed with a family of dilations {6;} and a homogeneous norm x + |z|
which is subadditive, that is, satisfies

|zy| < 2] -+ [y|

for =,y € N. Such norms always exist, as is shown by Hebisch and Sikora
[12]. Let dz denote Haar measure on A and Q. the homogeneous dimension
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of N. Let B(r) = {& € AN : |z| < r} denote the ball of radius r > 0 and
let &= {z € N : |z| = 1} be the unit sphere relative to the homogeneous
norm. For z € A\ {e}, let

I= 5|m|—1.’£ .

There exists a unique Radon measure dZ on 3 such that for-all continuous
funetions f on A with compact support

00
[ fayde= {2 [ #(6.2) dz dr.
N 0 z
We denote by C2°(N) the space of compactly supported C'®-functions on N.
Let {p:} be a continuous semigroup of probability measures on N. It

is assumed throughout the paper that {u;} is symmetric and o-stable with
exponent 0 < o < 2, that is,

(1.1) (Fois) = (f o 8psa,p1), [eECEN), t>0.

It is also assumed that the measures p; have densifies hy relative to Haar
measure dr on N. The densities h; are automatically square-integrable,
hence continuous and bounded (¢f. Glowacki [9]). In terms of the densities,
(1.1} is equivalent to

hi(e) =179 *h(byrjuz), zEN, t>0,

where h = hy. It is well known that the generating functional P of such
a semigroup is a symmetric real distribution on A homogeneous of degree
—) — . P is also dissipative, that is to say,

(f,P) <0

for every real f € C2°(N) which takes on its largest value at the iden-
tity e. Any real dissipative distribution is a generating functional for some
(uniquely determined) continuous semigroup of measures.

Since P is dissipative, it coincides on A \ {e} with a Radon measure
v. This measure is positive and bounded outside any neighbourhood of the
identity. We shall refer to v as the Lévy measure of the semigroup {u;}. We
have

() =lm b £ ECEW (D),

If the Lévy measure v has a density k relative to Haar measure, then,
by homogeneity, there exists a function N € LY (%) such that
k(z) = N(&)jz| 9" for a.e e N\ {e}.

Given a symmetric and bounded neighbourhood W of the identity, let
Y = 3, be a nonnegative smooth function supported in W and equalto 1
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in a neighbourhood of e. Then the distribution P= wP supported in W is

dissipative as well. We also have

(1.2) P=P+u,

where 1 is a bounded positive measure equal to v outside W. We choose

and fix once for all a neighbourhood W such that W2 C B(1), where

g > Q/a-+1is a fixed integer. _
Denote by {i;} the continuous semigroup of measures generated by P. It

is easy to see that %; > 0 and (V) < 1. In addition, we have the following

perturbation formula:

t
(1.3) i = Tt + f Hi—s® g ® pgds, >0,

0
where the integral is understood to be convergent in the weak sense (see,
e.g., Kato [15]). As is easily seen, (1.3) implies gy < g, so that the [
are also absolutely continuous. Their densities will be denoted by hy. By
homogeneity and the semigroup property,
(1.4) [hifoc < Milloo < flhy2l 3 = C1=/,

where

t>0,

1£lloc = sup |f(z)] and C=29h|f =29 [ h(c)’dz.
zEN N

~ (1.5) LEMMA. For every positive integer j, there exists a constant Cj > 0
such that

LN AWH < Citf,  t>0.
Proof. Thisis a direct application of Duflo [4]. =

(1.6) COROLLARY. There exists a constant M such that

sup Et(w) < Mt, 1t>0.
@l 1

Proof If |z > 1, then

Pu(m) = [ hypaly™ o) hsa(y) dy
N

< [ hp@Ohpmdy+ [ Ry a)hya(y) dy
yEW? p legwe
< 20, (t/2)0 @/ < arg
where we have made use of Lemma (1.5) and (1.4). u

“We conclude this section with
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(L7) PROPOSITION. There exists a constant A such that
|h(w) ~ h(e)| < Alz|*, zeWN.
Moreover, there erists 2y € LME) such that
hie) < $2(8)||"%, ze N\ {e}.

Proof. This has been proved in Glowacki [9]. m

For a general account of homogeneons groups, see Folland and Stein [7.
As for an introduction to the theory of continuous semigroups of measures
on Lie groups, we recommend Hulanicki [13] and Duflo [4]. See also Pazy
(161,

2. Statement of the theorem. Let 91 be a measure space. As usual,
we denote by LP(9) the totality of measurable functions f on 90 such that
|f|? is integrable. The Zygmund class Llog L(9M) consists of all measurable
functions f such that

J 19101 +1og* 7)) < co.
0t
It is a proper subspace of L'(9M).

