268 L. Biatas and A, Volbherg

References

[Fe] M. Fekete, Uber die Verteilung der Wurzeln bei geurssen algebraischen Glei-
chungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
[A-K] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Aca-
demic Press, 1976.
[La] N. 8. Landkof, Foundations of Modern Potential Theory, Springer, 1972
[i1] F. Leja, Sur les suites de polyndmes, les ensembles fermés ef la fonction de
Green, Ann. Soc. Polon. Math, 12 (1933), 57-71,
Lj2] —, Theory of Analytic Punctions, PWN, Warszawa 1957 (in Polish).
[M-V] N. Makarov and A. Volberg, On the harmonic measure of discontinuous
fractels, LOMI preprint E-6-86, Leningrad 1986,
[Ma] A. A. Markov, On a problem posed by D. I Mendeleew, Tzv. Alad. Nauk
St-Petersbourg 62 (1889), 1-24 (in Russian).

[Pa-Pli] W. Pawluckiand W. Plesniak, Markov’s ineguality and C°° functions on
sets with polynomial cusps, Math. Ann. 275 (3) (1986), 467-480.
[Pa-Pi12] —, —, Bstension of C°° functions from sets with polynomial cusps, Studia

Math. 88 (1988), 279-287.

[P11] W. Pleéniak, Quosionalytic functions in the sense of Bernstein, Disserta-
tiones Math. 147 (1977).

[P12] —, A Cantor regular set which does not have Markov’s property, Ann. Polon.
Math. 51 (1990}, 269-274.

[P13] —, Compact subsets of C" preserving Markow’s ineguolity, Mat. Vesnik 40
(1988), 205-300.
[P14] —, Markow's inequality and the emistence of an emtension operator for C™°

functions, J. Approx. Theory 61 (1990), 106-117.

[R-S] Q.IL.Rabmanand G.Schmeisser, Les inégalités de Markoff et de Bernstein,
Les Presses de 'Université de Montréal, 1683.

[8i1] J. Siciak, On some extremal functions and their applications in the theory of
analytic functions of several complex variables, Trans, Amer. Math. So¢. 105
(2) (1962), 322-357.

812 —, Degree of convergence of some sequences in the conformal mapping theory,
Colloq. Math. 16 (1967), 49-59.
[8i3] —, An ezample of o Cantor set preserving Morkov's inequality, manuscript,

Jagiellonian University, Krakdw 1987,
[Ts] M. Tsuji, Poiential Theory in Modern Function Theory, Maruzen, Tokyo
1959.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
JAGIBLLONIAN UNIVERSITY MICHIGAN STATE UNIVERSITY
REYMONTA 4 BAST LANSING, MICHIGAN 48524
30-059 KRAKOW, POLAND U.5.A.

Received April 16, 1992
Revised version November 30, 1962

(2930)

icm

STUDIA MATHEMATICA 104 (3) (1893)

Representations of bimeasures
by

KART YLINEN (Tuarku)

Abstract. Separately o-additive and separately finitely additive complex functions on
the Cartesian product of bwo algebras of sets are represented in terms of spectral measures
and their finitely adcditive counterparts. Applications of the techniques include a hounded
joint convergence theorewn for bimeasure Integration, characterizations of positive-definite
himeasures, and n theorem on decomposing a bimeasure into a linear comhination of
positive-definite ones.

1. Introduction and notation. Throughout this paper, S; is a non-
empty set and I an algebra (field) of subsets of S; for i = 1,2, Unless
specified otherwise, 8 : ) x T3 — C is an arbitrary bounded separately
(finitely) additive function. In case 8 is separately o-additive (i.e., 8(X, ))
and A(-,Y) are countably additive for all X € Xy, ¥ € Da), 8 will be
called a (complex) bimeasure. For the basic theory of bimeasures defined on
products of o-algebras we refer to [1] and [13]. The C*-algebra theory we
need may be found e.g. in [12].

All vector spaces will be complex. For any Hilbert space H, (- | -) or
(| Jg denotes its inuer product, and L(H) the space of bounded linear
operators on H.

Our main results depend on the Grothendieck inequality, “the fundamen-
tal theorem in the metric theory of tensor products” of Grothendieck [7]:
For the spaces (7(£2;) of continuons complex functions on compact Hausdorfl
spaces {2, L= 1, 2, and any bounded bilinear form. B : (1) x C(f2) - C
there are posilive linear forms ¢ : C(£2,) — C and 4 : C'({22) — C such that

IB(f, )|* < o(1F 1P (lgl?)

for all f € C'(f21), g € (!({22). (We do not normalize ¢ and 4, and do not
display the Grothendieck constant.) As noted by several authors (see e.g. 5],
[6], [10]), Grothendieck’s theorem implies that B can be expressed in terms of
Hilbert space representatious of the commutative C'*-algebras C(§2;): There
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270 K. Ylinen

are Hilbert spaces Hy and Hy with vectors £ € Hy,n € Hy, =-representations
m; : C(4) — L(H;), and a bounded linear map T': Hy — H) such that

B(f.g) = (m(f)Tr2(g)n | £)

for all f € C(2), g € C{Ih).

A hounded separately additive function § : £y x Xy ~ € extends
uniquely to a bounded bilinear form on the Cartesian product of the com-
mutative C*-algebras generated by the characteristic functions of the sets
in ¥, and we apply Grothendieck’s theorem to this bilinear form. Another
important tool is the Yosida~Hewitt decomposition of a finitely additive
measure into the sum of a countably additive and a purely o-additive one.

Section 2 contains the basic representation theorems. The separately
finitely additive case in Lemma 2.1 is reduced to the representation recalled
in the preceding paragraph, while the bimeasure case uses the Yosida-Hewitt
decomposition. A dilation argument shows that if e.g. §: Xy x L2 — Cis
a bimeasure, then there is a Hilbert space H with vectors (,# € H and
spectral measures P; : Xy — L{H) satisfying #(X,Y) = (Pu(X)P(Y)( | 8)
for all X € X1, Y € Xy (Theorem 2.3). This result is applied to a bounded
joint convergence theorem in Section 3. In the case of one algebra of sets a
representation theorem involving only one spectral measure is proved (The-
orem 2.4}, and in Section 4 it yields the decomposition of a bimeasure into
a linear combination of positive-definite ones.

2. Representation theorems. The characteristic function of aset A C
S; is denoted by x4. We let F; be the space of finite linear combinations of
va for A € %;, and write C; for the closure of F; in the space of bounded
complex functions on 9; equipped with the supremum norm. Then C; is a
commutative C*-algebra.

Since § is bounded and separately additive, its semivariation {for the
definition, see [13, p. 120]) is finite {see [13, p. 121]}, and an elementary
argument shows that there is a unique bounded bilinear function B : €| %
‘Ca — C such that

B{xx,xy) = B8(X,)Y)
for all X & 34, Y € Xy, We write

B(f,9)= [ (f,9)d8

for f € C1, g € Ca; the notation is consistent with [13], see [13, p. 126]. (See
also Remark 3.2.)

Our proof of the following lemma generalizes to the not necessarily
positive-definite case (and also simplifies by avoiding the use of a control
measure of a vector measure) the approach of Chatterji in [2, pp. 271~
273]. Chatterji’s version can be obtained from ours by using the mapping
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(X,Y) — (u(X) | p(Y)) for a bounded additive Hilbert space valued func-
tion p on an algebra of sets. Integration with respect to a finitely additive
positive measure is understood in the sense of [4] or via a more elementary
approach since we only consider bounded functions.

2.1, LeMMA. There are finitely additive measures p : X1 — [0,00) and
v 5y — [0,00) such that

. . 1/2 1/2
| [ royas| < ([ 17Pan) ([ loPav)
forall f &€y, g€ Ca If 3 1 separalely o-additive, then u and v may be
taken to be o-additive.
Proof. Since C; is a comumutative C*-algebra and thus representable as
the space of continuous complex functions on a compact Hausdorff space,
and B, with B(f,g) = [(f,9)dB, is a bounded bilinear form on C; x Cq,

Grothendieck’s theorem shows that there are positive linear forms ¢ : Ci —
C and 1) : Cy3 — C such that

1B(f.9)1* < o(IfP)wllgl)
for all f € C1, g € Ca. The separately finitely additive case is thus settled by
choosing (X)) = ¢(xx) and v(¥) = ¥(xv)-