The following theorem collects together the results of Proposition (3.1),
Theorem (3.4}, Theorem (5.1), and Theorem (7.6) below.

(2.1) TusoreM. The estimate
h{) < Q2(8))z|"9"*  for ae x e N\ {e}

with ) & LP(X) holds true if and only if the Léuvy measure v is absolutely
continuous with respect to Haor measure on N\ {e} and the corresponding
density belongs locally to IP(N\ {e}) if 1 <p < 0o or to Llog LN \ {e})
if pe=l.

Ag a by-product, we gel information on the a.e. pointwise asymptotic
behaviour of the densities (cf. Dziubadski [5], forrula (4)).

(2.2) TueorkM. If the Lévy measure v is absolutely continuots with
respect to Hoar measure on N\ {e}, then

lim (9+h(6,8) = N(&) for ae. € X,
tA 06

where N & LY(E) and N(£)/|z|9T* is the density of v.
Proof. This follows by homogeneity from Corollary (4.5) below.
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3. The case p > 1. In this section a complete account is given of the
easier case when p > 1.

(3.1) PropPoSITION. Let 1 < p < oo, If there exists 2 € LP(X) such
that
hiz) < Q(@)e| "9 forae z e N\ {e},

then the Lévy measure v of {h.} is absolutely continuous with respect o
Haar measure on N\ {e} with a density in L{, (N\ {e}).

Proof We have
{F,v) = lim = (f: he)
for f € C(AN'\ {e}). By hypothesis,
hu(z) €@z~ 97%, >0,
for a.e. & € N\ {e}, whence
(fvy < [ |f(@)]20@)2] "9 de,

which immediately implies our claim. =

Let us define

Mg f(z) = sup |f = he(z)] and Mpf(z) = ﬁ;gg e f ()]

for f € CX(N) and z € A. Recall from Glowacki [9] that both Mp and My,
are of type (p,p) for every 1 < p < co. Therefore, the maximal function

(3.2) Mj(z)=sup 3 Ummh()

is also of type (p,p) as

(3.3) Mf(z) < My, (Mpf)(@), feCRWN), zeN.

(3.4) TueoREM. Lei 1 < p € oo. If the Léuy measure v is absolulely
continuous and its density belongs locally to LP(N '\ {e}), then there emists
on 12 in LP(X) such that

hz) < 2(B)|z|“%  for ae.x € N.

Proof By homogeneity, it is sufficient to show that for some » > () there
exists 2 € LP(X) such that :

(3.5) he(8,%) <t2(z) forae. Te X andt>0.
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To this end, note that, by hypothesis, the measure vy in (1.2) has a density
ko € LP(N). By the perturbation formula, (1.3),

(3.6) ha(2) < hy(s fmﬂ*%*h@ﬂs

o~

S hu(e )"l“ﬁMko( ).
Therefore, by Corollary (1.6),
ha(b2) S 6(M + Mko(6,8)), 721, |&=1.

Since M is of type (p,p), Mka € LP(N) and so, by Fubini’s theorem, the
function & ~— Mky(6,.&) is in LP(X) for a.e. r > 1. Pick one such r and let

2(8) = M+ Mko(6,2), z€X.
Obviously, 12 satisfies (3.5). m

4. A maximal thecrem. The Zo norm of an L' function w on a ho-
mogeneous group A is defined by

= sup [ supl6up(ey) - 6up(s)] dy,
ly/z2te| "

where, by definition,
Eup(n) = t7%p(6p-12),

The following result is well known as Zo's lemma (cf. Zo 18] as well as
Stein [17], pp. 71-73).

(4.1) LemMMA. Let k € LY (N).
K defined by

zEN, t>0.

< 00, then the mazimal operator

K f(a) = suplf * k()|
=0
is of weak type (1,1).
The main result of this section iy

(4.2) PROPOYITION. The mazimal operator M as defined by (3.2) is of
weak type (1,1).