Assume now that 8 is separately o-additive. Let ¢ and 4 be as above
and define A(X) = ¢{xx) for X € L. Then A is a finitely additive bounded
nonnegative measure on X. Let A = Xt Ap be the Yosida-Hewitt decompo-
sition of A, i.e. Ag: Ty — [0, 00) is countably additive and Ap : &y — [0, 00)
is purely finitely additive (see [16, p. 52]). Now fix g € Cp. The func-
tion X ~ [(xx,g)dS is easily seen to be countably additive on Xp. Let
m: 5y — [0,00) be its total variation. Since m is countably additive, The-
orem 1.18 in [16] shows that for any integer n > 1 there is a set A, € 24
such that A,(4,) < 1/n and m(Sy \ 4n) <1/n. Then for any f € Ca,

| [ Geansr9)d8] < 8ea S0P
<(J1PDe+ [ bea s i )90
< ([ 1= SIS0 o)
Setting w(X) = [(xx,q)d8 for X € Xy, we have [xxf,9)dB = [y fdr
for f € Cy and X Exﬁl. Thus ima—eo | (XA, f>9)d8 = f{f.9)dp, and so

we have
} f (fvg)dﬁié ( f lflgdu)l/z(@mgm)uz._

where p = ;. The proof is completed by repeating the above argument for
¥ in place of ¢. = :
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If H is a Hilbert space, a mapping F : Z; — L(H) is called a finitely
additive spectral messure if E(S;) = I(=idy), B(X) = E(X})" = B(X)?
for all X € X, and E(X UY) = E(X) + E(Y) for disjoint X, Y € X;.
We call such an E strongly o-additive or simply a spectral measure if B
is countably additive with respect to the strong (or, equivalently, weak)
operator topology.

29. LEMMA. There are Hilbert spaces Hy and Hy with veclors £ € Hy
end n € Ha, finitely additive spectral measures By + X; — L(H;), and o
bounded linear map T : Hy — Hy such that

BX,Y) = (E1(X)TE(Y)n | )

forall X € ¥, Y € Zo. If B is separately o-additive, then the E; can be
taken to be strongly o-additive.

Proof. The finitely additive case follows immediately from the repre-
sentation recalled in the introduction applied to B.

Assume now that 3 is separately o-additive. Thus the 4 and » in Lemma
2.1 may be taken to be o-additive. Let &; be the o-algebra generated by
5;. Let fi: 51 — [0,00) be the o-additive Hahn extension of x, and define
analogously. Set Hy = L?(f) and Hy = L*(7). Define the o-additive spectral
measure By : ¥y — L(H1) by the formula Ei(X)f = xxf, and similarly
Eo : 5 — L(Hy). Let £ be the constant 1 on Sy, and 7 equal to 1 on S;.
Since e.g. for functions in C; the integrals with respect to p and i exist and
are the same, from the inequality in Lemma 2.1 it follows that the mapping
(fa, f1) = [J(F1, f2) dB on C3xCy extends uniquely to a bounded sesquilinear
form & : Hy x Hy — C. (It is well known and easily follows from the formuia

) =inf { 3 u(4,)

n=1

AC | 4n, AnE 5y forauneN}
mn=1

and the o-additivity of [z that e.g. Cy is dense in the Hilbert space H; =
L2(fi).) Thus theve is a T' € L(Hy, Hy) such that &(h,g) = (Th | g) for all
g€ Hy, h & Hy, and we have

BX.Y) = B(xy, xx) = (TE(Y ) | Ey(X)g) = (B (X)TE(Y)n | §)
forall X € X, Y € X w

The dilation proof below is related to some techniques used in [15, p.
152].

2.3. THEOREM. There is a Hilbert space H with vectors (,6 € H, and
finitely additive spectrol measures Py : Xy — L{H) such that

AXY) = (RA(X)P(Y)( | 6)
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for all X € Xy, Y € Xy, If § s separately o-additive, then the Py con be
taken to be strongly o-additive.

Proof Let Hy, He, T, E;, £ and 5 be as in Lemma 2.2. Without loss
of gencrality we can assume that ||7']] < 1. There is a unitary operator
U ¢ L{H & Hy) such that T¢ = Py U(0,¢) for all ¢ € Ha, where P,
is the projection onto Hy. [The proof of the Halmos dilation theorem in
8, pp. 126 127] or [9, pp. 177 -178] also works in the case of two different
Hilbert spaces.) Choose a € S and b € 8, and let §, : 2 — {0,1}
and 6 :+ X - {0,1} be the corresponding point measures. Let I; be the
identity operator of Hj, i = 1,2. Define P1(X) = U*(Ey(X) & 8,(X)12)U
for X € Xy, and Po(Y) = 6,11 & Eo(Y) for Y € Xy, Clearly, P, and P, are
finitely additive spectral measures (o-additive, if 2 is separately s-additive),
and writing ¢ = (0,n) and 8 = U*(£, 0} we get

(PUX)P (Y)Y | 0) = (U™ (B (X) @ 6 (X) [2)U (8T1 @ B2 (Y))C | O)m
= (B2 (X) & 8a(X) L)V (6511 © Bo(Y)) | U
= (ByX)TEo(Y))n | ), = B(X,Y)
forall X e 2, Y e Xy m

We now consider the case of only one algebra of sets. The following
theorem will be applied in Section 4.

2.4, TagoreM. Let 5 be a nonfzmpt'y set and ¥ an elgebre of subsets
of §. Let B: X x ¥ — C be o hounded separately additive function.

(a) There is a Hilbert space H with o finitely cdditive spectrel measure
E: 5 — L(H), o bounded linear operator T : H — H and a vector £ € H
such that

BX,Y) = (E(X)TE(Y) | §)
for oll X, Y € 2.

(b} If B is separately o-additive, then B in (a) can be taken to be strongly

o-additive.

Proof. (a) Let B be as before, when § = 5y = 5, & = 21 = Xy, and
€ = Cy = Cy. Grothendieck’s theorem yields positive linear forms ¢, 1 C —
C guch that

IB(, )| < ol P 1 (lal™)
for all f,g € €. Set A = ¢ -+ 9. Defining Bo(f,g) = B(7, f) we get a
sesquilinear form Bg : € x ¢ - C such that |Bo(f, 0)? < AF1P)A(jg1?) for
fig €C. Write N = {f € C | M|f|*) =0} Then N is a vector subspace of
C, and setting (f + N | g+ N) = MJf) we get a well-defined inner product
in C/N. Let H be the Hilbert space completion of € /N Since |Bo(/, D <
A(FI)A(g1?), there exists a bounded sesquilinear form By:HxH—-C
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such that By(f + N,g+ N) = Bo{f,g) for [, g € C, so there is a bounded
linear operator T : H — H such that By(z,w) = (T'z | w). Let {m, H, £} be
the cyclic representation induced by A, i.e., A(f) = (x(f)¢ | &) for f € C,

m{f)g+N)=fg+Nfor f,geCand £ =1+ N. Then

(m(S)T7(g)6 | §) = Bolg+ N, f+ N) = Bol(g, f) = B(f, g)
for all f,g € C. We may thus, in the separately finitely additive case, choose
E(X)=n{xx) for X € X.
(b) Suppose now that 8 is separately o-additive. Let C be as above.
Lemma 2.1 yields countably additive measures p: X — [0,00) and v : £ ~—
[0, 00) such that

S i< ([ ) ([ ira)”

for all f,g € C. Define A = yu+ ». Let X be the o-algebra generated by X,
and A : X' — [0, 0o) the Hahn extension of A. Since C is dense in the Hilbert
space H = L*() (see the proof of Lemma 2.2) and

| ovass ([ pa) ([ reran)”

we obtain a uniquely defined bounded sesquilinear form By : H x H —
C such that Bo(f,g) = [(7,f)dB for all f,g € C, and hence a bounded
linear map T : H — H satisfying Bo(f,g) = (Tf | 9), f,g € H. Define
the (strongly o-additive) spectral measure E : 5 — L(H) by the formula
E(X)f =xxf. If £ € H is the constant function 1, we have

(BEXOTEY)E € = (TEY)E | B(X)E)

= Bo(xy,xx) = B(X,Y)
foral X,Y € ¥. »

3. A bounded joint convergence theorem. In this section we assume
that %3 and Xy are o-algebras and 3 is a bimeasure, i.e., separately o-
additive. Now C; is the space of bounded ¥-measurable functions on S;.

3.1. THEOREM. Let (fy.) and (gn) be uniformly bounded sequences in Cy
and Cy, respectively. If f(z) = limp.,oo fu(2) ond g(y) = limp oo anly) for
all 2 € 51, y € 5y, then

m  f (fugn)dB= [ (f,9)dB.

n—o0
Proof. Let H, P, ¢, and ¢ be as in Theorem 2.3. Define my(X) =

Py(X)0 and ma(Y) = Py (V)¢ for X € 51, Y € Zy. Now, e.g. J(f,g)d5 can
be expressed in terms of integration with respect to the vector measures m,
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and ma:
[ Ggyap=( [ gdma) [ Fami).