Proof. By a simple change of variable, for 0 < f € LY{(N),

) .
M = sup f hov* [ # hit.oyp df S Mof+ Mo f
B0 TR
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where
1/2

Mﬂf = 5up f h(l—@)‘b ES f * h[}t dQ,
>0 0

1/2
Mmf = sup f hoe * f #* hf(l——f))t df .
=0 4

We are going to show that My, is of weak type (1, 1). The proof for My
is entirely “symmetric”. To this end, let § = N x N be the direct product
of N by itself. G acts on N by

(eylz=2""2y, (w,9)€G, zeN,
and M, is obtained by transference by means of this action from the max-
imal function on G

MF(z,y) = sup F x H;,
£>0

0< Fellg),

where
1/2

Hy(z,y) = fhﬂt(m)h(l—ﬂ)t(y)dg
0

is an integrable function on G for every ¢ > 0. By the transference principle
(Emerson [6], see also Calderdn [1] as well as Coifman and Weiss [2], [3]), it
is therefore sufficient to show that M is of weak type (1,1). Let us make §
into a homogeneous group by introducing the product dilations

Ag(,y) = (6uz, 8y),

and the homogeneous norm

(4.3) ()| = |2/ + |yl
for (z,y) € G and t > 0. Then
fft = Atlfa(H]'), t>0,

and, by Zo’s lemma (Lemma (4.1}), it is enough to show that the Zo norm
of Hy € LYG) is finite.
We have
1/2 1/2
2w [ o @hgllzedd = [ [|H]
0 0

|| Ha

Zo do 1

where

H] =h®hpjg_ay, 0<0<1/2, 50,
The last equality is due to the invariance of the %o norm under dilations.
It is clear that for each 8 € (0,1/2], {H!} is an a-stable symmetric
sernigroup of measures on the homogeneous group G with Py = P @ § + 6 &
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(1/8 — 1) P being its infinitesimal generator. It has been shown in Glowacki
[9] that {or every symmetric a-stable semigroup of measures with absolutely
continuous densities 1y, the Zo norm of by is finite. Therefore, in particular,

“‘Hlj‘/z”Zu = (1 < c0.
For X € § put
(X o = |oe X,

HY(X) = 5~ H"* (g9 X),
and, by our choice of the homogeneous norm (4.3),

FYXi<|Xs<|X|, Xeg.

For fixed X € § and 2% < § < oo let

I(X) = sup |HY(XY) - HE (V)| dY .
10

I¥|22/X|
Then
I(X) = [ sup|HI(XY) - H{(¥)|dY
2| x |2 ¥ 220 ]
+ [ suplHI(XY)- B (V) dY
¥ 12 26| X|
<2 [ supH/(Y)dY
sz
+f  sup|HI(XY) - H(Y)|dY
v z2d)x| '
< 9 j sup HY (V) dY
N ot >0
4B X o2 |¥ 10 2877 Ko
+ [ suwp|H(XY) - H{(Y)|dY
¥loz2ix]s

Let us remark that we have taken advantage of the fact that't;h_e homo-
geneous norm on A, and consequently that on G, Is subadditive. By the
change of variable V == gp¥, ' :
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1/2
- <2 sup H, (V)Y dV
(44) o= X) < J o s

492 X| 2|V 267X |

+ [ sup EXV) - BV

t>0
vizex| '

The second term is of course hounded by €y = || H :‘/ 70. By Proposition

(1.7) and homogeneity,

\HAW < (T[22, Vo (e,e), >0,
for some {2 integrable on the unit sphere in G, where 2¢) is the homogeneous
dimension of G. Therefore the first term of (4.4) is less than or equal to

f Go(V)V|7* dV < Collog ),
467 X [2|V (2871 |X|

which implies that

187 llzo = sup I(X) = sup I{gy-1 X) < Cllog4},

Xed Xeg

and, consequently,

. 1/2 1/%
[H1llzo < f 1H] 206 < C [ flogldf < oo,
0 0

which completes the proof of Proposition (4.2). m

(4.5) COROLLARY. If the Lévy measure v has a density N{§)/|n|9+,
where N € L1(X), then

N . -
tl% Eht(_m) = N(a:) forae T el
Proof. This is derived, by a routine argument, from (1.3), Corollary
(1.6), and Proposition (4.2). w

(4.6) COROLLARY. For every f € L log LN, Mf s locally integrable
on N.

Proof. This is a well known property of weak type (1, 1) operators (see,
e.g., Guzmdn [11], Theorem (6,1)). m
5. The case p = 1: sufficiency

(571), THEOREM. If v has a density which is locally in the Zygmund cluss
on N\ {e}, then there exists Q € L'(X) such that ‘ ‘

h(z) < (&) 2|79, reN\ {e).
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Proof. The argument is quite analogous to that in the proof of Propo-
sition (3.1). The only difference is that now kg is in the Zygmund class
Llog L{N), which, by Corollary (4.6, implies that for some >1,

Q&) = M + Mhko(6,2),

is integrable on X and satisfies the desired inequality. w

Fe X,

The remaining part of the paper is devoted to the demonstration of the
inverse implication,

6. A space of homogeneous type. Given z,y € N, we denote by
d(z, ¥) the greatest lower bound of the subset of all real » > 0 such that

BLT == Yy

for some zy, 2y in the ball B(r)., It is not hard to see that, due to the sub-
additivity of the homogeneous norm, d is a metric on N
Let
Ap(r) ={y e N :d(z,y) <r}
be the open ball of radius » relative to d centred at z € N, Let also
P == X iy * 6o * XBir) »
where &, stands lor the Dirac point mass located at £ € A
(6.1) LsMMA, For cvery r > 0 and every z € N,
SN y) < 8N (2)  if dlz,z) <7

Proof If g‘liﬁ,“’)(y) > 0, then d(z,y) < r and there exist z;,29 € B(r)
such. that

(6.2) P () = B (27 aay)
= (8py % Xiiry) * 8 % (XBry * 00y) ()
< Xpary % 6 % X p(am (7) = B ().

In a similar fashion it is shown that d{z,2) < r implies 37 (z) < &% (2),
which combined with (6.2) completes the proof. =

(6.3) LuMMA. For every v >0 and every z € N,
1B(r)* < 188 ool Au{r)] < [BE)P.
Proof. By Lemma (6.1}, we have

185 ool da(r)| € [ 857 (y) dy.
A.’c(r)
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Consequently,

B = [ 9 (y)dy < |8 cc| Au(r)

< [ o5 (y)dy < |Br),
Aer)

which completes the proof. =

{6.4) PrOPOSITION. The measure space (N, dx) endowed with the metric
d 18 o space of homogeneous type.

Proof It is sufficient to show that there exists a constant ¢ =
that for every r > 0 and every x € N,

|4z (2r)] < Olda(r}|
(see Coifman and Weiss [2]). In fact, by Lemma (6.3),

IB(6)® . 2 |B0)
A< T~ < O

= 0 such

< 629 A (7). m

For r > 0Q, let

1

(6.5) LEMMA. For every r > 0 and every z € N,

(6.6) f Iz

A(r

Jdz <629y, * f *xe(z), f20.

Proof In fact, by Proposition (6.4),
626&

2)dz < f
) A ()
and, by Lemma (6.3),

) ff P oo dz

f()

forr>0,2€ N, a
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Denote by Mes™(A) the space of positive measurable functions on AV

For f in Mes™ (A7), et
P fm) = sup x»* f*xe(x),
D<ral
f*(@) = sup ey ff zEN.
r,'(J

Of course f* is the usual Hardy Littlewood maximal function for f on the
space (N, dx, &) of homogeneous type.

(6.7) LeMMA. For every nonnegative [ € LYN) with || fli1 £ 1B(1)| end
every A= 1,

{xe N f*(z) > A} C{e e N 8" f(z) > 6720\,
Proof. This is an immediate consequence of (6.6) and the fact that
B
Yy < <1
ERG J s g <

for r 2 1. The first inequality holds because xB(r) C 4,(r). »

Recall that the Hardy-Littlewood maximal function f* on a space of
homogeneous type satisfies the inverse Kolmogorov inequality

(6.8) o [ faysCaen £ > )
A

for every f & Mes™(N), every A > 0, and some constants C, ¢ > 0. We may
agsume that ¢ < 1,

(6.9) PROPOSITION. For every f & Mes™(N) with | f|y < |B(1)],

(6.10) ff YVog™ ffr)cim*i'?ww fd?" %) d +log~— ff
Proef In fact,
ff Viogh f() dar == f F(z)log f(x) d
fla)=1
|
= [ “5( f () de dX
1 z)=A .

<10g—~H |1+f ff z) dzdA.

. 1/@- Flm)=A
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The last term is, by (6.8) and Lemma (6.7), estimated by

C [HeeN:f @) > HdA<C [ [{z e N: 8" f(2) > 67°Ur}| d)

1/e i/e
6*<C Ii
N

& fla) de .