The dominated convergence theorem for vector measures [4, p. 328] com-
bined with the joint comtinnity of the inner product in H completes the
proof, m

3.2. Remark. As in the above proof, it follows from Theorem 2.3 (or
already from Lemma 2.2) that the assumption on a bimeasure ¥ made in
Lemma 6.2 in [L1, p. 285] is antomatically satisfied. It may be observed that
the conclusion of [L1, Lemma 8.2] for an arbitrary bimeasure also follows
from [13, Corollary 5.7], independently of the Grothendieck inequality.

3.3. Remark. It follows from the dominated convergence theorem that
in the sitnation of the above theorem both the iterated limits
iMoo 0 [ (Frns 9n) @8 and litpmsoo Mmoo [ (fims gn) 48 exist, and
both are equal to [(f,g) dB. This last observation was also made hy Chang
and Rao in [1, p. 46] but they do not consider joint convergence.

34, Remark. Let 37 be the algebra generated in the power set of 51 %52
by the rectangles X x ¥ where X € X, Y € 3. The function X x Y >
BX,Y) for X ¢ Xy, Y € Xy has a unique additive ezc_tension g:3 - C.
Although it is clear from Theorem 3.1 that lm, .z 8(An) = 0 whenever
(Ay) is a decreasing sequence of rectangles with empty intersection, this
does not remain true if the A, are allowed to be general sets in X. For
otherwise E could he extended to a ¢-additive function on the o-algebra
generated by ¥, and this is known not always to be the case (see e.g. [L, pp
12-15, 17--19]).

4. Positive-definite bimeasures. In this section we consider only one
algebra X of subsets of a nonempty set 5. A bounded separately finitely
additive function 8 ; X x X — C is said to be positive-defingte il it is a
positive-defittite kernel in the usual sense, ie.,

L 1

Z Z e B(Xn X)) 20

qw] Jeel o
for all finite sequences of Xy,...,Xn € X, ¢1,...,¢n € C. It 5 easily seen
to be equivalent to require that .
[ (r.Daszo
for every f in the space C of functions that can be expressed as uniform
limits of linear combinations of cllaracteristic functions of sets in L.

4.1. TupoREM. Let § be a nonempty set and X an ulg.ebm. of subsets
of §. Let 8: % x X — C be o bounded separdtely additive function.



276 K. Ylinen

(a) The following conditions are equivalent:

(i) B is positive definite;

(i1} there is o Hilbert space H with o finitely additive spectral measure
E : ¥ — L(H), an orthogonal projection P : H — H and a vector £ € H
such that

B(X,Y) = (EB(X)PE(Y){]|€)
foral XY € X

(i) there is a Hilbert space H with o finitely additive spectral measure
E ¥ — L(H), a positive operator T € L(H), and o vector £ € H such that

B(X,Y) = (B(X)TE(Y)¢|§)
forall XY ¢ X.

(b} If B is separately o-additive, then E in (a) can be taken to be strongly
o-gdditive.

Proof. We prove (a) and (b) simultaneously. Assume first (i). Let C
be as above and define B(f, g) = [(g, f) d0. Since B is a bounded bilinear
form and B(f, f) > 0, a standard construction yields a Hilbert space K
and a bounded linear map & : € — K such that &(C) is dense in K and
B(f,0) = (@(f) | 5(3)) for all f g € C. (Set N = {f € C | B, F) = 0},
take for K the completion of C/N equipped with the inner product (f+ N |
g+N) = B(f,7), and write #(f) = f+ N, f € C.) There is a positive linear
form ¢ : C — € such that ||8(f)||* < ¢(|f|?) for all £ € C, and in part (b} we
may, moreover, assume that X — p(X) = ¢(xx) is o-additive on X. {Apply
Lemma 2.1 to the mapping (X, V) — ($(xx) | (xv)) on ¥ x X or Lemma
2 in [2, p. 271]; in the latter case note that if 7 is separately o-additive, the
map X — P(xx) is weakly, or equivalently strongly, o-additive, since it is
bounded, and X r» (${xx) | £} is o-additive for each £ in the dense subspace
®(C) of K.) Using the GNS-construction, we get in part {a) a Hilbert space
Hy and a *-representation 7, : ¢ — L{H}) with a cyclic vector £, such that
(mi(f)&1 | &1) = o(f) for all f € C. In part (b), put Hy = L2(f), where [ is
the Hahn extension of 4 (introduced above) to the s-algebra & generated
by &, write mi(f)n = fy for all f € C, n € Hy, and take &, identically 1
on 5. Then ¢(f) = (m(f)é1 | &) for f € C, and X — 7 {xx) is strongly
c-additive in (b). In both (a} and (b), write ¥(f) = ()€, for f € C. Since

WA = (ma()ér | m(£&) = (1 (172 | &) = o(F2) 2 1905,
there is a linear contraction § : H; — K such that BT(f)) = &(f) for
all f € C. Thus we can find a Hilbert space H with isometric linear maps
a:Hy - HandV: K — H such that § = V* o« (see e.g [2, p. 271] or
[14, p. 379], and references mentioned in those papers). We identify H via
o with its image a(H,) in H. Let Hy be the orthogonal complement of Hy
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in H; we interpret H = II) & Hy. Fix s € 5 and define mo(f) = f(s) .
Then 7 == 71 &y : C — L({H) is a »-representation preserving the identity,
and 50 X +— E(X) = m(xx) is a finitely additive spectral measure, which in
case (b) is strongly o-additive. Moreover, writing £ = (£1,0) € H = H18Hy,
for all X, Y & X we get
BX YY) = (B(xv) | S(xx)) = (O (xy)) | 00F (xx)))
= (Ve )é0) | V(i (xx)é)) = (VE (r(ev )€) 1 V¥ (7 (xx )E))
= (B(X)VV'E(Y)¢ |8,
and so (i) holds, since P == VV* is an orthogonal projection.
Obviously (i) implies (iii). Finally, a straightforward calculation shows
that (iii) troplies (i), =
4.9. THEOREM. Let S be a nonempty set and X an algebra of subsets of
S Let B: 3 % X — C be a bounded separately additive function.

(a) There are four positive-definite bounded separately additive functions
Bi.. ..,y Ba, such that

A w= By~ B2+ (B~ Ba)-

(b) If 8 is separately o-additive, then the By, ...,B4 in (a) can be taken
to be separately o-additive.

Prool In Theorem 2.4, write T = T — T 4+ 4(T3 — Ty), where gach T;
is a positive bounded linear operator on H. Theorem 4.1 shows that we get
the positive-definite separately additive (or separately o-additive) functions
we want. =

43, Remark. Part (a) in the above theorem also follows from some
results {proved in a much more general setting with a heavy machinery) in
[3]: see page 157 and Corollaries 4.3 and 5.6.
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On supportless absorbing convex subsets
in normed spaces

by

V.P. FONF (Kharkov)

Abstract. It is proved that a separable normed space contains a closed bounded
convex symmebric absorbiug supportless subset if and only if this space may be covered
{in its completion) by the range of a nonisomorphic operator.

According to the Hahn-Banach theorem every boundary point z of a
solid {i.e. with nonempty interior) closed bounded convex subset A4 of a
normed space X is a support point, ie. there exists a linear functional
£ € X*\ {0} such that f(z) = sup f(A). If A is not solid then the complete-
ness of the space X hegins to play a role. Namely, in 1958 V. Klee (3] gave
an example of an (incomplete) dense subspace of £ which contains a closed
bounded convex absorbing subset with no support peints (a supportless sub-
set). In 1961 E. Bishop and R. Phelps [1] showed that in a Banach space
such an example is impossible: the support functionals of closed bounded
convex subsets of a Banach space are always dense in the dual space. In 1985
J. Borwein and D. Tingley [3], developing the ideas of V. Klee, constructed
in every infinite-dimensional separable Banach space a dense linear subspace
which contains a closed bounded convex absorbing supportless subset.

The purpose of this paper is a full description of the class of (incomplete)
separable normed spaces which contain closed bounded convex absorbing
supportless subseks.

We use the standard Banach space theory notation. By U(E) we denote
the unit ball of a normned space E; if A C E then [A] is the closed linear
span of A and lin A is the linear span of A. :

We begin with an auxiliary proposition.

PROPOSITION. Let X be a separable Banach space, M be a dense sub-
space of X amd T : Y = X be a one-to-one linear bounded operator f@;om
¢ Banach space Y into X such that TY D M, the inverse mapping T s
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