- b* fla) da . m

For > 0 and f € Mes™ (), let
()= sup xpx [ xe(a)

<r<n

e N,

(6.11) COROLLARY. Let f € Mes™(N).
then f € Llog LIN).

Proof. If n =1, then &} = &*
(6.10). In the general case
gb?’;f(gg) = ["(fo 577)](5?3"193)’
which takes us back to the case n = 1. m

If ;f & LN Jor somen,
and our claim is a simple consequence of

e eN,

7. The case p = 1: necessity
(7.1) LEMMA. There exist constants C,e,8 >

(7.2) he() 2 Cx(eryrale),
Proof. By Proposition (1.7},

0 such that
aeN, 0<t<d.

(7.3) he(z) — hale)| < AL Hg|® pe N, 0<t<1.
By the perturbation formula (1.3) and (1.4),

(7.4) e = Billoo < Bt=@/et 50,

We also have

(7.5) he(e) = D=9/ 150,

In the above formulas, A, B, and D are positive constants independent of x
and t.

Now, let [#] < (e£)/%, where ¢ is to be chosen later. Then, by (7.3) (7.5),
he() 2 hy(w) = BT 5 by (o) — Alp|r Q01 L gy @t
> Dt Y — (Ae + By~ @/« > L@/ » Qe
for sufficiently small £ and ¢, where € = %D. Thus our assertion is proved. =
(7.6) THEOREM. If h satisfies the estimate
h(z) < 2(@)|2|79  for a.e. € N'\ {e}
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with 2 € L' (%), then the Lévy measure v of {1} is absolutely continuous
and its density belongs to the Zygmund class Llog L locally on N \{e}.

Prool. It is sullicient to show that the measure vy, as defined in (1.2),
has a density in Llog L. By Proposition (3.1), vo does have a density kg in
LYN). To prove that kg € Llog L, we shall show that & ko € LY(N) for
some () <2 < 1 and then invoke Corollary (6.11). Note that, by hemogeneity,
we may assume that the support of & is far away from the identity so that
X1 % ko # x vanishes in a neighbourhood of e.

Now, by Lemma (7.1) and the perturbation formula (1.3), there exist
constants A, g, and § such that

42
X(ety/o * ko # Xana(2) € — j Bt # Ko % hy(w) ds
¢ e
....<. T—Aht(m) S_ AQ(.’E)'QS‘—Q—Q

for z # ¢ and 0 < £ < §. Taking into account the fact that the supports of
all the functions y,. * A(J * X, where O < r < 1, are uniformly cut off from the
identity e, we conclude that 97k is integrable for some 0 < 5 < 1, which
completes the proof. m
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Markov’s property of the Cantor ternary set

by

LEOKADIA BIALAS (Krakow)
and ALEXANDER VOLBERG (Fast Lansing, Mich.)

Abstract. We prove that the Cantor ternary set B satisfies the classical Markow
inequality {see [Ma]): for each polynomial p of degree at most n (n=10,1,2,...)

(M) [2'(2)] € Ma™supjp| forzeE,
B

where M and m are positive coustants depending only on E.

0. Introduction. In 1889 A. A. Markov proved (M) for E = [~1;1].
Since that time it has become the object of extensive research (see e.g.
[R-S] in the one-dimensional case and [Pa-P11] for R™). In particular, it has
appeared that the inequality plays an important role in the approximation
and extension of ¢ functions defined on compact subsets of R™ to C*
functions on the whole space (see [Pa-Pl 1], [Pa-P12] and [P14]).

The question about Markov's property for the Cantor ternary set has
remained unanswered for many years. J. Siciak [Si 3] showed that there exists
a Cantor type set £ C R such that Leja’s extremal function Ly (see [Lj 2],
p. 261) has the following Holder continuity property:

(HCP) Lp(s) €L+ Ms™ i dist(z, B) <8< 1,

with some posilive constants M > 0 and m > 0 depending only on E,
which, by Cauchy’s integral formula, is sufficient for E to preserve Markov’s
inequality (M) (see [Si 2], Remark after Lemma 1 and [P11], Lemma 3.1). On
the other hand, Pleduniak [P12) constructed a Cautor type set E such that
Leja's extremal function is continuous on € but £ does not satisfy (M).
These results have given no answer to the question of whether the Can-
tor ternary set has Markov’s property. In this paper we prove that the an-
swer is affirmative. Actually, we show that this set even has the (HCP)
property. ' ' o s
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